CONSTRAINED GENETIC PROGRAMMING

with

CGP lil-gp 2.1;1.02

Cezary Z. Janikow
University of Missouri
janikow@umsl.edu
http://www.cs.usml.edu/~janikow
1. Evolutionary Computation

2. Genetic Programming

3. Constrained Genetic Programming
 - motivation and genesis
 - application environment and implementation
 - formalization and analysis
 - newer features
 - CGP2.1

4. Comparison with STGP

5. Example Applications

6. Summary
1 Evolutionary Computation

- Principles
- Visualization
- Models and Instances
- Search space
1.1 Principles

- Population-based collective learning
 - individuals (chromosomes) represent points in the representation space (genotype) with mapped corresponding points in the solution space (phenotype)
 - chromosomes may also include domain-independent information
- population faces Darwinian stochastic fitness-based selective pressure \((selection, competition)\)
 - chromosomes evaluated as solutions

- chromosomes generate offspring
 - \textit{mutation}
 - \textit{reproduction} \((crossover, co-operation)\)
1.2 Visualization

- Generational Model

Generate initial population \(P(0) \)
Evaluate \(P(0) \)
While not (resources exhausted and done)
 Select \(P(t=t+1) \)
 Reproduce \(P(t) \)
 Mutate \(P(t) \)
 Evaluate \(P(t) \)
 \(t = t+1 \)
1.3 Models and Instances

1.3.1 Models

- Generational
- Steady-state
- Tournament
- Others
1.3.2 Instances

• GA Genetic algorithm

• GP Genetic programming

• ES Evolution strategies

• EP Evolutionary Programming

• Hybrids and derivatives
1.4 Search Space

- State-space search
 - database of current solutions
 - population in EC
 - transition operators
 - selection, mutation, reproduction
 - solving a problem
 - search the representation space (genotype)
 - mapping to solution space (phenotype)
• Mapping (representation vs. solution space)

- *one-to-one*

- how to deal with “extraneous” representation space?

 - redundant (*many-to-one*)

 - invalid (how to avoid?)
2 Genetic Programming

• Representation

• Search space

• Assumptions
2.1 GP Representation

- Individuals are trees
 - flexibility
 - suitable for computer programs
 - nodes are labeled with functions
 - terminals are labeled with variables/constants
 - subtrees are arguments

\[
\begin{align*}
f1(\text{arg1}, \text{arg2}); \\
f2(\text{arg1}, \text{arg2}, \text{arg3}); \\
\text{program()} \\
\quad \text{var } x, y, z; \\
\quad \text{const } c1, c2; \\
\quad \text{read}(z); \\
\quad x = f2(c1, c2, z); \\
\quad y = 7 \times z; \\
\quad x = f1(x, y); \\
\quad \text{return}(x); \\
\end{align*}
\]
• Types of functions/terminals
 ■ Type I - internal functions
 ◦ with arguments
 ■ Type II - terminal functions
 ◦ no arguments
 ◦ variables
 ■ Type III - ephemeral constants
 ◦ for terminals
 ◦ instantiated
2.2 Search Space

- Tree structures
 - constrained by size limits and function arity
- Tree instances of specific structures
 - constrained by domain sizes
2.3 Assumptions

• **Sufficiency**

 - all necessary functions/terminals are given

 - increases representation and solution spaces
• Closure

- avoids invalid mappings
 - redundant
 - arbitrary
 - increases representation space
- can slow down “evolution”
- remedies
 - structure-preserving crossover and various typing methods
 - domain-specific crossovers
 - CGP
 - STGP
3 Constrained Genetic Programming (CGP)

• Motivation and genesis

• Early ideas

• Application environment and implementation

• Formalization and analysis

• Recent extensions

• CGP2.1 features and constraints examples
3.1 Motivation and Genesis

- NASA’s robotic projects

- Need to control evolvable structures
 - general
 - generic
 - powerful
 - efficient

- Modify lil-gp
 - utilize built-in features
3.2 Early Ideas

• Domain sets

• Domain compatibility notion
 - D_1 is compatible with D_2 iff $D_1 \subseteq D_2$
 - a node can be labeled with function/terminal having domain compatible with its parent’s expectations

```
  fm
 /   \
 v    v
 Dm expected on the second argument

f?
```
problems?

• lil-gp does not use explicit domain specifications
• difficulties with continuous domains

approach?

