PATTERN
RECOGNITION

THE JOURNAL OF THE PATTERN RECOGNITION SOCIETY

PERGAMON

Pattern Recognition 35 (2002) 2479-2488
www.elsevier.com/locate/patcog

Image database indexing using JPEG coefficients

Sharlee Climer, Sanjiv K. Bhatia*

Department of Mathematics and Computer Science, University of Missouri—St. Louis, St. Louis, MO 63121, USA

Received 4 December 2000; received in revised form 5 September 2001

Abstract

Image database indexing is used for efficient retrieval of images in response to a query expressed as an example
image. The query image is processed to extract information that is matched against the index to provide pointers to
similar images. We present a technique that facilitates content similarity-based retrieval of JPEG-compressed images
without first having to uncompress them. The technique is based on an index developed from a subset of JPEG coefficients
and a similarity measure to determine the difference between the query image and the images in the database. This
method offers substantial efficiency as images are processed in compressed format, information that was derived during
the original compression of the images is reused, and extensive early pruning is possible. Initial experiments with the
index have provided encouraging results. The system outputs a set of ranked images in the database with respect to the
query using the similarity measure, and can be limited to output a specified number of matched images by changing
the threshold match. © 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.

Keywords: Image database systems; Content based image retrieval; Indexing

1. Introduction

The adage “A picture’s worth a thousand words” re-
flects the rich semantic meaning conveyed by an image.
This semantic complexity confounds the efforts to auto-
mate image indexing and retrieval. While humans can
easily discern objects in an image, we are not able to un-
ambiguously describe its full semantic content in a lan-
guage that can be tokenized for automatic indexing and
retrieval. At the present time, the technology has not ad-
vanced to the point for a computer to discern an image or
to unambiguously describe its contents. This is due to the
limitations of current edge detection and object recogni-
tion techniques. Yet, the need for efficient automated re-
trieval systems has dramatically increased in recent years
due to the world-wide web and multimedia technology.

* Corresponding author. Tel.: +1-314-516-6520; fax:
+1-314-516-5400.
E-mail address: sanjiv@cs.umsl.edu (S.K. Bhatia).

In the past, small image data bases were maintained
manually. A domain expert would identify the objects in
an image and enter relevant text to be associated with the
image. This method has several drawbacks. The semantic
complexity of an image can lead to different descriptions,
resulting in content and/or language mismatches [1,2]. A
content mismatch occurs when a seemingly insignificant
object or characteristic is omitted in an annotation and,
later, a user searches for that omitted information. Lan-
guage mismatches occur when different words are used to
describe the same object. Another drawback is that many
applications, such as weather forecasting or law enforce-
ment, involve a significant number of similar images that
would result in an unmanageable number of matches for
a given query. Finally, this method is severely limited
as it is time intensive and thus impractical for large data
bases.

In this paper, we present a technique to develop an
index for an image database using the JPEG coeflicients
of the compressed image. The use of JPEG coefficients

0031-3203/02/$22.00 © 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.

PII: S0031-3203(01)00182-0

2480 S. Climer, S.K. Bhatial Pattern Recognition 35 (2002) 2479-2488

obviates the need for uncompressing the image and only
requires decoding the run-length encoded strings of
coeflicients. The index is based on partitioning the JPEG
coefficients of an image into a quad-tree structure [3].
In the next section, we present the problem background
in detail and review the literature. In Section 3, we present
the basics of JPEG compression, with an emphasis on the
phase where we pick up the coefficients. In Section 4, we
show the development of the quad tree corresponding to
the DCT coefficients and the information to be retained at
each node of the quad tree. In Section 5, we illustrate the
query process. Section 6 describes the implementation
status of the system. We conclude by presenting a sum-
mary and future plans regarding the system in Section 7.

