Principles of Algorithm Analysis

- Key to good understanding of algorithms for practical applications
 - We do not analyze every program we write
 - Enough to understand basic [standard] algorithms and their performance so that we can select the best algorithm for the job at hand
- Important for the study of algorithm properties so that we can save time and resources, with reasonable sacrifice in terms of complexity of coding
- Consider the following three codes

  ```plaintext
  sum ← 0  
  for i ← 1 to n
    for j ← 1 to n
      sum ← sum + 1

  sum ← 0  
  for i ← 1 to n
    sum ← sum + n

  sum ← n^2
  ```

- What can you say about their performance? Do they achieve the same goal?

Implementation and Empirical Analysis

- Design, develop, and express algorithms in terms of layers of abstract operations
- Empirical analysis
 - Compare the performance of two algorithms by actually running them
 - Requires a correct and complete implementation
 - Look for resource usage and time required, with the same input data and running on the same machine, with the same type of environment
 * Selection of input data is extremely important
 * You can select random data, actual data, or perverse data
 - Code may execute at different speed depending on load on the system (overall resource usage)
 - Useful to validate the mathematical analysis
- Pitfalls in algorithm selection
 - Ignoring performance characteristics
 * Addition of a few lines of code (increase in complexity) can endow the code with more intelligence to make it run faster
 - Paying too much attention to performance characteristics
 * Is it worth spending 10 hours of your time to save 10 milliseconds of run time?

Analysis of algorithms

- It may not be always possible to perform empirical analysis
- Mathematical analysis is more informative and less expensive but can be difficult if we do not know all the mathematical formulas
- The high-level program code may not correctly reflect the performance in terms of machine language
The code may compile differently depending on the level of optimization turned on in the compiler.

- Identify the abstract operations on which the algorithm is based, and separate analysis from implementation (think of the abstract operations outlined in selection sort analysis)
- Identify the data for best case comparison, average case comparison, and worst case comparison
 - It is possible that the best case data for an algorithm turns out to be the worst case data for a different algorithm.

Growth of Functions

- Simple characterization of algorithm efficiency
- Allows to compare relative performance of alternative algorithms
- Depends on input data size N
 - If there are multiple input parameters, we will try to reduce them to a single parameter, expressing some parameters in terms of the selected parameter
- The performance of algorithm on an input of size N is generally represented in terms of 1, $\lg N$, N, $N \lg N$, N^2, N^3, and 2^N
 - The performance depends heavily on loops, and can be increased by minimizing the inner loops (or work done in inner loops)
- Asymptotic efficiency of algorithms
 - Effect of input size increase without bound on running time of algorithm

Standard Notation and Common Functions

- **Monotonicity**
 - Monotonically increasing $m \leq n \Rightarrow f(m) \leq f(n)$
 - Monotonically decreasing $m \leq n \Rightarrow f(m) \geq f(n)$
 - Strictly increasing $m < n \Rightarrow f(m) < f(n)$
 - Strictly decreasing $m < n \Rightarrow f(m) > f(n)$
- **Floors and ceilings**
 - floor(x) – greatest integer $\leq x$
 - ceiling(x) – smallest integer $\geq x$
 - \forall real x
 $$x - 1 \leq \lfloor x \rfloor \leq x \leq \lceil x \rceil < x + 1$$
 - For any integer n
 $$\left\lfloor \frac{n}{2} \right\rfloor + \left\lceil \frac{n}{2} \right\rceil = n$$
 - For any integer n, and integers $a \neq 0$ and $b \neq 0$
 $$\left\lfloor \frac{n}{a} \right\rfloor \left\lceil \frac{n}{b} \right\rceil = \left\lfloor \frac{n}{ab} \right\rfloor$$
Floor and ceiling functions are monotonically increasing

- **Polynomials**
 - Polynomial in n of degree d
 \[p(n) = \sum_{i=0}^{d} a_i n^i \]

 a_0, a_1, \ldots, a_d are coefficients of polynomial, and $a_d \neq 0$
 - Polynomial is asymptotically positive iff $a_d > 0$
 - For an asymptotically positive polynomial $p(n)$ of degree d, $p(n) = \Theta(n^d)$

- **Exponentials**
 - \forall real $a \neq 0$, m and n, we have following identities
 * $a^0 = 1$
 * $a^1 = a$
 * $a^{-1} = \frac{1}{a}$
 * $(a^m)^n = a^{mn}$
 * $(a^m)^n = (a^n)^m$
 * $a^m a^n = a^{m+n}$
 - \forall n and $a \geq 1$, a^n is monotonically increasing in n
 - Assume $0^0 = 1$
 - \forall real constants a and b such that $a > 1$
 \[
 \lim_{n \to \infty} \frac{n^b}{a^n} = 0
 \]