• make the user responsible for analyzing domains and providing function compatibilities instead (CGP1.1)
• use redundant
 • syntactic constraints (T_{specs})
 • semantic constraints (F_{specs})
3.3 Application Environment and Implementation

- Constrained Genetic Programming with \texttt{CGP}

- Implemented within \texttt{lilgp 1.02}
lil-gp’s architecture

- Read functions & terminals creating \(fset \)
- Generate population of programs \(P \)
- Generate \(P' \) by selection, mutation, crossover
- Evaluate \(P' \)
- \(P = P' \)
- Termination?

\(P, P', fset \)
Constrained GP: Constrained Genetic Programming (CGP) ©Cezary Z. Janikow, presented as GP98 Tutorial

- **CGP 1.1’s architecture**

Legend:
- modified module

CGP 1.1’s architecture

1. **Read functions & terminals**
2. **Generate popul. of programs P**
3. **Generate P’ by selection, mutation, crossover**
4. **Evaluate P’**
5. **Termination**
6. **P=P’**

create_MS_czj

Read/transform constraints into MS_czj

fset

Generate popul. of programs P

P=P’

MS_czj

P=P’

Terminate

modified module
3.4 Formalization and Analysis (CGP1.1)

3.4.1 Definitions of constraints

- Define the following T_{specs}:

 - T_{Root}
 - the set of functions which return data type compatible with the problem specification
 - functions that can label the $Root$ according to data type

 - T_{i}^{j}
 - the set of functions compatible with the jth argument of f_{i}
 - functions that can label the j^{th} child node of a node labeled with f_{i} according to data type
Example 1
Assume

\[F_I = \{ f_1, f_2, f_3 \} \] with arities 3, 2, and 1.

- \(f_1 \) takes boolean and two integers, respectively, and returns a real
- \(f_2 \) takes two reals and returns a real
- \(f_3 \) takes a real and returns an integer

\[F_{II} = \{ f_4 \} \] - reads an integer.

\[F_{III} = \{ f_5, f_6, f_7 \} \] - generate random boolean, integer, and real, respectively.

The problem states that a solution program should compute a real number.

Integers are compatible with reals
Booleans are not compatible with either.

Then, these are Tspecs:

\[T^{Root} = \{ f_1, f_2, f_3, f_4, f_6, f_7 \} \]

\[T_1^1 = \{ f_5 \}, T_1^2 = \{ f_3, f_4, f_6 \}, T_1^3 = \{ f_3, f_4, f_6 \} \]

\[T_2^1 = \{ f_1, f_2, f_3, f_4, f_6, f_7 \}, T_2^2 = \{ f_1, f_2, f_3, f_4, f_6, f_7 \} \]

\[T_3^1 = \{ f_1, f_2, f_3, f_4, f_6, f_7 \} \]
• Define the following F_{specs}:

 - F^{Root}
 - the set of functions disallowed at the Root
 - F_i
 - the set of functions disallowed as callers to f_i
 - F^j_i
 - the set of functions disallowed as arg_j to f_i
Example 2
Continue Example 1. Assume
We know that the sensor reading function \(f_4 \) does not provide the solution to our problem.
We also know that boolean (generated by \(f_5 \)) cannot be the answer

(this information can be inferred from \(Tspecs \);
however, it will be easier for the user if no specific requirements are made as to how to specify non-redundant constraints)

For some semantic reasons we wish to exclude \(f_3 \) from calling itself.

\(Fspecs \) (the other sets are empty):

\[
F_{Root} = \{ f_4, f_5 \} \\
F_3 = \{ f_3 \}
\]
Example 3 \(F_{\text{add}} = \sin \cos \)
This prevents \(\sin() \) and \(\cos() \) from calling \(\text{add}() \)
(\text{e.g. } \sin(x+y) \text{ is not allowed}).

Example 4 \(F_{\text{add}_0} = 0 \ PI \ log \)
This prevents 0, \(\Pi \), \(\log() \) from being argument 0 of \(\text{add}() \)
(\text{e.g. } (\Pi + x) \text{ is not allowed, but } (x + \Pi) \text{ may be}).

