Hashing

- Consider the key-indexed search method that we studied earlier with symbol tables
 - Uses key value as array index rather than comparing the keys
 - Depends on the keys being distinct, and mappable to distinct integers to provide for the index within the array range
- Hashing is an extension of the key-indexed approach that handles general search application without any assumption on the properties of keys being able to be mapped onto distinct indices
 - The property of key being distinct still holds
- Search algorithms based on hashing consist of two parts:
 1. Compute a hash function
 - Transforms a key into an index
 - Hashing is also known as key transformation for this reason
 2. Collision-resolution process
 - Kicks in when two distinct keys get transformed to the same address
- Hashing is a good example of time-space tradeoff

Hash Tables

Effective data structure for implementing dictionaries
Symbol tables generated by a compiler - insert, search, delete
Worst case search time - \(\Theta(n) \)
Average case search time - \(O(1) \)
Effective when number of keys actually stored is small compared to the total number of possible keys

Direct-Address Tables

- Universe of keys \(U \) assumed to be reasonably small
 \[
 U = \{0, 1, \ldots, m - 1\}
 \]
- Assume that no two elements have the same key
- **Direct-Address Table** - An array \(T[0..m-1] \) in which each position, or slot corresponds to a key in the universe \(U \)
- If the set contains no element with key \(k \), then \(T[k] = \text{NIL} \)
- Dictionary operations
 - \texttt{direct_address_search} \((T,k) \)
 \[
 \text{return}(T[k])
 \]
 - \texttt{direct_address_insert} \((T,x) \)
 \[
 T[\text{key}[x]] \leftarrow x
 \]
 - \texttt{direct_address_delete} \((T,x) \)
 \[
 T[\text{key}[x]] \leftarrow \text{NIL}
 \]
• Problems with direct addressing
 – If the universe U is large, storing a table T of size $|U|$ may be impractical, or even impossible
 – The set K of keys actually stored may be so small relative to U that most of the space allocated for T would be wasted.
• Reduce the storage requirements to $\Theta(|K|)$, keeping the search for an element $O(1)$
• With direct addressing, an element with key k goes in $T[k]$
• With hash addressing, an element with key k goes in $T[h(k)]$
• Hash function h is used to compute an address from key k
• h maps the universe U of keys into the slots of a hash table $T(0..m-1)$
 \[h : U \rightarrow \{0, 1, \ldots, m-1\} \]
• An element with key k hashes to slot $h(k)$
• $h(k)$ is the hash value of key k
• Result – reduction in the range of array indices that need to be handled
• Collision – Two keys hash to the same value
• Ideal hash function
 – Easy to compute
 – approximates a “random” function
• A simple hashing function
 – Consider a four character key called akey
 – Replace every character with its five bit representation (between 1 and 26)
 \[akey \equiv 00001 \ 01011 \ 00101 \ 11001 \]
 – Decimal equivalent – 44217
 – Select a prime number of locations in the array – $m = 101$
 – Location corresponding to akey – $44217 \mod 101 = 80$
 – The key barh also hashes to location 80 – collision
 – Why prime number of locations for the hashing function
 * Arithmetic properties of the mod function
 * The number 44217 can be written as
 \[1 \cdot 32^3 + 11 \cdot 32^2 + 5 \cdot 32^1 + 25 \cdot 32^0 \]
 * If m is chosen to be 32, the value of hash function is simply the value for the last character
• Collision resolution by chaining
 – Simplest collision resolution technique
 – Put all the elements that hash to the same address in a linked list
 – Address j contains a pointer to the head of the list
 – If no elements hash to the address, the corresponding slot contains nil
 – New definition for dictionary operations
* **chained_hash_insert** \((T,x)\)
 insert \(x\) at the head of the list \(T[h(key[x])]\)
 Worst-case running time \(- O(1)\)

* **chained_hash_search** \((T,k)\)
 search for an element with key \(k\) in list \(T[h(k)]\)
 Worst-case running time proportional to length of list

* **chained_hash_delete** \((T,x)\)
 delete \(x\) from the list \(T[h(key[x])]\)
 \(O(1)\) if lists are doubly linked