 $n^b = o(a^n)$

 Any positive exponential function grows faster than any polynomial
 - Base of natural logarithm function $e \approx 2.71828 \ldots$
 - \forall real x
 \[
 e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots = \sum_{i=0}^{\infty} \frac{x^i}{i!}
 \]
 - \forall real x, $e^x \geq 1 + x$
 - When $|x| \leq 1$, we have $1 + x \leq e^x \leq 1 + x + x^2$
 - When $x \to 0$, e^x can be approximated by
 \[e^x = 1 + x + \Theta(x^2) \]

- **Logarithms**
 - Notation
 \[
 \begin{align*}
 \lg n &= \log_2 n \quad \text{(binary logarithm)} \\
 \ln n &= \log_e n \quad \text{(natural logarithm)} \\
 \lg^k n &= (\lg n)^k \quad \text{(exponentiation)} \\
 \lg \lg n &= \lg(\lg n) \quad \text{(composition)}
 \end{align*}
 \]
– For all real $a > 0, b > 0, c > 0$, and n

\[
\begin{align*}
 a &= b^{\log ba} \\
 \log(ab) &= \log a + \log b \\
 \log a^n &= n \log a \\
 \log a &= \frac{1}{\log b} \\
 \log b &= \frac{1}{\log a} \\
 a^{\log b} &= n^{\log a}
\end{align*}
\]

– When $|x| < 1$

\[
\ln(1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \cdots
\]

– For $x > -1$

\[
\frac{x}{1 + x} \leq \ln(1 + x) \leq x
\]

– A function $f(n)$ is polylogarithmically bounded if $f(n) = \lg^{O(1)} n$

\[
\lim_{n \to \infty} \frac{\lg^a n}{2^{\lg n}} = \lim_{n \to \infty} \frac{\lg^a n}{n^a} = 0
\]

Any positive polynomial function grows faster than any polylogarithmic function

• Factorials

\[
n! = \begin{cases}
1 & \text{if } n = 0 \\
 n \cdot (n - 1)! & \text{if } n > 0
\end{cases}
\]

• Fibonacci numbers

– Definition

\[
\begin{align*}
 F_0 &= 0 \\
 F_1 &= 1 \\
 F_i &= F_{i-1} + F_{i-2}, \quad i \geq 2
\end{align*}
\]

– Golden ratio Φ and conjugate $\hat{\Phi}$

\[
\begin{align*}
 \Phi &= \frac{1 + \sqrt{5}}{2} = 1.61803 \ldots \\
 \hat{\Phi} &= \frac{1 - \sqrt{5}}{2} = -0.61803 \ldots \\
 F_i &= \Phi^i - \hat{\Phi}^i / \sqrt{5}
\end{align*}
\]

Asymptotic Notation (including Big-Oh)

• Function with domain as the set of natural numbers

• Allows the suppression of detail when analyzing algorithms

• Allows the description to be accurate while losing little detail

• Convenient to describe the worst case running time function $T(n)$

• Θ-notation

– Consider a given function $g(n)$

– $\Theta(g(n))$ – Set of functions

– $\Theta(g(n)) = \{ f(n) : \exists \text{ positive constants } c_1, c_2, \text{ and } n_0 \mid 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \forall n \geq n_0 \}$.
- $f(n)$ can be sandwiched between $c_1g(n)$ and $c_2g(n)$, for sufficiently large n
- $\Theta(g(n))$ is a set
- We write $f(n) = \Theta(g(n))$ to imply $f(n) \in \Theta(g(n))$
- For all values of $n \geq n_0$, $f(n)$ lies at or above $c_1g(n)$ and at or below $c_2g(n)$
- $\forall n \geq n_0, f(n)$ is equal to $g(n)$ within a constant factor
- $g(n)$ is an asymptotically tight bound for $f(n)$
- Every member of $\Theta(g(n))$ must be asymptotically nonnegative
- $f(n)$ must be nonnegative whenever n is sufficiently large
- Consequently, $g(n)$ itself must be asymptotically nonnegative, or else, the set $\Theta(g(n))$ is empty
- Therefore, it is reasonable to assume that every function used with Θ-notation is asymptotically nonnegative
- Prove $\frac{1}{2}n^2 - 3n = \Theta(n^2)$
 - Determine positive constants $c_1, c_2,$ and n_0 such that $c_1n^2 \leq \frac{1}{2}n^2 - 3n \leq c_2n^2 \forall n \geq n_0$
 - Dividing by n^2 we have $c_1 \leq \frac{1}{2} - \frac{3}{n} \leq c_2$
 - $c_1 \leq \frac{1}{14}$ for $n \geq 7$
 - $c_2 \geq \frac{1}{14}$ for $n \geq 7$, but preferably, $c_2 \geq \frac{1}{2}$ for arbitrarily large n
- Prove $6n^3 \neq \Theta(n^2)$
 - Assume that c_2 and n_0 exist such that $6n^3 \leq c_2n^2 \forall n \geq n_0$
 - $n \leq \frac{c_2}{6}$, not possible for arbitrarily large n because c_2 is a constant
- Since any constant is a degree-0 polynomial, constant function can be expressed as $\Theta(n^0)$ or $\Theta(1)$

