
�������� 	���� 
�����
�� �������� ����� 
���� ��������

������ �� 	
����

�
�����
�� �� ���

������ � ������
� ���
��


����
����� �� �������� � ��� �����

��� ������ �� � !"!� ��#

������$������%

ABSTRACT

Image quilting is a texture synthesis technique to create a large texture by wrapping around patches of a small
texture in a way that the repetition of small texture is not noticeable. The basic algorithm is to randomly select
small patches in a given texture. These patches are then positioned in a large texture to be synthesized and blended
across boundaries to remove the appearance of boundaries across patches. The algorithm is useful to create large
isotropic textures from small isotropic textures. We have extended the algorithm to create large isotropic textures
from a given anisotropic texture by using only the desired areas in the synthesized texture.

Keywords

Texture Synthesis, Isotropic Textures, Visualization

1 Introduction

In a number of computer graphics applications, we
need to create textures that grow, almost without limit,
in all directions. For example, modeling of generic
terrain in flight simulators and game engines requires
texture models that can be grown from small textures.
In such applications, a forest texture can be used to
build a large terrain to represent a forest. However,
a limited number of texture patterns creates a notice-
able repetition of those patterns in the final rendering.
This problem can be partially solved by creating tile-
able textures, also known as isotropic toroidal texture
[Bha03]. The isotropic part of the phrase refers to the
fact that the texture represents a single type of object –
it could be a patch of grass or forest, or a picture of

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSCG SHORT Communication papers proceedings
WSCG’2004, February 2-6, 2004, Plzen, Czech Republic.
Copyright UNION Agency – Science Press

bricks laid on the wall. The toroidal part refers to the
fact that if two of the same textures are laid against
each other, the textures fit seamlessly from left to right
and from top to bottom, or that the textures are rota-
tionally invariant. Typically, such a texture is designed
by graphics artists who have to take painstaking mea-
sures to ensure a seamless transition from one side to
the next. These textures are nonprocedural as they are
not based on a mathematical or algorithmic model that
creates a procedural texture [Ebe98].

Figure 1: Forest texture

An example of a 128�128 pixel texture of a forest is
shown in Figure 1. This figure is rendered in a small
scale to show the creation of larger textures in later
figures (Figures 2, 4) while preserving the scale. In



Figure 2, we present a rendering of this texture by re-
peating the same texture 4 times along each row and
4 times along each column. Since it is an isotropic
texture, there are no visible seams but even on a 4�4
rendering, the repetition of texture is clearly visible.

In image quilting, our goal is twofold. One, we want
to create the larger rendering of the texture without the
visible repetition while still preserving the seamless
transition from one instance of texture to next. Sec-
ond, we want to work with textures that may not be
toroidal. In this paper, we’ll describe an algorithm to
achieve this objective. After creation of such a ren-
dering, we’ll extend the technique to ignore undesired
portions in the input texture.

Figure 2: 4�4 Rendering of forest texture

Our algorithm is motivated by and is a slight improve-
ment over the one proposed by Efros and Freeman
[Efr01]. They proposed an algorithm that selected
fixed-size blocks from an input texture at random and
placed those in the final texture. The blocks were then
blended by computing an error surface between the al-
ready chosen blocks and the new block.

The selection of blocks in the algorithm by Efros and
Freeman [Efr01] is constrained by an error tolerance.
This could be a bottleneck in the algorithm’s perfor-
mance. Our algorithm removes this constraint, allow-
ing for a block to be selected completely at random,
and the blending performed using a minimum resis-
tance cut line on the newly selected block.

Another texture synthesis algorithm that is similar to
the work presented in this paper is by Ashikhmin

[Ash01]. However, that algorithm is based on pixel
level synthesis in scanline order while we work with a
user-selectable block size. An algorithm with block-
level synthesis was proposed by Praun, et al [Pra00].
They select random blocks from an input texture and
grow the blocks to cover the surface. Dischler, et al,
perform block-level synthesis by using correlation be-
tween different texture particles [Dis02]. Neyret and
Cani have performed texture mapping using triangular
texture samples [Ney99]. Liu, et al [Liu01] have pro-
posed a bidirectional texture function for real-world
texture synthesis.

