Symbol Tables and Binary Search Trees

Search

- Basic operation for retrieval of a specific piece of information from large volume of previously stored data
- Each data item divided into two parts
 1. Key – used for searching
 2. Record – information to be looked for based on key

Definition 1 A symbol table is a data structure of items with keys that supports two basic operations:

1. insert a new item, and
2. return an item with a given key.

- Also known as a dictionary
- Mostly used to organize software on computers, such as list of variable names in a program during compilation
- Low-level abstraction or associative memory

Symbol Table ADT

- Operations of interest
 1. insert a new item
 2. search for an item on the basis of a key
 3. remove a specified item
 4. select the kth largest item
 5. sort the symbol table
 6. join two symbol tables
- Implementation of symbol table ADT

```cpp
class sym_tab
{
    int num_elements; // Number of elements in the symbol table
    item * a; // Array of items

    // Private functions
    void sort ( void );
    void join ( const sym_tab& );

    public:
    sym_tab ( void ); // Default constructor
    sym_tab ( const int ); // Parameterized constructor
    sym_tab ( const sym_tab& ); // Copy constructor
    ~sym_tab ( void ); // Destructor

    int count ( void ) const; // Number of elements in symbol table
    item& search ( const key ) const;
};
```
Symbol Tables and Binary Search Trees

```c
void insert ( const item );
void remove ( const item );
item& select ( const int );
void show ( ostream& );
```

- Check the man page for `bsearch(3)` and other searches mentioned in the cross reference section of this man page.

Key-indexed search

- Useful when the keys are small compared to the entire record
- The items can be stored in an array, indexed by keys
 - Initialize all items in array `a` to be `NULL`
 - Store the item with key `k` in location `a[k]`
- Search is straightforward by simply picking the item in `a[k]`
- Deletion is performed by putting a `NULL` item in `a[k]`

Sequential search

Binary search

Binary search trees

- Represented as a linked data structure
- Each node represents an object
- Node contains key + pointer to left child, right child, parent
- Binary-search-tree property
 - All records with smaller keys than a node are in left subtree
 - All records with larger keys than a node are in right subtree
- All keys can be printed in sorted order by *in-order traversal*
- Querying a binary search tree
 - Searching
    ```c
    * tree_search (x,k)
      if x = nil or k = key[x] then
        return (x)
      if k < key[x] then
        return (tree_search (left[x],k))
      else
        return (tree_search (right[x],k))
    * Run-time for tree_search is $O(h)$ where $h$ is the height of the tree
    ```
 - Minimum and Maximum
    ```c
    * tree_minimum (x)
      while left[x] ≠ nil do
        x ← left[x]
      return(x)
    ```
Symbol Tables and Binary Search Trees

* tree maximum \((x) \)

 while right[\(x \)] \(\neq \) nil do

 \(x \leftarrow \) right[\(x \)]

 return(\(x \))

* Both the procedure run in \(O(h) \) time for a tree of height \(h \)

Successor and Predecessor

* Successor in sorted order determined by in-order traversal
* Successor of node \(x \) is the smallest key greater than \(\text{key}[x] \)

* tree successor \((x) \)

 if right[\(x \)] \(\neq \) nil then

 return tree minimum(right[\(x \)])

 \(y \leftarrow \) parent[\(x \)]

 while \(y \neq \) nil and \(x = \) right[\(y \)] do

 \(x \leftarrow y \)

 \(y \leftarrow \) parent[\(y \)]

 return \(y \)

• Insertion and deletion

 Insertion

* tree insert \((T,z) \)

 \(y \leftarrow \) nil

 \(x \leftarrow \) root[\(T \)]

 while \(x \neq \) nil do

 \(y \leftarrow x \)

 if key[\(z \)] < key[\(x \)] then

 \(x \leftarrow \) left[\(x \)]

 else

 \(x \leftarrow \) right[\(x \)]

 parent[\(z \)] \(\leftarrow y \)

 if \(y = \) nil then

 root[\(T \)] \(\leftarrow z \)

 else

 if key[\(z \)] < key[\(y \)] then

 left[\(y \)] \(\leftarrow z \)

 else

 right[\(y \)] \(\leftarrow z \)

 return \(z \)

* tree insert runs in \(O(h) \) time for a tree of height \(h \)

Deletion

* tree delete \((T,z) \)

 if left[\(z \)] = nil or right[\(z \)] = nil then

 \(y \leftarrow z \)

 else

 \(y \leftarrow \) tree successor(\(z \))

 if left[\(y \)] \(\neq \) nil then

 \(x \leftarrow \) left[\(y \)]

 else

 \(x \leftarrow \) right[\(y \)]

 if \(x \neq \) nil

 parent[\(x \)] \(\leftarrow \) parent[\(y \)]

 if parent[\(y \)] = nil then
The procedure runs in $O(h)$ time for a tree of height h.

Performance characteristics of BSTs

Index implementations with symbol tables

Insertion at the root in BSTs

BST implementations of other ADT functions