- **O-notation**
 - Asymptotic upper bound
 - Upper bound on a function within a constant factor
 - Not as strong as Θ-notation
 - $O(g(n)) = \{ f(n) : \exists$ positive constants c and $n_0 \mid 0 \leq f(n) \leq cg(n) \forall n \geq n_0 \}$
 - $f(n) = \Theta(g(n)) \Rightarrow f(n) = O(g(n))$
 - $\Theta(g(n)) \supseteq O(g(n))$
 - O-notation used to describe the running time of algorithm by inspection of algorithm structure
 - Biggest concern is the terms with the larger exponent, or the leading terms in a polynomial
 - Three purposes of O-notation:
 1. Bound the error when small terms in mathematical formulas are ignored
 2. Bound the error when we ignore parts of a program that contribute a small amount to the total being analyzed
 - Such items will include initialization code and/or heuristics which may have a small but significant effect on the actual run-time
 3. Classify algorithms according to upper bounds on their total running times
 - Above reasoning allows us to focus on the leading term when comparing running times for algorithms (with the assumption that precise analysis can be performed, if necessary)
 - $f(n) \in O(g(n)) \equiv f(n) = O(g(n))$
- When \(f(n) \) is asymptotically large compared to another function \(g(n) \), i.e., \(\lim_{N \to \infty} \frac{g(n)}{f(n)} = 0 \), \(f(n) \) is taken to mean \(f(n) + O(g(n)) \).
- We sacrifice mathematical precision in favor of clarity, with a guarantee that for large \(N \), the effect of quantity given by \(O(g(n)) \) actually is negligible.
 - As an example, we take the summation of the series \(\sum_{i=1}^{N} i \) to be \(\frac{N^2}{2} \) rather than \(\frac{N(N+1)}{2} \).
- Such notation allows us to be both precise and concise when describing the performance of algorithms.

- **\(\Omega \)-notation**
 - Asymptotic lower bound
 - Best-case running time
 - \(\Omega(g(n)) = \{ f(n) : \exists \text{ positive constants } c \text{ and } n_0 \mid 0 \leq cg(n) \leq f(n) \forall n > n_0 \} \)
 - Best case running time of insertion sort \(\Omega(n) \)

- **Theorem 1** For any two functions \(f(n) \) and \(g(n) \), \(f(n) = \Theta(g(n)) \) if and only if \(f(n) = O(g(n)) \) and \(f(n) = \Omega(g(n)) \)
 - Useful to prove asymptotically tight bounds from upper and lower bounds
 - Running time of insertion sort falls between \(O(n^2) \) and \(\Omega(n) \)

- **\(o \)-notation**
 - Asymptotic upper bound provided by \(O \)-notation may or may not be asymptotically tight
 - \(o(g(n)) = \{ f(n) : \forall \text{ constant } c > 0, \exists \text{ a constant } n_0 > 0 \mid 0 \leq f(n) < cg(n) \forall n \geq n_0 \} \)
 - For example, \(2n = o(n^2) \), but \(2n^2 \neq o(n^2) \)
 - \(f(n) \) becomes insignificant compared to \(g(n) \) as \(n \) approaches infinity, or
 \[
 \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0
 \]

- **\(\omega \)-notation**
 - \(\omega \)-notation denotes the asymptotic lower bound that is not tight
 - \(\omega(g(n)) = \{ f(n) : \forall \text{ constant } c > 0, \exists \text{ a constant } n_0 > 0 \mid 0 \leq cg(n) < f(n) \forall n \geq n_0 \} \)
 - For example, \(n^2 = \omega(n) \), but \(\frac{n^2}{2} \neq \omega(n^2) \)
 - \(f(n) = \omega(g(n)) \) implies
 \[
 \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty
 \]
 - \(f(n) \) becomes arbitrarily large relative to \(g(n) \) as \(n \) approaches infinity.