Example 5 \(T_{\text{add}_0} = \sin \cos 0 \ PI \)
This allows \(\sin() \), \(\cos() \), 0, and \(\Pi \) be argument 0 of \(\text{add}() \).
However, the above \(F_{\text{add}_0} \) overrides this \(Tspec \), and so only \(\sin() \) and \(\cos() \) are actually allowed.
3.4.2 Normal form

- $Tspecs$ and $Fspecs$ are redundant
- they can be inconsistent
- need to generate a normal form
 - extend $Fspecs$ using $Tspecs$
 - remove inconsistencies from $Fspecs$
3.4.2.1 Extend Fs using Ts

- The following are valid inferences for extending Fs from Ts:

\[\forall (f_k \in F)(f_k \notin T^j_i \rightarrow f_k \in F^j_i) \]
\[\forall (f_k \in F)(f_k \notin T^{Root} \rightarrow f_k \in F^{Root}) \]

- Ts can be expressed with Fs

- Fs are stronger
• If Fspecs do not satisfy the above for any function
 ■ call them T-intensive Fspecs

• T-intensive Fspecs list only semantics-based constraints which cannot be inferred from data types

• If Fspecs explicitly satisfy the above
 ■ call them T-extensive Fspecs

• T-extensive Fspecs are sufficient to express all Tspecs
3.4.2.2 Remove redundancies among *Fspects*

- Suppose \(f_k \in F \) and *Fspects* are \(T \)-extensive. Then

\[
\forall (f_i \in F)(f_k \in F_i \leftrightarrow \forall (j \in [1, a_k])(f_i \in F^j_k))
\]

- However, \(F_* \) and \(F'_* \) are not equivalent
 - a function may be allowed on some arguments but not on others.
 - \(F'_* \) *Fspects* are stronger
• If F_{specs} include both forms of the equivalency
 ■ call them **F-extensive F_{specs}**

• Dropping all F_* from the **F-extensive F_{specs}**
 ■ gives **F-intensive F_{specs}**

• **T-extensive F-intensive F_{specs}** are sufficient to express all F_{spec} constraints

• Call the **T-extensive F-intensive F_{specs}** the **normal form**
 ■ contains only the F^{Root} and $F_* F_{specs}$

• The normal form is sufficient to express all constraints of the T_{spec}/F_{spec} language
Example 6 Constraints of Example 1 and Example 2 have the following normal form:

\[
F^{Root} = \{f_4, f_5, f_6\}
\]
\[
F_1^1 = \{f_1, f_2, f_3, f_4, f_6, f_7\}
\]
\[
F_1^2 = \{f_1, f_2, f_5, f_7\}
\]
\[
F_1^3 = \{f_1, f_2, f_5, f_7\}
\]
\[
F_2^1 = \{f_5\}, F_2^2 = \{f_5\}
\]
\[
F_3^1 = \{f_3, f_5\}
\]
3.4.3 Mutation Sets

• Constraints in the normal form cannot be effectively utilized

3.4.3.1 Useless functions

• If a function from F cannot label any nodes in a valid tree, call it a *useless* function

 ▪ A function $f_i \in F$ is *useless* iff

 ▪ it is a member of all sets of the normal form, or

 ▪ it is a member of all sets of the normal form except for only sets associated with useless functions

• Useless functions can be removed from F
3.4.3.2 Mutation sets

- Define \mathcal{F}_N

 - the set of functions of type I that can label (thus, excluding useless functions) node N without invalidating an otherwise valid tree containing the node

- Define \mathcal{T}_N

 - the set of terminals that can label node N the same way
• Assume the normal form for constraints, and node N, not being the Root and being the jth child of a node labeled f_i.
Then

$$\mathcal{T}_N = \left\{ f_k \mid f_k \not\in F_i^j \land f_k \in F_{II} \cup F_{III} \right\}$$

$$\mathcal{F}_N = \left\{ f_k \mid f_k \not\in F_i^j \land f_k \in F_I \right\}$$
• Assume the normal form for constraints and node N being $Root$.