- Analysis of hashing with chaining
 - Given – Hash table \(T\) with \(m\) slots to store \(n\) elements
 - Load factor \(- \alpha\) for \(T = n/m\)
 - Assume that \(\alpha\) stays constant as \(m\) and \(n\) approach infinity
 - No other restriction on \(\alpha\); can be \(< 1\), \(= 1\), or \(> 1\)
 - Worst case behavior
 - All \(n\) keys hash to the same address
 - A list of length \(n\)
 - Worst case time for search \(- \Theta(n) + \) Time to compute hash function
 - Average case performance
 - Depends upon the distribution of keys among \(m\) addresses by \(h\)
 - Simple uniform hashing
 - Assume that \(h(k)\) can be computed in \(O(1)\) time
 - Time for search depends linearly upon the length of the list \(T[h(k)]\)

Theorem 1 In a hash table in which collisions are resolved by chaining, an unsuccessful search takes time \(\Theta(1 + \alpha)\), on the average, under the assumption of simple uniform hashing.

Theorem 2 In a hash table in which collisions are resolved by chaining, a successful search takes time \(\Theta(1 + \alpha)\), on the average, under the assumption of simple uniform hashing.

- by above theorems, if the number of hash addresses is at least proportional to the number of elements in the table, \(n = O(m)\)
 Consequently, \(\alpha = n/m = O(m)/m = O(1)\)

Hash Functions

- What is a good hash function?
 - Each key is equally likely to hash to any of the \(m\) addresses
 - Compute the hash value as independent of any patterns in data

- Interpreting keys as natural numbers

- **The division method**
 - Hash function \(- h(k) = k \mod m\)
 - Good values for \(m\) are primes not too close to a power of 2

- **The multiplication method**
 - Two steps
Hashing

Multiply the key \(k \) by a constant \(A \), \(0 < A < 1 \), and extract the fractional part of \(kA \)

Multiply this value by \(m \) and take the floor of the result

- Also given by \(- h(k) = \lfloor m(kA \mod 1) \rfloor\)
- Value of \(m \) is not critical any more
- Typically, \(m \) is chosen to be \(2^p \) for some integer \(p \)

- Universal hashing
 - Choose the hash function randomly in a way that is independent of the keys to be stored from a set of hash functions

Open Addressing

- All elements stored in the hash table itself
- Possible to “fill up” the table so that no more insertions can be made
- Load factor \(\alpha \) can never exceed 1
- No need for pointers – the space used by pointers can be added to hash table address space to yield fewer collisions and faster retrieval
- “probing” for insertion
- Possible to probe after a fixed number of keys rather than successive keys
- New hash function
 \[h : U \times \{0, 1, \ldots, m - 1\} \rightarrow \{0, 1, \ldots, m - 1\} \]

- Probe sequence
 \[\langle h(k, 0), h(k, 1), \ldots, h(k, m - 1) \rangle \]
 must be a permutation of \(\langle 0, 1, \ldots, m - 1 \rangle \) so that every hash table position can be eventually considered

- Procedure to insert in a hash table

  ```
  hash_insert (T, k)
  i ← 0
  repeat
    j ← h(k, i)
    if T[j] = nil then
      T[j] ← k
      return j
    else
      i ← i + 1
  until i = m
  error "hash table overflow"
  ```

- Procedure to search in a hash table

  ```
  hash_search (T, k)
  i ← 0
  repeat
    j ← h(k, i)
    if T[j] = k then
      return j
    i ← i + 1
  until T[j] = nil or i = m
  return nil
  ```
Hashing

- Procedure to delete from hash table
- Probing sequences
 - Linear probing
 * Easy to implement
 * Given an ordinary hash function $h' : U \rightarrow \{0, 1, \ldots, m - 1\}$

 the method of linear probing uses the hash function

 $$h(k, i) = (h'(k) + i) \mod m$$

 for $i = 0, 1, \ldots, m - 1$.
 * Suffers from the problem of primary clustering
 - Quadratic probing
 * Better than linear probing
 * Hash function is of the form

 $$h(k, i) = (h'(k) + c_1 i + c_2 i^2) \mod m$$

 where h' is an auxiliary hash function, c_1 and $c_2 \neq 0$ are auxiliary constants, and $i = 0, 1, \ldots, m - 1$.
 * Leads to a milder form of clustering known as secondary clustering
 - Double hashing
 * Uses a hash function of the form

 $$h(k, i) = (h_1(k) + ih_2(k)) \mod m$$

 where h_1 and h_2 are auxiliary hash functions
 * First position to be probed is $T[h_1(k)]$
 * Successive probe positions are offset from previous position by $h_2(k) \mod m$