2. Background

In recent years, many content-based image retrieval
(cBIR) methods have been developed to address the grow-
ing need for efficient image management systems. Gen-
erally, CBIR systems define methods for extracting image
characteristics, known as signatures, from images and
employ rules for comparing images based on these sig-
natures. In most of these systems, the user will supply or
construct a query image or enter text to initiate a search
for matching images. Generally, these systems return a
number of images with the closest match to the query.

Most CBIR systems can be roughly categorized into one
of three areas: histogram-based, color layout-based, or
region-based. Some systems, such as QBIC [4], WALRUS
[5], and our system, have characteristics of more than
one category. In the remainder of this section, we present
descriptions of each of the three categories and conclude
with an overview of our techniques.

2.1. Histogram-based systems

A histogram of an image conveys the relative quan-
tities of colors in an image. Inside the machine, each
pixel in the image is represented as a weighted amount
of three colors: red, green, and blue. Each of these three
color channels is quantized into m divisions. Thus, we
can have m® composite colors, or bins. The total number
of pixels that correspond to each bin are tallied and the
signature of the image is a vector containing these to-
tals. The signature is then used to build an index. When
a query image is presented, its signature is extracted and
compared with entries in the index.

The histogram-based systems suffer from several lim-
itations. First, these systems disregard the shape, texture,
and object location information in an image, leading to
a high rate of return of semantically unrelated images.
For instance, the histograms of the two images in Fig. 1
are identical, yet the images are obviously different. Fur-
thermore, the color quantization step leads to additional

Fig. 1. Two images with opposite colors, yet identical his-
tograms and average intensities.

sources of error [6]. For efficiency, there usually are far
fewer bins than colors, so many colors may get quan-
tized into a given bin. The first problem is that similar
colors that are near the division line may get quantized
into different bins and for a given bin, the extreme col-
ors may be quite different. Second, given a set of three
color channels, perceptual sensitivity to variations within
colors is not equal for all three channels [7]. However,
histogram quantization incorrectly uses a uniform divi-
sor for all three channels. Finally, a query image may
contain colors that are similar to the colors of a partic-
ular image in the index, but a large distance may re-
sult if they are not close enough to fall into the same
bins [6].

2.2. Color layout-based systems

Color layout-based systems extract signatures from
images that are similar to low resolution copies of the im-
ages. The image is divided into a number of small blocks
and the average color of each block is stored. Some sys-
tems, such as WBIIS [8] and WALRUS [5], utilize significant
wavelet coefficients instead of average values in order to
capture sharp color variations within a block.

Signatures derived in the WBIIS system include co-
efficients derived from a fast wavelet transform with
Daubechies’ wavelets and their standard deviation [8].
The query process involves a filtering step followed by
distance computations. In the first step, the standard de-
viations of the query image and each of the indexed im-
ages are compared. Next, a weighted Euclidean distance
measurement is calculated on a 192 dimensional vector
within each signature of the remaining images. Finally,
the images with distances within a specified threshold are
used to calculate a more precise distance measurement
on a 768 dimensional vector [8].

A limitation of traditional color layout systems is their
intolerance of object translation and scaling. Object lo-
cation is frequently helpful in identifying semantically
similar images. For instance, the histogram of a query
image containing green grass and blue sky may have a
close distance to a blue house with a green roof, while

S. Climer, S.K. Bhatial Pattern Recognition 35 (2002) 2479-2488 2481

a color layout scheme would discard this image. How-
ever, tolerance of object translation is often desirable.
The WALRUS system uses a wavelet-based color layout
method to overcome the translation and scaling limita-
tion [5]. For each image in the index, a variable num-
ber of signatures (typically thousands) are computed and
clustered. Each signature is computed on a square area
of the image, with the size and location of each square
varying according to prescribed parameters. Clustering
is performed on squares with similar signatures in or-
der to reduce the number of signatures to be searched
during a query. While this system is tolerant of image
translation and scaling, the computational complexity is
dramatically increased. WALRUS is essentially a color lay-
out scheme, however, it incorporates some region-based
attributes.