Then

\[
T_N = \left\{ f_k | f_k \notin F_{Root} \land f_k \in F_{II} \cup F_{III} \right\}
\]

\[
F_N = \left\{ f_k | f_k \notin F_{Root} \land f_k \in F_{I} \right\}
\]

• Let us denote T_{Root} and F_{Root}

 • the pair of mutation sets associated with $Root$

• Let us denote T_i^j and F_i^j

 • the pair of mutation sets for the j^{th} child of a node labeled with f_i
For an application problem

- there are exactly $1 + \sum_{i=1}^{\left| F_1 \right|} (a_i)$ mutation set pairs

- the normal form can be expressed with $2 \cdot (1 + \sum_{i=1}^{\left| F_1 \right|} a_i)$ different sets

- only two sets (one pair) are needed in \textit{lil-gp} itself

Example 7
Here are selected examples of mutation sets generated for Example 6:

$$T_{\text{Root}} = \{ f_7 \}, \ F_{\text{Root}} = \{ f_1, f_2, f_3 \}$$

$$T^1_3 = \{ f_4, f_6, f_7 \}, \ F^1_3 = \{ f_1, f_2 \}$$
3.4.4 Closed Search

• How are these sets sufficient to close lil-gp’s search in the space of constraints?

 - initialize with constraints-valid trees only
 - ensure constraints-valid offspring from constraints-valid parents

• Will we always have mutation sets?

 - for any node N of a valid program at least one of the two mutation sets is guaranteed not to be empty
• Can we ensure that non-empty finite trees exist for arbitrary constraints?

 - non-empty trees do exist because one of the pairs for the \textit{Root} is guaranteed not to be empty
 - infinite trees are possible if $\exists (j \in a_i) F_i^j = F \setminus \{f_i\}$
 - \textit{e.g.}, when $\mathcal{T}_N = \emptyset$, $\mathcal{F}_N = \{f_i\}$
- a subtree whose root is labeled f_i can be finitely instantiated without $F^+ \subseteq F_I$ iff finite valid trees without labels from F^+ do exist

- for each subtree we may check if for mutation sets of its root finite trees do exist
 - can be pre-done
 - (details skipped)

- better approach is that of STGP
 - take depth into account
 - to be added into CGP3.0
3.4.4.1 **CGP’s mutation**

- To mutate a node N
 - determine the kind of the node
 - *Root*
 - otherwise what the label of the parent is and which child of that parent N is
 - if the growth is to continue
 - label the node with a random element of \mathcal{F}_N and continue growing the proper number of subtrees, each grown recursively
 - if $\mathcal{F}_N = \emptyset$ then select a member of \mathcal{T}_N
 (guaranteed not to be empty now)
if the growth is to stop

- select a random element of \mathcal{T}_N and instantiate it if from F_{III} (stop expanding N)
- if $\mathcal{T}_N = \emptyset$ then select a member of \mathcal{F}_N
 (this will unfortunately extend the tree, but it is guaranteed to eventually stop)

- If a valid tree is selected for mutation, mutation will always produce a valid tree
 - how complex this closed mutation is?
 - negligible constant overhead
Example 8 Assume

The mutation sets of Example 7.

Mutating *parent1* as in Figure 1.

Node \(N \) is selected for mutation.

It is the 1st child of a node labeled with \(f_3 \)

Thus

\[
T_N = T_3^1 = \{f_4, f_6, f_7\} \quad F_N = F_3^1 = \{f_1, f_2\}.
\]

- if to grow the tree, then the mutated node will be randomly labeled with either \(f_1 \) or \(f_2 \)

- if the current node is to generate a leaf, then label \(N \) with either of \(f_4, f_6, f_7 \)
3.4.4.2 *CGP lil-gp* initialization

- Assume that \(T_{\text{Root}} \neq \emptyset \lor F_{\text{Root}} \neq \emptyset \) and that functions which can only label trees which cannot be constructed- \(\emptyset \) are removed from the mutation sets.

- To generate a valid random tree:
 - create the *Root* node
 - mutate it using the mutation operator

- The above will create a tree:
 - with at least one node
 - finite and valid with respect to the constraints
3.4.4.3 **CGP lil-gp crossover**

- To move genetic material from parent2 to parent1-node \(N \)
 - take \(F_N \) and \(T_N \)
 - assume that \(F_2 \) is the set of labels appearing in parent2
 - then \((F_N \cup T_N) \cap F_2 \) is the set of labels determining which subtrees from parent2 can \(N \)
• If two constraints-valid trees are selected for crossover, the operator will always produce a constraints-valid tree

 • this is done with only the same (order) computational complexity (one more tree traversal)

Figure 1 Illustration of mutation and crossover.
Example 9 Assume
The mutation sets of Example 7. Then

- \(\mathcal{T}_N = \mathcal{T}_3^1 = \{f_4, f_6, f_7\} \), \(\mathcal{F}_N = \mathcal{F}_3^1 = \{f_1, f_2\} \)