- **Comparison of functions**
 - \(f(n) \) and \(g(n) \) are asymptotically positive
 - Transitivity
 \[
 f(n) = \Theta(g(n)) \land g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))
 \]
 \[
 f(n) = O(g(n)) \land g(n) = O(h(n)) \Rightarrow f(n) = O(h(n))
 \]
 \[
 f(n) = \Omega(g(n)) \land g(n) = \Omega(h(n)) \Rightarrow f(n) = \Omega(h(n))
 \]
 \[
 f(n) = o(g(n)) \land g(n) = o(h(n)) \Rightarrow f(n) = o(h(n))
 \]
 \[
 f(n) = \omega(g(n)) \land g(n) = \omega(h(n)) \Rightarrow f(n) = \omega(h(n))
 \]
 - Reflexivity
\[f(n) = \Theta(f(n)) \]
\[f(n) = O(f(n)) \]
\[f(n) = \Omega(f(n)) \]

- Symmetry
 \[f(n) = \Theta(g(n)) \text{ if and only if } g(n) = \Theta(f(n)) \]

- Transpose symmetry
 \[f(n) = O(g(n)) \text{ if and only if } g(n) = \Omega(f(n)) \]
 \[f(n) = o(g(n)) \text{ if and only if } g(n) = \omega(f(n)) \]

- Analogy with two real numbers \(a \) and \(b \)
 \[f(n) = O(g(n)) \approx a \leq b \]
 \[f(n) = \Omega(g(n)) \approx a \geq b \]
 \[f(n) = \Theta(g(n)) \approx a = b \]
 \[f(n) = o(g(n)) \approx a < b \]
 \[f(n) = \omega(g(n)) \approx a > b \]

Summations – Formulas and Properties

- **Infinite series**
 \[\sum_{i=1}^{\infty} a_i = a_1 + a_2 + \cdots = \lim_{n \to \infty} \sum_{i=1}^{n} a_i \]

- **Divergent series – no limit**
- **Convergent series – some limit**
- **Linearity**
 - For any real number \(c \) and any finite sequences \(a_1, a_2, \ldots, a_n \) and \(b_1, b_2, \ldots, b_n \)
 \[\sum_{i=1}^{n} (ca_i + b_i) = c \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i \]

- Usage in growth estimation
 \[\sum_{i=1}^{n} \Theta(f(i)) = \Theta\left(\sum_{i=1}^{n} f(i) \right) \]

- **Arithmetic series**
 \[\sum_{i=1}^{n} i = 1 + 2 + 3 + \cdots + n \]
 \[= \frac{1}{2} n(n+1) \]
 \[= \Theta(n^2) \]

- **Geometric series**
 - For real \(x \neq 1 \)
 \[\sum_{i=0}^{n} x^i = 1 + x + x^2 + x^3 + \cdots + x^n \]
 \[= \frac{x^{n+1} - 1}{x - 1} \]
Principles of Algorithm Analysis

For $|x| < 1$

$$\sum_{i=0}^{n} x^i = \frac{1}{1-x}$$

- Harmonic series
 - For $n > 0$, the nth harmonic number is
 $$H_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots + \frac{1}{n}$$
 $$= \sum_{i=1}^{n} \frac{1}{i}$$
 $$= \ln n + O(1)$$

- Telescoping series
 - For any sequence a_0, a_1, \ldots, a_n
 $$\sum_{i=1}^{n} (a_i - a_{i-1}) = a_n - a_0$$
 $$\sum_{i=0}^{n-1} (a_i - a_{i+1}) = a_0 - a_n$$
 - Example
 $$\sum_{i=1}^{n-1} \frac{1}{i(i+1)} = \sum_{i=0}^{n-1} \left(\frac{1}{i} - \frac{1}{i+1} \right)$$
 $$= 1 - \frac{1}{n}$$

- Products
 - Finite product
 $$\prod_{i=1}^{n} a_i$$
 - Convert a formula with a product to one with summation
 $$\lg \left(\prod_{i=1}^{n} a_i \right) = \sum_{i=1}^{n} \lg a_i$$

Bounding Summations

- Mathematical induction
 - Prove that
 $$\sum_{i=1}^{n} i = \frac{1}{2} n(n+1)$$
 - Base case: For $n = 1$, trivially proven
 - Inductive assumption: True for all values of n such that $1 \leq n \leq k$.
Induction:
\[
\sum_{i=1}^{k+1} i = \sum_{i=1}^{k} i + (k + 1) \\
= \frac{1}{2}k(k + 1) + (k + 1) \\
= \frac{1}{2}(k + 1)(k + 2)
\]

- Use of induction to show a bound.
 Prove that \(\sum_{i=0}^{n} 3^i\) is \(O(3^n)\);
 Or, for any constant \(c\)
 \[
 \sum_{i=0}^{n} 3^i \leq c \cdot 3^n
 \]