2.3. Region-based systems

Region-based systems use local properties of regions
(ideally objects) as opposed to the use of global proper-
ties of the entire image. A fundamental stumbling block
for these systems is that objects are frequently divided
into multiple regions, each of which inadequately identi-
fies the object. Examples of region-based systems include
QBIC [4], SaFe [9], Blobworld [10], and siMPLIcity [11].

The QBIC system uses both local and global properties
and incorporates both region-based and histogram prop-
erties. Objects are identified in images using semiauto-
matic outlining tools [4]. SaFe is a complex system that
automatically extracts regions and allows queries based
on specified arrangements of the regions. Regions are
automatically extracted using a color set back-projection
method [9]. Characteristics such as color, shape, texture,
area, and location, are stored for each region. A sepa-
rate search is performed for each region in the query
image. Blobworld is a region-based system that automat-
ically defines regions, or blobs, within an image using
the Expectation-Maximization algorithm on 6-D vectors
containing color and texture information for each pixel
[10]. For each blob, the anisotropy, orientation, con-
trast, and two dominant colors are stored. SIMPLIcity is a
region-based system that partitions images into predeter-
mined semantic classes prior to extracting the signature
[11]. Signature construction and distance formulations
are varied according to the semantic class. The k-means
algorithm and Haar wavelet are used to segment the im-
age into regions [11].

2.4. Our system

Despite their complexity, all of these systems miss
relevant images in the database and may return a num-
ber of irrelevant images. An ideal system will be one
that provides high value for precision and recall [12].
These terms originate in the information retrieval litera-

ture. Precision is defined as the ratio of the number of
correct images retrieved to the number of images in the
retrieved set. Recall is the ratio of the number of correct
images retrieved to the number of relevant images in the
database. It is easy to see that a recall of 1 is achieved
if we retrieve all the images in the database. However,
that will have an adverse effect on precision which is
akin to signal-to-noise ratio. Maximizing precision may
adversely affect recall by omitting some relevant images.
Precision and recall capture the subjective judgement of
the user and may provide different values for different
users of a system. It has been commented that even man-
ual browsing is not error-free [13].

Our system is based on using the JPEG coefficients of a
compressed image. Each image in our database is repre-
sented by a quad-tree structure with leaves that contain
relevant JPEG coefficients. We compute statistics concern-
ing each node in the quad tree and include those in the
index along with the identification and location informa-
tion. The quads at any level in the tree, starting from
the root, are of the same size. All the quads at a given
level in the tree are collected in a relational database ta-
ble, with quads at different levels collected in separate
relations.

Just like the images in the database, a given query
image is partitioned into the quad-tree structure and
statistics from different nodes are compared against the
statistics from the quads of same size from the index re-
lations. The comparison is quantified as a distance mea-
sure that can be used to determine the similarity of the
query to different images in the data base. Using a thresh-
old, some of the images can be ignored from further
comparison yielding further improvements in retrieval
efficiency. Finally, an adjustment of threshold yields the
desired number of images that match the query image.

The efficiency of our system stems from three factors.
First of all, signatures are extracted from compressed
images. Since images are transmitted and stored in com-
pressed format and decompression is a CPU-intensive
operation, this feature offers substantial savings. Sec-
ond, this system takes advantage of the work already
performed during the initial compression of the image.
Compression methods, such as JPEG, have been heavily
researched, and offer color compression ratios in the or-
der of 25:1 [14]. Despite the vast reduction in size, the
JPEG-compressed data contains all the information nec-
essary to reproduce a perceptually identical match of the
original image. We take advantage of this invested work
and extract the fundamental elements of the image’s sig-
nature with ease. Finally, we use these elements as the
leaves of a quad-tree structure that allows extensive early
pruning.

This concept is general enough that it could be ex-
tended to other compression standards. Once a standard
is set for a system, images of other formats could be in-
corporated by converting them to the desired format.