- only the subtrees with the shaded roots can be used to replace \(N \)

- crossover would select a random element from a so marked set of nodes, and copy the corresponding subtree.
3.5 Recent Extensions (in CGP2.1)

- Types for explicit type-based constraints
- Weights for heuristic constraints
- Overloaded functions
- Simplified notation for CSL with file-input
3.5.1 Types

- Following STGP, constraints can be inferred from *types*
 - returning types of all functions are specified
 - types allowed as function arguments are specified
 - constraints are automatically generated
• **CGP2.1** uses type constraints on the top of *Fspecs*/
 Tspecs

 - types are alternatives to *Tspecs* (type-based syntactic constraints)
 - types can augment constraints with something the user misses
 - with/without *Tspecs*, types extend *Fspecs*
 - *Fspecs* remain as semantic-based constraints
3.5.2 Heuristic Constraints with Weights

- Weights allow for more flexible and liberal constraints
 - allow some functions/types/terminals to be used more/less frequently than others
 - CGP3.0 will evolve weights as a means of evolving representation
Example 10 Assume
4 functions \((f_1, f_2, f_3, f_4)\) and 4 terminals \((t_1, t_2, t_3, t_4)\).
Through \(Fspecs\), \(t_2\) was excluded from being an argument to function \(f_n\).
The weights are given as
\[
\begin{align*}
 f_1 = 1.0, & \quad f_2 = 0.0, \quad f_3 = 0.1, \\
 t_1 = 1.0, & \quad t_3 = 1.0, \quad t_4 = 1.0.
\end{align*}
\]
- The probability of selecting individual elements is
 \[
 \begin{align*}
 p(f_1, t_1, t_3, t_4) &= 1.0/4.1 = 0.244 \\
 p(f_2) &= \text{MINWGT}/4.1 \sim 0 \\
 p(f_3) &= 0.1/4.1 = 0.0244 \\
 p(t_2) &= 0.0.
 \end{align*}
 \]
3.5.3 Overloaded Functions

- Extra flexibility in constraining the space

 - a function can be defined to generate different types based on the types of its arguments

 - only proper function “instances” can now participate in mutation and crossover
Example 11 Assume

In a given domain the following data types exist

\textit{angle, length, force, force-length, and number.}

\texttt{multiply()} takes 2 arguments

\begin{itemize}
 \item it can be overloaded as follows:
 \begin{tabular}{lll}
 \texttt{<arg1>} & \texttt{<arg2>} & \texttt{<return>} \\
 number & length & length \\
 length & number & length \\
 number & angle & angle \\
 angle & number & angle \\
 number & number & number \\
 length & force & force-length \\
 force & length & force-length \\
 \end{tabular}
\end{itemize}
3.5.4 Simplified CSL

- **CGP1.1** used interactive-input only for listing ALL constraints

- **CGP2.1** allows listing multiple constraints with a single specification
 - similar notation is used for weights and types
3.6 CGP2.1 and Constraints Examples

- http://www.cs.umsl.edu/~janikow/cgp-lilgp

3.6.1 Syntax of Simplified CSL

FTSPEC #Section Header
F_(funclist | *) = funclist | * | null
F_(funclist | *)[arglist | *]
 = functermlist | * | null
T_(funclist | *)[arglist | *]
 = functermlist | * | null
F_ROOT = functermlist | * | null
T_ROOT = functermlist | * | null
ENDSECTION #Section Footer
WEIGHT #Section Header

\[(funclist \mid *)[arglist \mid *)(functermlist \mid *) = weightlist\]

ROOT\(\text{functermlist} \mid *) = weightlist\)

ENDSECTION #Section Footer

TYPE #Section Header

\text{TYPELIST} = typelist #defines valid types

\[(funclist)(argtypelist) = type\]

\[(termlist \mid *) = type\]

ROOT = type

ENDSECTION #Section Footer
Example 12
Simplified CSL for the inverse kinematics problem

FTSPEC

F_(*) = #not required since it’s empty
F_(*)[*] = #not required since it’s empty
F_(sin)[0]=add #prevent sin(_+_)
F_ROOT=asin #prevent asin() from being Root

#must specify some TSpecs
T_(*)[*]=* #allow all TSpecs
T_ROOT=* #allow all funs/term for Root

ENDSECTION
WEIGHT

All unspecified weights default to 1.0

Set the weights for the functions: add
asin sin 1 PI x y, as the arguments for
the add & asin functions.