Base case: \(n = 0\)
\[
\sum_{i=0}^{0} 3^i = 1 \leq c, \text{ for } c \geq 1
\]

Inductive assumption: True for all values of \(n\) such that \(1 \leq n \leq k\).
Induction:
\[
\sum_{i=0}^{k+1} 3^i = \sum_{i=0}^{k} 3^i + 3^{k+1} \\
\leq c3^k + 3^{k+1} \\
= \left(\frac{1}{3} + \frac{1}{c}\right) c3^{k+1} \\
\leq c3^{k+1} \quad \forall c \leq \frac{3}{2}
\]

- Use of asymptotic notation to prove a bound
 Fallacious proof for
 \[
 \sum_{i=1}^{n} i = O(n)
 \]

Base case: \(n = 1\). Trivial proof
Inductive assumption: True for all values of \(n\) such that \(1 \leq n \leq k\).
Induction:
\[
\sum_{i=1}^{k+1} i = \sum_{i=1}^{k} i + (k + 1) \\
= O(k) + (k + 1) \Leftarrow \text{error} \\
= O(k + 1)
\]

- Bounding the terms
 - Upper bound on arithmetic series
 \[
 \sum_{i=1}^{n} i \leq \sum_{i=1}^{n} n \\
 = n^2
 \]
For a series $\sum_{i=1}^{n} a_i$, let $a_{\text{max}} = \max_{1 \leq i \leq n} a_i$. Then,

$$\sum_{i=1}^{n} a_i \leq n a_{\text{max}}$$

Geometric series

* For a series, $\sum_{i=0}^{n} a_i$, let $\frac{a_{i+1}}{a_i} \leq r$ for all $i \geq 0$, where $r < 1$

 Sum can be bounded by an infinite decreasing geometric series, since $a_i \leq a_0 r^i$

$$\sum_{i=0}^{n} a_i \leq \sum_{i=0}^{\infty} a_0 r^i$$

$$= a_0 \sum_{i=0}^{\infty} r^i$$

$$= a_0 \frac{1}{1 - r}$$

* Bound the summation

$$\sum_{i=1}^{\infty} \frac{i}{3^i}$$

First term $= \frac{1}{3}$

Ratio of consecutive terms

$$\frac{(i+1)/3^{i+1}}{i/3^i} = \frac{1}{3} \cdot \frac{i+1}{i}$$

$$\leq \frac{2}{3} \quad \forall i \geq 1$$

Each term is bounded above by $\left(\frac{1}{3} \right) \left(\frac{2}{3}\right)^i$

$$\sum_{i=1}^{\infty} \frac{i}{3^i} \leq \sum_{i=1}^{\infty} \frac{1}{3} \left(\frac{2}{3}\right)^i$$

$$= \frac{1}{3} \cdot \frac{1}{1 - \frac{2}{3}}$$

$$= 1$$

* A common pitfall

$$\sum_{i=1}^{\infty} \frac{1}{i} = \lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{i}$$

$$= \lim_{n \to \infty} \Theta(\lg n)$$

$$= \infty$$

Splitting summations

- Express the series as the sum of two or more summations
- Lower bound of the series $\sum_{i=1}^{n} i$
- Assume that n is even

$$\sum_{i=1}^{n} i = \sum_{i=1}^{n/2} i + \sum_{i=n/2+1}^{n} i$$
\[
\geq \sum_{i=1}^{n/2} 0 + \sum_{i=n/2+1}^{n} \frac{n}{2}
\]
\[
\geq \left(\frac{n}{2} \right)^2
\]
\[
= \Omega(n^2)
\]

- If each term \(a_i\) in a summation \(\sum_{i=0}^{n} a_i\) is independent of \(n\), then, for any constant \(i_0 \geq 0\)

\[
\sum_{i=0}^{n} a_i = \sum_{i=0}^{i_0-1} a_i + \sum_{i=i_0}^{n} a_i
\]

\[
= \Theta(1) + \sum_{i=i_0}^{n} a_i
\]

- Find an asymptotic upper bound on

\[
\sum_{i=0}^{\infty} \frac{i^2}{2^i}
\]

Observe that the ratio of consecutive terms, for \(i \geq 3\), is

\[
\frac{(i + 1)^2/2^{i+1}}{i^2/2^i} = \frac{(i + 1)^2}{2i^2} \leq \frac{8}{9}
\]

The summation can be split into

\[
\sum_{i=0}^{\infty} \frac{i^2}{2^i} = \sum_{i=0}^{2} \frac{i^2}{2^i} + \sum_{i=3}^{\infty} \frac{i^2}{2^i} \leq O(1) + \frac{8}{8} \sum_{i=0}^{\infty} \left(\frac{8}{9} \right)^i
\]

\[
= O(1)
\]

since the second summation is a decreasing geometric series.