2482 S. Climer, S.K. Bhatial Pattern Recognition 35 (2002) 2479-2488

Our system uses an extremely efficient color layout
method with region-based characteristics. The signature
of the query image is based on its global characteristics,
however, regional properties of the indexed images are
searched. At the present time, it is tolerant of limited
object translation. As explained in Section 7, this system
can be extended to tolerate scaling and arbitrary object
translation.

One of the major advantages of region-based search-
ing is the ability to perform multi-object searches
disregarding the relative locations of the objects. For
instance, a user may desire an image containing a horse
and a car, irrespective of their locations. Using our sys-
tem, a query for a horse can be performed, followed by
a query for a car. The two sets of returned images can be
easily checked for matches. This system offers desirable
features within an extremely efficient framework.

3. JPEG compression of images

JPEG derives its name from Joint Photographic Experts
Group and is a well-established standard for compression
of color and grayscale images for the purpose of storage
and transmission [7,14,15]. The JPEG compression results
in an image that is considerably similar in quality to the
original image while using far less bytes, typically from
20:1 to 25:1 levels of compression without a perceiv-
able quality degradation. The compression itself is lossy
which means that some information in the image may be
lost depending on the desired amount of compression.

The minimal subset of the JPEG compression standard,
known as the baseline JPEG, is based on the discrete cosine
transform (DCT). To apply DCT, each pixel in the image is
level-shifted by 128 by subtracting 128 from each value.
Then, the image is divided into fixed size blocks and a
DCT is applied to each block, yielding DCT coefficients
for the block. These coefficients are quantized using
weighting functions optimized for the human eye. The
resulting coefficients are encoded using a Huffman vari-
able word-length algorithm to remove redundancies [7].

The compression process is started by dividing the
rectangular image canvas into 8x8 blocks and the
DCT is applied to each block to separate the high- and
low-frequency information in the block. Application of
DCT results in the average value (or DC component) in
location (0,0) of the 8 x8 block while the other locations
of the 8x8 block contain the AC terms. The AC terms
are made up of higher frequency components of the
block. The maximum value for an AC term, the dominant
coefficient, represents the highest change in the cosine
wave between any two adjacent pixels in the block.

The DCT coefficients in each block are quantized to get
scaled coefficients by dividing each value with a quanti-
zation coefficient from the quantization table developed
by the 1S0 JPEG [14,15]. The coefficients in the quantized

block are rearranged using a zigzag ordering to create a
vector. The zigzag pattern approximately orders the basis
functions from low to high spatial frequencies [14].

The vectors resulting from the zigzag ordering
contain the DC coefficient corresponding to the original
image in the first location. The baseline JPEG standard re-
quires these vectors of DCT coefficients to be run-length
encoded, using Huffman encoding, for storage and trans-
mission. However, we want to use the vectors without
encoding and extract some useful data from each vector
to facilitate comparison of images. In the remainder of
this paper, we will only be interested in the DC compo-
nent and the dominant coefficient, as these two values
give us the most important information about the 8x8
block. The DC component is the average value of the
block and the dominant coefficient indicates the degree
of uniformity within the block. We build our index effi-
ciently as these two values have already been calculated
and are readily available in the compressed image data.

4. Quad tree structure representation of DCT
coefficients

In the previous section, we showed how to extract the
DCT coeflicients for each 8x8 block of the image. This
effectively implies that the entire image is considered to
be constructed of 8 x 8 pixel blocks. We consider the 8 x8
pcT-encoded block to be the smallest addressable unit
of the image, instead of each pixel. In this section, we
show the construction of quad tree structure using the
information from each 8§ x8 DcT-encoded block.

The quad tree in our system is a full tree such that
each node contains exactly four children or none (Fig. 2).
Moreover, all the leaf nodes are at the same level in the
tree, and represent the 8x8 pixel block in the original
uncompressed image.