(add asin)*=.25 .25 .5 .2 .2 .3 .4

similarly for the sin function

(sin)[0](*)=.5 .4 .3 .6 .4 .3 .1

ROOT(*)=1 # not needed as default is 1.0

ROOT(PI)=.2

ENDSECTION
TYPE

TYPELIST = float integer angle

(add)(float float)=float

(add)(integer float)=float

(add)(float integer)=float

(add)(integer integer)=integer

(add)(angle angle)=angle

(asin)(float)=angle

(asin)(integer)=angle

(sin)(angle)=float

(1)=integer

(PI)=angle

(x y)=float

ROOT=angle #Root return type

ENDSECTION
4 Comparison with STGP

4.1 Similarities

- Developed at the same time
- Same motivations
 - constrain the evolution space (relax closure)
 - use syntax-related constraints based on types
- Same methods
 - evolve constraint-valid population
 - use constraint-preserving mutation/crossover to close the search space
4.2 Differences

- STPG provides level-specific mutation/crossover to ensure depth-limited trees

- CGP initially used explicit syntax (type) and semantic-based compatibility rather than explicit types
 - types added in CGP2.1
 - STGP uses types exclusively
• CGP allows semantic constraints, which may not be inferred from types

 ■ allows more detailed manipulation of the evolved structures

 ■ STGP can only reduce the search space to that based on syntax (types) and cannot reduce the space any more
• CGP’s crossover is capable of generating more constraint-valid trees

![Diagram]

- CGP uses parent’s information
- STGP uses a given node’s information
• CGP provides formal analysis of

 ▪ the transformation from constraints to the definition of mutation sets

 ▪ formal proof of the closed space

 ▪ complexity analysis

 - negligible computational overhead in performing constrained mutation/crossover
• CGP provides overloaded functions

• CGP provides means of processing heuristic constraints
 • weights
 • will allow to evolve representation

• CGP is plugged-in into \texttt{lil-gp} 1.02 to take advantage of its capabilities (minus ADFs)
5 Example Applications

• Multiplexer
 - varying redundancy
 - removing redundancy
 - evolving representation

• Machine learning
5.1 11-Multiplexer

- Boolean function

\[
\begin{align*}
& a_0..a_2 \\
& d_0..d_7
\end{align*}
\]

- Analytical DNF formula:

\[
\begin{align*}
& a_2a_1a_0d_7 \vee a_2a_1\overline{a_0}d_6 \vee a_2\overline{a_1}a_0d_5 \vee a_2\overline{a_1}\overline{a_0}d_4 \vee \\
& \overline{a_2a_1}\overline{a_0}d_3 \vee \overline{a_2a_1}a_0d_2 \vee a_2a_1a_0d_1 \vee a_2a_1\overline{a_0}d_0
\end{align*}
\]
• Other forms do exist (in the same DNF and in other representations)

• Functions

\[F_I = \{if, or, and, not\} \]
\[F_{II} = \{a_0…a_2, d_0…d_7\} \]
• Experiments

 - base: Unconstrained 11-multiplexer with *lil-gp*

 \[T_{Root}^{*} = T_{*} = \{ \text{if, or, and, not, } a_0 \ldots a_2, d_0 \ldots d_7 \} \]

 - \(E_0 \): Unconstrained 11-multiplexer with *CGP lil-gp*

 \[T_{Root}^{*} = T_{*} = \{ \text{if, or, and, not, } a_0 \ldots a_2, d_0 \ldots d_7 \} \]

 - \(E_1 \): using sufficient set \{*and*,*not*\}

 \[F_{Root}^{*} = F_{*} = \{ \text{if, or} \} \quad F_{*} = \emptyset \]
- **E_2: DNF**

 \[
 F^{\text{Root}} = \{ \text{if} \} \quad F_* = \emptyset \\
 F^*_\text{if} = \emptyset \quad F^*_\text{not} = \{ \text{if, or, and, not} \} \\
 F^*_\text{and} = \{ \text{if, or} \} \quad F^*_\text{or} = \{ \text{if} \}
 \]

