Regular expressions I

- Regular expressions are a convenient means of specifying certain simple sets of strings.
- Each regular expression \(r \) denotes a language \(L(r) \)
- A language denoted by a regular expression is said to be a regular set.
- The defining rules specify how \(L(r) \) is formed by combining in various ways the language denoted by the subexpressions of \(r \).
Regular expressions II

The rules that define the regular expressions over alphabet Σ are following:

1. ε is a regular expression that denotes $\{\varepsilon\}$, that is, the set containing the empty string.

2. If a is a symbol in Σ, then a is a regular expression that denotes $\{a\}$, i.e., the set containing the string a. Although we use the same notation for all three, technically, the regular expression a is different from the string a or the symbol a. It will be clear from the context whether we are talking about a as a regular expression, string, or symbol.

3. Suppose r and s are regular expressions denoting the language $L(r)$ and $L(s)$. Then
 - $(r)|(s)$ is a regular expression denoting $L(r) \cup L(s)$
 - $(r)(s)$ is a regular expression denoting $L(r)L(s)$
 - $(r)^*$ is a regular expression denoting $(L(r))^*$
 - $(r)^2$ is a regular expression denoting $L(r)^2$
Let $\Sigma = (a,b)$

1. The regular expression $a|b$ denotes the set $\{a,b\}$.
2. The regular expression $(a|b)(a|b)$ denotes $\{aa, ab, ba, bb\}$, the set of all strings of a’s and b’s of length two.
3. The regular expression a^* denotes the set of all strings containing zero or more a’s, i.e., $\{\epsilon, a, aa, aaa, \ldots\}$
4. The regular expression $(a|b)^*$ denotes the set of all strings containing zero or more instances of an a or b, that is, the set of all strings of a’s and b’s.
5. The regular expression $a|a^*b$ denotes the set containing the string a and all strings containing of zero or more a’s followed by a b.