To develop the quad tree, we consider an image of
size rxc with » rows and ¢ columns of pixels. After the
application of DCT, we obtain a two-dimensional set of
vectors that can be described by 7' rows and ¢’ columns
of vectors, such that

-]
Rl

where [x] indicates the smallest integer such that
x < [x]<x + 1, that is, the ceiling function. The
two-dimensional set of vectors of size #’'xc’ is then
superimposed on a square array of size RxC, where
R=C=2 Mg(max(+’,¢"))])

Thus, the length of each side of the new square image is a
power of 2. As shown in Fig. 3, a quad tree can be derived
from the square block by recursively dividing each side
by 2. In the figure, the input image is superimposed on

S. Climer, S.K. Bhatial Pattern Recognition 35 (2002) 2479-2488 24383

o
L

Fig. 2. Quad tree in the system.

0|3

Hli

B
Fig. 3. Quad tree of an image.
an nxn image, with the maximum dimension in quad

tree being n/8xn/8 due to application of DCT. Next, we
describe the contents of different nodes in the quad tree.

4.1. Leaf nodes of the quad tree

Each leaf node of the quad tree corresponds to an 8 x8
vector of DCT-encoded coefficients that has been com-

struct jpegnode

{

loc block.start; /* Starting coordinates of block */

int block height; /* Height of the block */
int block width; /* Width of the block */
int size; /* Size of the enclosing square block side */
int avg.dcc; /* Average DC coefficient */
int dom coeff; /* Dominant coefficient in the block */
loc dom.loc; /* Location of dominant coefficient */
char img[33]; /* Image name (for identification) */
struct jpegnode *ul, /* Children x/

*ur, *11, *1r;

Fig. 4. Structure of a node in the quad tree.

puted from an 8§x8 pixel block in the original image.
The information of interest is the location of the original
8x 8 pixel block in the image, the DC coefficient in the
DcT-encoded vector (the first element in the vector), and
the dominant coefficient in the vector. The location of the
pixel block is taken to be the location of pixel in the top
left corner in the block. This does not lead to any loss
of information as the image, at this level, is described
in block coordinates, using 8 x8 blocks, instead of pixel
coordinates. In addition, we also retain the name of the
image for identification purpose.

4.2. Non-leaf nodes and the quad tree

The non-leaf nodes contain information extracted from
aggregates of 8x8 DCT-encoded vectors. They will be
used to make similarity comparisons between images at
a higher level than the individual blocks. Each non-leaf
node in the quad tree contains the location of the corre-
sponding aggregate block in the original image, the aver-
age DC value of its children, and the dominant coefficient
in the entire aggregate block of DCT-encoded coefficient
vectors. Just like in leaf nodes, we retain the name of
the image for identification purpose. Lastly, the non-leaf
nodes also contain the links to their four children, identi-
fied respectively as ul (upper left), ur (upper right), 11
(lower left), and 1r (lower right). The complete structure
of each node is presented in Fig. 4.

It may be noted that a leaf node uses the same struc-
ture as in Fig. 4 by assigning a null value to the four
children. The quad tree itself is illustrated in Fig. 3. In
this figure, we start with the set of 8x8 DCT-encoded co-
efficients forming a n/8xn/8 square corresponding to an
nxn image at the root. The set of coefficients is divided
into four sets of n/16xn/16 coefficients each. We con-
tinue to subdivide each set into four subsets recursively
until we get a set containing only one 8 x8 DCT-encoded
coefficient. At each node in the tree, we calculate the
information in the node (Fig. 4).

2484 S. Climer, S.K. Bhatial Pattern Recognition 35 (2002) 2479-2488

The nodes in the tree are at distinct levels that can be
identified by the size of the image. We save the nodes
depending upon their level in the tree in a file named as
indxnnn.idx where nnn is indicative of the size of the
DCT-encoded segment at that level. It is easy to see that
all the segments at a given level are of the same size. The
nodes are saved by performing a level-order traversal of
the quad tree with the following collating sequence: ul,
ur, 11, and 1r.