- **E_3: Structure-restricted DNF**

 \[
 F^{\text{Root}} = \{ \text{if} \} \quad F_* = \emptyset \\
 F^*_\text{if} = \emptyset \quad F^*_\text{not} = \{ \text{if, or, and, not} \} \\
 F^1_\text{and} = \{ \text{if, or} \} \quad F^2_\text{and} = \{ \text{if, or, and} \} \\
 F^1_\text{or} = \{ \text{if} \} \quad F^2_\text{or} = \{ \text{if, or} \}
 \]
- E_4: using \{if\} only

$$F_{\text{Root}}^* = F_{\text{if}}^* = \{\text{or, and, not}\} \quad F_* = \emptyset$$

$$F_{\text{or}}^* = F_{\text{and}}^* = F_{\text{not}}^* = \text{irrelevant}$$

- E_5: E_4 with problem-specific knowledge
 - know that first 3 bits are addresses, others are data

$$F_{\text{Root}}^* = \{\text{or, and, not, } a_0, a_1, a_2\} \quad F_* = \emptyset$$

$$F_{\text{if}}^1 = \{\text{or, and, not, } d_0, d_1, d_2, d_3, d_4, d_5, d_6, d_7\}$$

$$F_{\text{if}}^2 = F_{\text{if}}^3 = \{\text{or, and, not, } a_0, a_1, a_2\}$$

$$F_{\text{or}}^* = F_{\text{and}}^* = F_{\text{not}}^* = \text{irrelevant}$$
- E_6: E_5 with further heuristic knowledge
 - same as above, except do not recurse on \{if\}

$$F_{\text{Root}} = \{ or, and, not, a_0, a_1, a_2 \} \quad F^* = \emptyset$$

$$F_{if}^1 = \{ if, or, and, not, d_0, d_1, d_2, d_3, d_4, d_5, d_6, d_7 \}$$

$$F_{if}^2 = F_{if}^3 = \{ or, and, not, a_0, a_1, a_2 \}$$

$$F_{or} = F_{and} = F_{not} = \text{irrelevant}$$

![Diagram showing a decision tree with an `if` node, an `a? or not(a?)` node, and two `compute a data bit` nodes.]
- E_7: E_6 relaxed

\[F^{\text{Root}} = \{\text{or, and, not, } a_0, a_1, a_2\} \]

\[F_* = \emptyset \quad F^*_{\text{or}} = F^*_{\text{and}} \text{ is irrelevant} \]

\[F^1_{\text{if}} = \{\text{if, or, and, } d_0, d_1, d_2, d_3, d_4, d_5, d_6, d_7\} \]

\[F^2_{\text{if}} = F^3_{\text{if}} = \{\text{or, and, not, } a_0, a_1, a_2\} \]

\[F^1_{\text{not}} = F - \{a_0, a_1, a_2\} \]
Figure 2 Comparison of the quality of the best-of-population tree.
Figure 3 Comparison of complexity needed for evolving solutions in 100 generations (complexity 0 used on finished runs).
• Other runs

 • tried different ways to penalize
 □ constant
 □ generation-dependent
 □ did not help

 • tried different initialization methods
 □ somehow helped if constraint-invalid trees were thrown away
• Conclusions from this experiment

 ■ invalid subspaces should be removed

 ■ redundant subspaces are “better” than invalid

 ■ removal of redundant subspaces “may” improve evolution

 ■ some redundant subspaces are better than others

 ■ pays off to know which representation subspaces are better for the evolution

 ▪ need to evolve if unknown
5.2 Machine Learning

- Given attribute-based space

<table>
<thead>
<tr>
<th>Attribute (abbr.)</th>
<th>Domain values (abbreviations.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head (HE)</td>
<td>Round, Square, Octagon (R,S,O)</td>
</tr>
<tr>
<td>Body (BO)</td>
<td>Round, Square, Octagon (R,S,O)</td>
</tr>
<tr>
<td>Smiling (SM)</td>
<td>Yes, No (Y,N)</td>
</tr>
<tr>
<td>Holding (HO)</td>
<td>Sword, Balloon, Flag (S,B,F)</td>
</tr>
<tr>
<td>Jacket (JA)</td>
<td>Red, Yellow, Green, Blue (R,Y,G,B)</td>
</tr>
<tr>
<td>Tie (TI)</td>
<td>Yes, No (Y,N)</td>
</tr>
</tbody>
</table>