- Find the asymptotic bound on the harmonic series

\[
H_n = \sum_{i=1}^{n} \frac{1}{i}
\]

Split the range 1 to \(n\) into \(\lfloor \lg n \rfloor\) pieces and upper bound the contribution of each piece by 1.

\[
\sum_{i=1}^{n} \frac{1}{i} \leq \sum_{i=0}^{\lfloor \lg n \rfloor} \sum_{j=0}^{2^i-1} \frac{1}{2^i + j}
\]
\[
\leq \sum_{i=0}^{\lfloor \lg n \rfloor} \sum_{j=0}^{2^i-1} \frac{1}{2^i}
\]
\[
\leq \sum_{i=0}^{\lfloor \lg n \rfloor} 1
\]
\[
\leq \lg n + 1
\]
Recurrences

• Recursively decompose a large problem into a set of smaller problems

 - Decomposition is directly reflected in analysis

 - Run-time determined by the size and number of subproblems to be solved in addition to the time required for decomposition

• An equation or inequality that describes a function in terms of its value on smaller inputs

 - Also known as recurrence relation

 - Recurrence can be solved to derive the running time

• Example, mergesort recurrence

\[
T_n = \begin{cases}
 \Theta(1) & \text{if } n = 1 \\
 2T_{\lfloor n/2 \rfloor} + \Theta(n) & \text{if } n > 1
\end{cases}
\]

Solution for the mergesort recurrence: \(\Theta(n \lg n) \)

• You can ignore extreme details like floor, ceiling, and boundary in recurrence description.

Substitution Method

• Guess the form of solution and use induction to find constants

• Determine upper bound on the recurrence

\[
T_n = 2T_{\lfloor n/2 \rfloor} + n
\]

Guess the solution as: \(T_n = O(n \lg n) \)

Now, prove that \(T_n \leq cn \lg n \) for some \(c > 0 \)

Assume that the bound holds for \(\lfloor n/2 \rfloor \)

Substituting into the recurrence

\[
T_n \leq 2(c \lfloor n/2 \rfloor \lg \left(\lfloor n/2 \rfloor \right)) + n
\]

\[
\leq cn \lg \left(\frac{n}{2} \right) + n
\]

\[
= cn \lg n - cn \lg 2 + n
\]

\[
= cn \lg n - cn + n
\]

\[
\leq cn \lg n \quad \forall c \geq 1
\]

Boundary condition: Let the only bound be \(T_1 = 1 \)

\[\nexists c \mid T_1 \leq c1 \lg 1 = 0 \]

Problem overcome by the fact that asymptotic notation requires us to prove

\(T_n \leq cn \lg n \) for \(n \geq n_0 \)

Include \(T_2 \) and \(T_3 \) as boundary conditions for the proof

\(T_2 = 4 \quad T_3 = 5 \)

Choose \(c \) such that \(T_2 \leq c2 \lg 2 \) and \(T_3 \leq c3 \lg 3 \)

True for any \(c \geq 2 \)

• Making a good guess
If a recurrence is similar to a known recurrence, it is reasonable to guess a similar solution

\[T_n = 2T_{\lfloor \frac{n}{2} \rfloor} + n \]

If \(n \) is large, difference between \(T_{\lfloor \frac{n}{2} \rfloor} \) and \(T_{\lfloor \frac{n}{2} \rfloor} + 17 \) is relatively small

- Prove upper and lower bounds on a recurrence and reduce the range of uncertainty.

Start with a lower bound of \(T_n = \Omega(n) \) and an initial upper bound of \(T_n = O(n^2) \). Gradually lower the upper bound and raise the lower bound to get asymptotically tight solution of \(T_n = \Theta(n \log n) \)

- Pitfall

Assume inductively that \(T_n \leq cn \) implying that \(T_n = O(n) \)

\[
\begin{align*}
T_n & \leq 2c \left\lfloor \frac{n}{2} \right\rfloor + n \\
& \leq cn + n \\
& = O(n) \quad \Leftarrow \text{wrong}
\end{align*}
\]

We haven’t proved the exact form of inductive hypothesis \(T_n \leq cn \)

- Changing variables

- Consider the recurrence

\[T_n = 2T_{\lfloor \sqrt{n} \rfloor} + \log n \]

Let \(m = \log n \).

\[T_{2^m} = 2T_{2^m} + m \]

Rename \(S_m = T_{2^m} \)

\[S_m = 2S_m + m \]

Solution for the recurrence: \(S_m = m \log m \)