5. The query process

Once the quad tree has been developed for each image
in the database and the required information saved in the
index files, the query process is fairly simple. The query
in this case is considered to be a JPEG image. The image
is processed to develop the quad tree of its DCT-encoded
coeflicient blocks as described in Section 4. Further steps
in the query rely completely on the quad tree.

The root of the quad tree contains information about
the size of the image. Since each index file contains in-
formation about the nodes of the same size, we select the
index file that contains nodes with size equal to the size
of the image. It may be noted that the size of the node
is represented in terms of an exponent of 2 and there-
fore, the image is also fit into a larger template with size
rounded to the next exponent of 2. The overall result is
that we only consider those images in the database that
are larger than or equal to the query image. The root node
of the quad tree constructed from the query is compared
against each node in the selected index file using the
expression

diff(dy — dn)

diff (e — cn) + =",

where ¢, and ¢, are the average DC coefficients for the
nodes in the query and the index file, respectively, dg
and d, are the corresponding dominant coefficients, and
m is a constant. This formula is a work in progress. We
are currently looking into the computation of an optimal
value for m and an appropriate diff function. Furthermore,
we have considered deleting the second term of the for-
mula while comparing non-leaf nodes in order to reduce
error due to noise.

It is easy to see that in the case of a perfect match,
e.g., the same image in query and the database, the above
comparison will evaluate to zero. At any time, the im-
ages that result in the comparison greater than a prespeci-
fied threshold can be ignored from further consideration.
However, it may be the case that two images which are
not similar to each other in content but are similar in av-
erage intensity (the DC component for the image), may
result in the comparison evaluation of zero. An example
of this case is depicted in Fig. 1. These images need to
be ranked using the information in the lower nodes in the
quad tree.

While comparing the lower nodes, we must keep track
of the relative location of each subblock at the node in
the query as well as the database and must compare the
corresponding nodes only. The index has been structured
such that each index file contains the nodes at a given
level within the quad tree. Traversing the quad tree cor-
responding to the query in level order, each node is com-
pared with the corresponding node in the image database,
with the root node as the reference, and the evaluation
of the comparison (the distance between query and ref-
erence for the subblock) added to the previous evalua-
tion. At any stage, if the summation of distances during
the level-order traversal-comparison becomes too large,
the image is removed from further consideration. We can
also limit the number of images that should be kept un-
der consideration by keeping only the top-ranked images
in consideration.

The overall results of the query are summarized in a
ranked list of images that are sorted on the basis of their
distance from the query. The ranking in the list allows us
to present the resulting images in the decreasing order of
relevance with respect to the query. In addition, we can
also limit the number of images that are to be presented
to the user.

6. Implementation status

The image database system described in this paper has
been implemented on a Sun SPARC system in C. We are
using multiple databases, including one from the Smith-
sonian Institute. The Smithsonian database contains 747
images divided into five different categories, with each
category containing between 33 and 216 images. We used
gray scale images (the luminance component) for testing
the system.

A quad tree was computed for each image and index
files were developed using the quad trees. The query
program was given an image as input with the result being
a ranked list of images from the database. Currently, the
program just gives the name of the image and a number
to specify its distance from the query image. The diff
function used is simply |c;—cx/|, or the difference between
the DC component of corresponding blocks.

The results from a query are displayed in Fig. 5. The
database used for this query contains 94 Smithsonian
air-space images and 27 other images. These images
show the query image (top left), four images with the
smallest distance, and the image with the largest dis-
tance. Surprisingly, a picture of the sun is the third closest
match. The sun image is 527 x475 pixels, while the query
image is 635x380 pixels. Consequently, the dark lower
edge of the sun and the right-hand edge of the jet im-
age weren’t compared. Furthermore, the dark right-hand
edge of the sun happens to line up with the tail of the
jet. Clearly, the distance between these images would be

S. Climer, S.K. Bhatial Pattern Recognition 35 (2002) 2479-2488 2485

Distance = 0.00

Distance = 7.41

Distance = 63.66

Distance = 64.84

Distance = 185.48

Fig. 5. Results from a query, with the distance of the picture from the query.

dramatically increased if the dominant coefficient term
were utilized in the distance formula.