In the next section, we present the algorithm to deter-
mine the minimum resistance cut line. In Section 3,
we present our algorithm for quilting. Section 4 con-
cludes the paper by comparing our results with those
in reference [Efr01].

2 Minimum Resistance Cut Line

The minimum resistance cut line is a line along an
edge formed by randomly traversing the pixels along
that edge under the constraint that the line is contin-
uous in 8-neighborhood of each pixel. It forms the
basis for our blending across selected sub-blocks and
provides us with the flexibility to modify a number of
parameters. It also eliminates the straight line edges
that may cause a problem in creating large textures.

Consider an m�n block of texture extracted from the
overall input texture. We’ll use this extracted block to
create a minimum resistance cut line along the right
edge and the bottom edge. We’ll describe the creation
of cut line along the left edge of the texture. The cut
line along the bottom edge can be created in a similar
manner.

The cut line along the left edge is created by starting
at the bottom left corner of the extracted texture block,
and traversing the pixels toward the top right corner of
the block. The traversal is performed by selecting a
pixel that differs the least from the current pixel in its
neighborhood in a selected color space, such as RGB,
HSV, or L*a*b* [Ald92, Mur96, Poy95]. The selected
pixel is from the set of neighboring pixels that are in
one of the following directions of the current pixel:
left, top-left, top, top-right, and right. The pixels be-
low the current pixel are ignored so as to prod the line
traversal towards the top. The traversal could result
into long horizontal or vertical lines which is not de-
sirable. This problem is solved by limiting the cut line



to traverse no more than a predefined number of pixels
in a given row or column of the texture. We stop the
traversal when the last pixel on the texture toward top
or right edge is encountered.

After computing the line from bottom left to top right,
we do the same exercise starting at top left and mov-
ing toward bottom right. This line stops when we en-
counter the earlier line that was traversed from bottom
left to top right. The portion of the prior line from the
current intersection point towards top right is then dis-
carded yielding a cut line towards the left edge. The
cut line towards the bottom edge is created in a similar
manner.

An example of minimum resistance cut line toward
the left and bottom edges in the texture of Figure 1
is presented in Figure 3. It should be noted that the
maximum distance of the cut line from the edges can
be controlled by a configurable parameter that spec-
ifies the maximum length of the straight lines that is
allowed in vertical or horizontal direction. In Figure
3, this maximum length has been limited to five pix-
els. A smaller length will bring the cut line closer to
the edge.

Figure 3: Minimum resistance cut line toward left and
bottom edges

The two cut lines form the basis for our image quilting
algorithm as described in the next section.

3 Image Quilting Algorithm

The basic algorithm for image quilting involves pick-
ing up small sub-blocks of texture from the input tex-
ture at random and arranging them in the output tex-
ture. All the selected sub-blocks are of the same width
and height, and must be smaller than the input tex-
ture. This obviously creates a problem in that it will
lead to straight lines along the edges where blocks are
placed. Thus, our quilting algorithm is based on pro-
viding a blending method across the boundaries of the
sub-blocks using the minimum resistance cut line de-
scribed earlier.

The quilting algorithm starts by selecting a sub-block
at random from the input texture and placing it in a cor-

ner, say bottom left. Now, we grow the texture along
the row and column specified by this placement. If we
place the sub-block in bottom left corner, we grow the
entire bottom row and the entire left column by placing
randomly selected sub-blocks. It is also important to
remember the position of the sub-blocks in the original
texture to facilitate seamless blending. This position
can be given by the coordinates of a corner of the sub-
block in the original texture, and its use is described in
the blending part below.

