Traveling Salesperson

Given

- A directed graph $G = (V, E)$ with edge costs c_{ij}
- c_{ij} is defined such that $c_{ij} > 0$ for all i and j and $c_{ij} = \infty$ if $\langle i,j \rangle \not\in E$.
- $|V| = n$ and $n > 1$

A tour of G is a directed cycle that includes every vertex in V, and no vertex occurs more than once except for the starting vertex. The cost of a tour is the sum of the cost of edges on the tour. The traveling salesperson problem is to find a tour of minimum cost.

Greedy Algorithm

- Start with vertex v_1; call it v_i
- Visit the vertex v_j that is nearest to v_i, or can be reached from v_i with least cost
- Repeat the above starting at vertex v_j (call it as new v_i) taking care never to visit a vertex already visited

Dynamic Programming Solution

- Regard the tour to be a simple path that starts and ends at vertex 1.
- Every tour consists of an edge $\langle 1, k \rangle$ for some $k \in V - \{1\}$ and a path from vertex k to vertex 1.
- The path from vertex k to vertex 1 goes through each vertex in $V - \{1,k\}$ exactly once.
- If the tour is optimal, then the path from k to 1 must be a shortest k to 1 path going through all vertices in $V - \{1,k\}$.
- Let $g(i,S)$ be the length of a shortest path starting at vertex i, going through all vertices in S, and terminating at vertex 1.
- $g(1,V - \{1\})$ is the length of an optimal salesperson tour.
• From the principle of optimality

\[g(1, V - \{1\}) = \min_{2 \leq k \leq n} \{ c_{1k} + g(k, V - \{1, k\}) \} \]

(1)

• Generalizing

\[g(i, S) = \min_{j \in S} \{ c_{ij} + g(j, S - \{j\}) \} \]

(2)

• Equation 1 may be solved for \(g(1, V - \{1\}) \) if we know \(g(k, V - \{1, k\}) \) for all values of \(k \)

• The \(g \) values may be obtained by using Equation 2

 – \(g(i, \phi) = C_{i,1}, 1 \leq i \leq n \).

 – We can use Equation 2 to obtain \(g(i, S) \) for all \(S \) of size 1.

 – Then we can obtain \(g(i, S) \) for \(S \) with \(|S| = 2 \).

 – When \(|S| < n - 1 \), the values of \(i \) and \(S \) for which \(g(i, S) \) is needed are such that \(i \neq 1, 1 \notin S \), and \(i \notin S \).

Example

Consider the directed graph presented below

\[
\begin{array}{cccc}
0 & 10 & 15 & 20 \\
5 & 0 & 9 & 10 \\
6 & 13 & 0 & 12 \\
8 & 8 & 9 & 0 \\
\end{array}
\]

\[
\begin{align*}
g(2, \phi) &= c_{21} = 5 \\
g(3, \phi) &= c_{31} = 6 \\
g(4, \phi) &= c_{41} = 8 \\
\end{align*}
\]

Using Equation 2, we get

\[
\begin{align*}
g(2, \{3\}) &= c_{23} + g(3, \phi) = 15 \\
g(3, \{2\}) &= 18 \\
g(4, \{2\}) &= 13 \\
\end{align*}
\]

Next, we compute \(g(i, S) \) with \(|S| = 2 \), \(i \neq 1 \), \(1 \notin S \), and \(i \notin S \)

\[
\begin{align*}
g(2, \{3, 4\}) &= \min \{ c_{23} + g(3, \{4\}), c_{24} + g(4, \{3\}) \} = 25 \\
g(3, \{2, 4\}) &= \min \{ c_{32} + g(2, \{4\}), c_{34} + g(4, \{2\}) \} = 25 \\
g(4, \{2, 3\}) &= \min \{ c_{42} + g(2, \{3\}), c_{43} + g(3, \{2\}) \} = 23 \\
\end{align*}
\]

Finally, from Equation 1, we obtain

\[
\begin{align*}
g(1, \{2, 3, 4\}) &= \min \{ c_{12} + g(2, \{3, 4\}), c_{13} + g(3, \{2, 4\}), c_{14} + g(4, \{2, 3\}) \} \\
&= \min \{ 35, 40, 43 \} \\
&= 35 \\
\end{align*}
\]

So, an optimal tour of the above graph has cost 35. A tour of this length may be constructed if we retain with each \(g(i, S) \) the value of \(j \) that minimizes the right hand side of Equation 2. Let this value be called \(J(i, S) \). Then, \(J(1, \{2, 3, 4\}) = 2 \). Thus the tour starts from 1 and goes to 2. The remaining tour may be obtained from \(g(2, \{3, 4\}) \).
Now, $J(2, \{3, 4\}) = 4$. Thus the next edge is $(2, 4)$. The remaining tour is for $g(4, \{3\})$. $J(4, \{3\}) = 3$. The optimal tour is $1, 2, 4, 3, 1$.

Algorithm Analysis

Let N be the number of $g(i, S)$s that have to be computed before Equation 1 may be used to compute $g(1, V - \{1\})$. For each value of $|S|$, there are $n - 1$ choices of i. The number of distinct sets S of size k not including 1 and i is $\binom{n - 2}{k}$. Hence,

$$N = \sum_{k=0}^{n-2} (n - 1) \binom{n - 2}{k} = (n - 1)2^{n-2}$$

An algorithm that proceeds to find an optimal tour by making use of Equations 1 and 2 will require $\Theta(n^22^n)$ time as the computation of $g(i, S)$ with $|S| = k$ requires $k - 1$ comparisons when solving Equation 2. This is better than enumerating all $n!$ different tours to find the best one. The most serious drawback of the dynamic programming solution is the space needed ($O(n2^n)$). This can be too large even for modest values of n.

Programming Assignment

Write three programs to solve the Traveling Salesperson problem by greedy algorithm, dynamic programming using recursion, and dynamic programming using iteration. The programs should be general enough to account for n vertices in a graph. Clearly identify the algorithm used within the program in the header with a comment.

The output must contain the cost of the minimum tour and the optimal tour itself (in each of the three cases).