To evaluate the system, we conducted an experiment
by asking human subjects to rank the images with re-
spect to the query. Six individuals independently ranked
14 images according to the amount of work necessary to
change each of the images into the query image. When
we queried the same image using our system, the re-
sults were very close to the human ranking as shown in
Figs. 6 and 7.

7. Future work

For the immediate future, we are working on optimiz-
ing our code and creating a GUI front end for the system

under the X windows environment. In addition, we are
working on a system that will work with color images.
We are also looking into more complex distance compu-
tation functions in compressed domain, in particular the
techniques proposed by Skodras [16].

For the long-term goal, we would like to extend our
system to tolerate arbitrary translation and scaling. Trans-
lational tolerance could be achieved by increasing the
number of non-leaf nodes in the quad tree. The number of
nodes on level n would correspond to the number of pos-
sible locations of an nxn block within the image. Scaling
tolerance could be achieved by querying each level be-
tween the largest block size and a specified smaller block
size. Another promising project is to adapt this system
to JPEG 2000 by utilizing wavelet coefficients. Finally,

2486 S. Climer, S.K. Bhatial Pattern Recognition 35 (2002) 2479-2488

Human rank 1

Human rank 9

Human rank 13

Human rank 3

Human rank 7

Human rank 4

Human rank 8

Human rank 10 Human rank 11 Human rank 12

Fig. 6. Human ranking of images.

another enhancement will be provided by using cluster-
ing methods within the index organization.

The efficiency of this system results from indexing
images in compressed format, utilizing work that was
previously performed, and creating a tree that allows ex-
tensive early pruning. These concepts could be applied
to other CBIR projects.

8. Summary
In this paper, we present an image database index-

ing system for efficient storage and retrieval of images
in response to a query expressed as an example image.

Our system can be classified as a content-based image
retrieval system and is exceptionally efficient. The effi-
ciency stems from indexing images while in compressed
format, by utilizing work that was already performed
(during compression), and using a quad tree for the image
signature. The system also allows extensive early prun-
ing during query so that any images that are not promis-
ing for the query are eliminated from consideration at an
early stage.

The system accepts JPEG images, extracting the av-
erage DC coefficients from the compressed data. (When
an image is compressed, it is divided into 8x8 blocks
of pixels, and a discrete cosine transform is applied to
each block. The average DC coefficient corresponds to the

S. Climer, S.K. Bhatial Pattern Recognition 35 (2002) 2479-2488 2487

Query Image

System rank 4

System rank 8

System rank 9

System rank 13

System rank 10 System rank 11 System rank 12

Fig. 7. System ranking of images.

average value of the 8x8 block.) These values become
the leaf nodes of the quad tree. Four 8x8 blocks com-
prise a 16 x 16 block of the image. The nodes on the level
next to the leaf nodes each contain the average of four
leaf nodes (corresponding to a 16x 16 block). This pro-
cedure is repeated until the root node is constructed, con-
taining the average value for the entire image. This tree
is the “signature” of the image that is stored in the index.
A query image is processed to produce a quad tree, and
the roots of the trees in the index are compared with the
query root using a distance formula. For distances within
a given tolerance, the second level of the corresponding
trees are compared. This process repeats down to the leaf
nodes, and selected images are ordered and returned to
the user.

The system has been implemented in C on a Sun work-
station and has been tested using images from the Smith-
sonian database.

References

[1] Shih-Fu Chang, J.R. Smith, M. Beigi, A. Benitez,
Visual information retrieval from large distributed on-line
repositories, Commun. ACM 40 (12) (1997) 63-71.