The placement and blending of a sub-block to the right
of a sub-block in the bottom row proceeds as follows.
Select a sub-block at random from the original texture,
and create a corresponding mask by drawing a mini-
mum resistance cut line along its left edge. The area
in the new sub-block to the left of the cut line is filled
by the extension of the sub-block that has been placed
already. This extension is from the area in the origi-
nal texture just to the right of the sub-block that was
previously placed. The extension is easily determined
from the position of the previous sub-block (as remem-
bered when the block was selected) and the width of
the sub-block which is constant for all sub-blocks dur-
ing a given run. After filling in the area, the pixels
around the cut line are blended to remove any abrupt
transitions along the cut line. After completing the row
of sub-blocks in the final texture, the column is grown
in the same way.

The edges are simple as we do not have to worry about
blending in two directions. As we move away from
edges, each sub-block has to be blended with existing
sub-blocks on two sides. In the example being con-
sidered, we have to blend the sub-blocks toward left
and bottom edges for the new sub-block being placed.
It seems to be a simple problem if we can first blend
the sub-block toward one edge (left) and then toward
the other (bottom). However, this creates abrupt tran-
sitions because the edge toward the bottom has some
pixels brought in from the extension toward right of
the sub-block toward bottom left. Similarly, the edge
toward left has pixels brought in from the extension to-
ward top of the sub-block toward bottom left. There-
fore, the proper blending toward the bottom left cor-
ner of the new sub-block has to account for four sub-
blocks – the current sub-block, the right extension of
sub-block toward left, the top extension of sub-block
toward bottom, and the top right extension of sub-
block toward bottom left.

A filling of all sub-blocks, with proper lending as de-
scribed above, completes the output texture. If the ex-



tension of randomly selected sub-block moves past the
input texture edges, it can be accounted for by invert-
ing the direction movement, or extending the input tex-
ture by its reflection. An example of a larger 512�512
pixel texture created from the input texture of Figure 1
is presented in Figure 4. This rendering can be com-
pared with the simple repetitive rendering achieved by
placing the isotropic toroidal textures (Figure 2) to see
the degree of randomness achieved. As the texture size
grows, the image quilted texture removes the unifor-
mity that becomes even more obvious in the rendering
using multiple instances of toroidal textures.

Figure 4: 4�4 rendering of forest texture by image
quilting

3.1 Extracting A Specified Texture Type

In certain applications, we may need to extract a par-
ticular area of the texture to create a large texture. For
example, consider the aerial photograph of an airport
taxiway with some grassy areas shown in Figure 5.
This is a 1000�517 pixel photograph. We want to ex-
tract a texture to represent grass from this photograph
using our image quilting algorithm.

Our image quilting algorithm works remarkably well
for isolating the selected texture if we can convey to
it the range of colors to be ignored. Thus, the roads,
represented by a dark color, can be ignored by spec-
ifying a configurable parameter. We can create a set
of blocks that are to be picked and note them in a data
structure before starting to select the blocks for quilt-
ing. This simply adds a preprocessing phase to the
algorithm. The selection is based on a simple scan
of pixel array of the input texture and marking each
pixel as valid (selectable for quilting) or invalid (not
selectable). For this selection, we start at the top right
corner and whenever a pixel in the undesired range is
encountered, make that pixel as the top right corner
of an undesired block, based on the size of sub-blocks
to be selected for quilting. Effectively, the previously
valid pixels to the left of this current pixel become
invalid, as do pixels that have not even been exam-
ined yet, and that are towards the bottom of the texture
from current pixel. Then, all the pixels in the unde-
sired block are marked as invalid and the scan contin-
ues with the next unassigned pixel. The image quilting
algorithm now selects a sub-block only if its top right
corner has been marked as valid. A 512�512 pixel

Figure 5: Aerial photograph of airport taxiway and grass



texture of grass created from the photograph of Figure
5 is presented in Figure 6.