- Learn this concept

 - Head is Round and Jacket is Red

 - or

 - Head is Square and Holding a Balloon
• Use VL_1

 ■ condition
 of one variable with internal disjunctions

 ■ rule
 conjunction of unique-variable rules

 ■ concept
 set of rules

 ■ $[HE=R][JA=R] \lor [HE=S][HO=B]$
• Complex constraints imposed by VL$_1$

 - [HE=Y] is an invalid condition

 - [HE=R][HE=S] is an invalid rule

 - GP, under closure, would assign some interpretations to such cases

 - arbitrary redundancy

 - tailored approach could also be taken

 - CGP can do it with constraints only
• Assume \textit{eval()} denotes the result of evaluating an argument

 - \textit{ifAnd}(a_1, a_2, a_3)
 - return \((\text{eval}(a_1) \in \text{eval}(a_2)) \land \text{eval}(a_3)\)

 - \textit{or}(a_1, a_2)
 - return \(\text{eval}(a_1) \lor \text{eval}(a_2)\)

 - \textit{read()}
 - return the current value of a variable

 - \textit{genSet()}
 - return a subset of the domain of a variable

 - \textit{bool()}
 - return a random boolean.
• *ifAnd, read, genSet* will have to have individual copies for each variable

- assume that *ifAnd*$_i$, $i \in [1, 6]$ is the function corresponding to the i^{th} variable

- assuming some arbitrary consistent enumeration

- assume the same for *read*$_i$ and *genSet*$_i$

- when referring to all individual functions, the indexes will be dropped

- this extension may seem unnecessary, but the extended function set will enable us to manipulate the structures being evolved in a very precise way
• **Constraints**

- only functions returning boolean can be *Root:*

 \[T^{Root} = \{ \text{ifAnd, or, bool} \} \]

- each condition refers to the same attribute (not necessarily unique yet in a rule):

 \[
 \forall (i \in [1, 6]) \begin{cases}
 T^1_{ifAnd_i} = \{ \text{read}_i \} \\
 T^2_{ifAnd_i} = \{ \text{genSet}_i \} \\
 T^3_{ifAnd_i} = \{ \text{ifAnd, bool} \}
 \end{cases}
 \]
- how different rules will be built?

 - no restrictions needed for VL₁

 - alternatively we can allow only left-recursive disjunctions (to reduce redundancy)

\[T_{or}^1 = \{ \text{ifAnd, or, bool} \}, T_{or}^2 = \{ \text{ifAnd, bool} \} \]
the above does not yet guarantee valid nor efficient DFN expressions

- a single rule the same variable may appear with a number of possibly contradictory (or redundant) conditions

- add the following F_{spec} constraint

 $$\forall (i \in [1, 6])(F_{ifAnd_i} = \{ifAnd_j | (j \leq i)\})$$

- to enumerate all the conditional functions and only allow descendants with strictly smaller indexes

- now only trees equivalent to VL_1 expressions can be represented
Figure 4 VL₁ tree in evolved in CGP.

- **Evaluation**
 - raw-fitness based on all 432 examples
• Experiments

 • GP1 - non-indexed functions
 ▫ VL₁-invalid trees were penalized

 • GP2 - GP1 with forced syntactic closure
 ▫ extended terminal set
 - one terminal per variable-value
 - as HER for \([HE=R]\)

 ▫ many redundant solutions
 - as \((or (and HER JAR) (and HES HOB)))\)

• CGP
Figure 5 Learning curves for the robots.
6 Summary and More Work

• Constraints

 - allow processing a limited set of constraints

 - allow closing the search in a single *one-to-one* space, or in controlled redundant spaces

 - allow exploration of various search spaces
• Weights
 - allow adding heuristic constraints

• Overloaded functions
 - allow context-dependent mutation and crossover
 - reduce the number of functions needed
• More work

 • weighted overloaded instances

 • level-specific mutation sets

 ▪ to remedy problems with too-deeply growing trees

 • evolving constraints (strong and heuristics)

 ▪ will evolve representation while evolving solutions
- extensions for ADFs
 - needed for evolving modular solutions and computer programs
 - needs to pass constraints between module calls
• Do we always need to constrain?

 ■ not necessarily

 ■ one space may have better search characteristics than another

 ■ redundancy can improve search

 ■ constraints evolution should help
7 More Information

http://GARAGE.cps.msu.edu/software/software-index.html#lilgp