[2] JR. Smith, Shih-Fu Chang, Automated image retrieval
using color and texture, Technical Report 414-95-20,
Columbia University, Department of Electrical Engi-
neering and Telecommunications Research, New York,
NY 10027, July 1995.

2488 S. Climer, S.K. Bhatial Pattern Recognition 35 (2002) 2479-2488

[3] H. Samet, The quadtree and related hierarchical data
structures, ACM Comput. Surv. 16 (2) (1984) 187-260.

[4] M. Flickner et al., Query by image and video content: the
QBIC system, IEEE Comput. 28 (9) (1995) 23-32.

[5] A. Netsev, R. Rastogi, K. Shim, WALRUS: a similarity
retrieval algorithm for image databases, in: A. Delis,
C. Faloutsos, S. Ghandeharizadeh (Eds.), SIGMOD
1999: Proceedings of the ACM SIGMOD International
Conference on Management of Data, ACM Press,
Philadelphia, PA, June 1999, pp. 395-406.

[6] G. Lu, B. Williams, An integrated WWW image retrieval
system, In Australian WWW Conference, April 1999.

[7] J.D. Murray, W. vanRyper, Encyclopedia of Graphics File
Formats, 2nd Edition, O’Reilly, Sebastopol, CA, 1996.

[8] James Ze Wang, G. Wiederhold, O. Firschein, Sha Xin
Wei, Content-based image indexing and searching using
Daubechies’ wavelets, Int. J. Digital Libraries 1 (4) (1997)
311-328.

[9] J.R. Smith, Shih-Fu Chang, Integrated spatial and feature
image query, Int. J. Multimedia Systems 7 (2) (1999)
129-140.

[10] S. Belongie, C. Carson, H. Greenspan, J. Malik,
Color- and texture-based image segmentation using the
expectation-maximization algorithm and its application to
content-based image retrieval, in: ICCV98: Proceedings of
the International Conference on Computer Vision, 1998,
pp. 675—-682.

[11] J. Ze Wang, J. Li, G. Wiederhold, SIMPLIcity: semantics-
sensitive integrated matching for picture libraries, IEEE
Trans. Pattern Anal. Mach. Intell. 23 (9) (2001) 947-963.

[12] G. Salton, M.J. McGill, Introduction to Modern
Information Retrieval, McGraw-Hill, New York, 1983.

[13] D. Forsyth, J. Malik, R. Wilensky, Searching for digital
pictures, Sci. Am. 276 (6) (1997) 88-93.

[14] W.B. Pennebaker, J.L. Mitchell, JPEG Still Image Data
Compression Standard, van Nostrand Reinhold, New
York, 1993.

[15] R.C. Gonzalez, R.E. Woods, Digital Image Processing,
Addison-Wesley, Reading, MA, 1992.

[16] A.N. Skodras, Direct transform to transform computation,
IEEE Signal Process. Lett. 6 (8) (1999) 202-204.

About the Author—SHARLEE CLIMER received her B.S. in Engineering from Washington University in 1994, B.A. in Physics
from St. Louis University in 1995, and B.S. in Computer Science from the University of Missouri—St. Louis in 1999. She is
currently a graduate student and teaching assistant at the University of Missouri—St. Louis. Her research interests include Algorithms,

Artificial Intelligence, and Computer Vision.

About the Author—SANJIV BHATIA received his B.E. degree in Computer Science Engineering from Motilal Nehru Regional
Engineering College, Allahabad, India in 1983. He then worked with Engineers India Limited, New Delhi, India for three years.
He received his M.S. (Computer Science) from the University of Arkansas, Fayetteville in 1987, and Ph.D. (Computer Science)
from the University of Nebraska, Lincoln in 1991. Since Fall 1991, he has been with the University of Missouri—St. Louis. He has
published in the areas of Image Databases, Knowledge Acquisition, Machine Learning, and Information Retrieval. He is also active
in software design for flight simulator visuals. He is a member of ACM and AAAL