Figure 6: Grass texture

4 Conclusion

We have presented an algorithm to create a large tex-
ture from a given small texture by randomly selecting
sub-blocks of an original texture and blending them.
Our algorithm removes the matching of sub-blocks re-
quired by the algorithm proposed by Efros and Free-
man [Efr01]. The results are visually acceptable and
compare well with the existing algorithm. Our al-
gorithm is closer to the one proposed by Ashikhmin
[Ash01] with the innovation that the block selection is
random and blending between blocks is achieved on
the basis of a cut line to avoid straight line artifacts.
The algorihm has been used to generate larger textures
that form the basis of “universal texture” in a commer-
cial flight simulator.

We show a number of textures rendered by our algo-
rithm in Figures 7 and 8. The textures are the same
as used by Efros and Freeman to visualize the per-
formance of their algorithm. These figures show that
the larger textures generated by our algorithm are well
blended on the edges and show a nice rendering as
large textures while eliminating the repetition from the
small textures. These figures may show some artifacts
near the blended region in textures that have sharp
edges but no such artifacts are visible in textures that
lack sharp edges. Even then, the artifacts are barely

noticeable and the generated textures are perfectly use-
able in low resolution visualization applications such
as universal texture in flight simulation.

Acknowledgement

The work reported in this paper was performed at Vi-
sual Simulation Systems Division of FlightSafety In-
ternational. Andrew Lindberg helped with a number
of ideas. The textures are used with permission from
FlightSafety and William Freeman.

References

[Ald92] Aldus Corporation, Seattle, WA. TIFF
Revision 6.0, June 1992.

[Ash01] Ashikhmin, M. Synthesizing natural tex-
tures. In Symposium on Interactive 3D
Graphics, pages 217–226, 2001.

[Bha03] Bhatia, S. K. Creating isotropic toroidal
texture patterns. In Proceedings of
the IMAGE 2003 Conference, Scottsdale,
AZ, July 2003.

[Dis02] J.-M. Dischler, K. Maritaud, B. Levy, and
D. Ghazanfarpour. Texture particles. Eu-
rographics, 21(3), 2002.

[Efr01] Efros, A. A. and Freeman, W. T. Image
quilting for texture synthesis and transfer.
In SIGGRAPH 2001, Los Angeles, CA,
2001.

[Ebe98] Ebert, D. S., Musgrave, F. K., Peachey,
D., Perlin, K., and Worley, S. Texturing
and Modeling – A Procedural Approach.
Academic Press, 1998.

[Liu01] Liu, X., Yu, Y., and Shum, H.-Y. Syn-
thesizing bidirectional texture functions
for real-world surfaces. In Eugene Fi-
ume, editor, SIGGRAPH 2001, Com-
puter Graphics Proceedings, pages 97–
106. ACM Press / ACM SIGGRAPH,
2001.

[Mur96] Murray, J. D. and vanRyper, W. Encyclo-
pedia of Graphics File Formats (2nd ed.).
O’Reilly, Sebastopol, CA, 1996.



[Ney99] Neyret, F. and Cani, M.-P. Pattern-
based texturing revisited. In Alyn Rock-
wood, editor, SIGGRAPH ’99, Com-
puter Graphics Proceedings, pages 235–
242, Los Angeles, 1999. Addison Wesley
Longman.

[Pra00] Praun, E., Finkelstein, A., and Hoppe, H.
Lapped textures. In Kurt Akeley, edi-
tor, Siggraph 2000, Computer Graphics

Proceedings, pages 465–470. ACM Press
/ ACM SIGGRAPH / Addison Wesley
Longman, 2000.

[Poy95] Poynton, C. A guided tour of color space.
In New Foundations for Video Technol-
ogy: Proceedings of the SMPTE Ad-
vanced Television and Electronic Imag-
ing Conference, pages 167–180, San
Francisco, CA, February 1995.



Figure 7: Some results with textures used by Efros and Freeman



Figure 8: More results with textures used by Efros and Freeman