Change back from \(S_m \) to \(T_n \)

\[T_n = T_{2^m} = S_m = O(m \log m) = O(\log n \log \log n) \]

The iteration method

- Also known as telescoping method

- No guessing but more algebra, by applying the recurrence to itself (on the right hand side of the equation)

- Expand the recurrence and express it as summation dependent on only \(n \) and initial conditions

- Recurrence

\[
\begin{align*}
T_n & = 3T_{\lfloor \frac{n}{4} \rfloor} + n \\
& = n + 3T_{\lfloor \frac{n}{4} \rfloor} \\
& = n + 3 \left(\frac{n}{4} + 3T_{\lfloor \frac{n}{16} \rfloor} \right) \\
& = n + 3 \left(\frac{n}{4} + 3 \left(\frac{n}{16} + 3T_{\lfloor \frac{n}{64} \rfloor} \right) \right) \\
& = n + 3 \left(\frac{n}{4} + 9 \left(\frac{n}{16} + 3T_{\lfloor \frac{n}{256} \rfloor} \right) \right)
\end{align*}
\]

ith term is given by \(3^i \left(\frac{n}{4^i} \right) \)

Bound \(n = 1 \) when \(\left\lfloor \frac{n}{4^i} \right\rfloor = 1 \) or \(i > \log_4 n \)
Bound $\left\lceil \frac{n}{4} \right\rceil \leq \frac{n}{4}$

Decreasing geometric series

\[
T_n \leq n + \frac{3}{4}n + \frac{9}{16}n + \frac{27}{64}n + \cdots + 3^{\log_4 n}\Theta(1)
\]

\[
\leq n \sum_{i=0}^{\infty} \left(\frac{3}{4} \right)^i + \Theta(n^{\log_4 3})
\]

\[
= 4n + o(n)
\]

Focus on
- Number of iterations to reach boundary condition
- Sum of terms arising from each level of iteration

• Recursion trees
 - Recurrence
 \[
 T_n = 2T_{\frac{n}{2}} + n^2
 \]

Assume n to be an exact power of 2.

\[
T_n = n^2 + 2T_{\frac{n}{2}}
\]

\[
= n^2 + 2 \left(\left(\frac{n}{2} \right)^2 + 2T_{\frac{n}{4}} \right)
\]

\[
= n^2 + \frac{n^2}{2} + \frac{n^2}{4} + 4 \left(\left(\frac{n}{4} \right)^2 + 2T_{\frac{n}{8}} \right)
\]

\[
= n^2 + \frac{n^2}{2} + \frac{n^2}{4} + \frac{n^2}{4} + 8 \left(\left(\frac{n}{8} \right)^2 + 2T_{\frac{n}{16}} \right)
\]

\[
= n^2 + \frac{n^2}{2} + \frac{n^2}{4} + \frac{n^2}{8} + \cdots
\]

\[
= n^2(1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots)
\]

\[
= \Theta(n^2)
\]

The values above decrease geometrically by a constant factor.

- Recurrence
 \[
 T_n = T_{\frac{n}{2}} + T_{\frac{n}{4}} + n
 \]

Longest path from root to a leaf

\[
n \to \left(\frac{2}{3} \right) n \to \left(\frac{2}{3} \right)^2 n \to \cdots 1
\]

\[
\left(\frac{2}{3} \right)^k n = 1 \text{ when } k = \log_{\frac{3}{2}} n, \text{ } k \text{ being the height of the tree}
\]

Upper bound to the solution to the recurrence $- n \log_{\frac{3}{2}} n$, or $O(n \log n)$

The Master Method

- Suitable for recurrences of the form
 \[
 T_n = aT_{\frac{n}{b}} + f(n)
 \]

where $a \geq 1$ and $b > 1$ are constants, and $f(n)$ is an asymptotically positive function
For mergesort, \(a = 2, b = 2, \) and \(f(n) = \Theta(n) \)

Master Theorem

Theorem 2 Let \(a \geq 1 \) and \(b > 1 \) be constants, let \(f(n) \) be a function, and let \(T_n \) be defined on the nonnegative integers by the recurrence

\[
T_n = aT_{n/b} + f(n)
\]

where we interpret \(\lfloor \frac{c}{d} \rfloor \) to mean either \(\lfloor \frac{c}{d} \rfloor \) or \(\lceil \frac{c}{d} \rceil \). Then \(T_n \) can be bounded asymptotically as follows

1. If \(f(n) = \Theta(n^{\log_b a - \epsilon}) \) for some constant \(\epsilon > 0 \), then \(T_n = \Theta(n^{\log_b a}) \)
2. If \(f(n) = \Theta(n^{\log_b a}), \) then \(T_n = \Theta(n^{\log_b a} \log n) \)
3. If \(f(n) = \Omega(n^{\log_b a + \epsilon}) \) for some constant \(\epsilon > 0 \), and if \(af\left(\frac{n}{b}\right) \leq cf(n) \) for some constant \(c < 1 \) and all sufficiently large \(n \), then \(T_n = \Theta(f(n)) \)

- In all three cases, compare \(f(n) \) with \(n^{\log_b a} \)

- Solution determined by the larger of the two

 - Case 1: \(n^{\log_b a} > f(n) \)

 Solution \(T_n = \Theta(n^{\log_b a}) \)

 - Case 2: \(n^{\log_b a} \approx f(n) \)

 Multiply by a logarithmic factor

 Solution \(T_n = \Theta(n^{\log_b a} \log n) = \Theta(f(n) \log n) \)

 - Case 3: \(f(n) > n^{\log_b a} \)

 Solution \(T_n = \Theta(f(n)) \)

- In case 1, \(f(n) \) must be asymptotically smaller than \(n^{\log_b a} \) by a factor of \(n^\epsilon \) for some constant \(\epsilon > 0 \)

- In case 3, \(f_n \) must be polynomially larger than \(n^{\log_b a} \) and satisfy the "regularity" condition that \(af\left(\frac{n}{b}\right) \leq cf(n) \)

Using the master method

- Recurrence

 \(T_n = 9T_{n/2} + n \)

 \(a = 9, b = 3, f(n) = n \)

 \(n^{\log_b a} = n^{\log_3 9} = \Theta(n^2) \)

 \(f(n) = O(n^{\log_3 9 - \epsilon}), \) where \(\epsilon = 1 \)

 - Apply case 1 of master theorem and conclude \(T_n = \Theta(n^2) \)

- Recurrence

 \(T_n = T_{n/2} + 1 \)

 \(a = 1, b = \frac{3}{2}, f(n) = 1 \)

 \(n^{\log_b a} = n^{\log_{\frac{3}{2}} 1} = n^0 = 1 \)

 \(f(n) = \Theta(n^{\log_{\frac{3}{2}} 1}) = \Theta(1) \)

 - Apply case 2 of master theorem and conclude \(T_n = \Theta(\log n) \)

- Recurrence

 \(T_n = 3T_{n/4} + n \log n \)

 \(a = 3, b = 4, f(n) = n \log n \)

 \(n^{\log_b a} = n^{\log_4 3} = O(n^{0.793}) \)

 \(f(n) = \Omega(n^{\log_4 3 + \epsilon}), \) where \(\epsilon \approx 0.2 \)

 - Apply case 3, if regularity condition holds for \(f(n) \)

 For large \(n \), \(af\left(\frac{n}{4}\right) = \frac{3}{4} \log(n) \leq \frac{3}{4} n \log n = cf(n) \) for \(c = \frac{3}{4} \)

 - Therefore, \(T_n = \Theta(n \log n) \)
Recurrence

\[T_n = 2T_{\frac{n}{2}} + n \log n \]

Recurrence has proper form — \(a = 2, b = 2, f(n) = n \log n \) and \(n^{\log_b a} = n \)

\(f(n) = n \log n \) is asymptotically larger than \(n^{\log_b a} = n \) but not polynomially larger

Ratio \(\frac{f(n)}{n^{\log_b a}} = \frac{n \log n}{n} = \log n \) is asymptotically less than \(n^\epsilon \) for any positive constant \(\epsilon \)

Recurrence falls between case 2 and case 3

Examples of algorithm analysis

- Sequential search, or linear search

 Property 1 Sequential search examines \(N \) numbers for each unsuccessful search and about \(N/2 \) numbers for each successful search on the average.

- Sequential search in an ordered table examines \(N \) numbers for each search in the worst case and about \(N/2 \) numbers for each search on the average.

- Consider the effect of \(M \) transactions and \(N \) entries in the table; with a requirement of \(c \) \(\mu \)sec per comparison

- Binary search

 Property 3 Binary search never examines more than \(\left\lfloor \log N \right\rfloor + 1 \) numbers.

 Easily showed by the recurrence for binary search:

 \[T_N \leq T_{\left\lfloor N/2 \right\rfloor} + 1, \text{ for } N \geq 2 \text{ with } T_1 = 1 \]

Guarantees, Predictions, and Limitations

- Run time depends on two things in data
 - Amount of data
 - Type of data (worst case/average case/best case)
- Worst case performance of algorithms
 - Allows to make guarantees about the run time of programs
 - Function provides the maximum number of times an abstract operation will be performed, independent of data
 - Property 3 for binary search algorithms
 - Algorithms with lower worst search performance are preferable and are the goal of algorithm analysis