
Pattern Recognition Letters 24 (2003) 2291–2300

www.elsevier.com/locate/patrec
Local Lines: A linear time line detector

Sharlee Climer a, Sanjiv K. Bhatia b,*

a Department of Computer Science, Washington University, St. Louis, MO 63130-4899, USA
b Department of Computer Science, Southern Illinois University Edwardsville, Edwardsville, IL 62026-1656, USA

Received 17 May 2002; received in revised form 19 February 2003
Abstract

This paper introduces LOCALOCAL LINESINES––a robust, high-resolution line detector that operates in linear time. LOCALOCAL

LINESINES tolerates noisy images well and can be optimized for various specialized applications by adjusting the values of

configurable parameters, such as mask values and mask size. As described in this paper, the resolution of LOCALOCAL LINESINES

is the maximum that can be justified for pixelized data. Despite this high resolution, LOCALOCAL LINESINES is of linear asymp-

totic complexity in terms of number of pixels in an image. This paper also provides a comparison of LOCALOCAL LINESINES with

the prevalent Hough Transform Line Detector.

� 2003 Elsevier B.V. All rights reserved.

Keywords: Line detector; Linear complexity; Low level feature extraction
1. Introduction

Lines are fundamental low level features in

images. Line detection is important for a wide

variety of applications in computer vision and

digital image processing. For example, line detec-

tors facilitate applications such as recognition,

navigation, camera calibration, and target track-

ing (Hemdal, 1998; Lagunovsky and Ablameyko,

1999; Trucco and Verri, 1998). A typical line de-
tector operates on an edge image. An edge image

can be derived from a given image by using an
* Corresponding author. Address: Department of Mathe-

matics and Computer Science, University of Missouri-St. Louis,

8001 Natural Bridge Road, St. Louis, MP 63121-4499, USA.

Tel.: +1-314-516-6520; fax: +1-314-516-5400.

E-mail address: sanjiv@aryabhat.umsl.edu (S.K. Bhatia).

0167-8655/03/$ - see front matter � 2003 Elsevier B.V. All rights res

doi:10.1016/S0167-8655(03)00055-2
edge detector or it can be created by plotting

sensor data. Typically, an edge image is a binary
image with a value of 1 at each edge point loca-

tion, and zeros at all other locations. The binary

image is used by a line detector to determine the

defining characteristics of lines found in the image,

such as slope, length, midpoint, and/or endpoints

of the segment.

The importance of line detection has led to the

development of a number of algorithms for this
operation but most of them are computationally

expensive (Hemdal, 1998; Jain et al., 1995). The

Hough Transform Line Detector (HTLD) is a

prevalent algorithm in use (Shpilman and Brai-

lvosky, 1999). For this reason, we use the HTLD

as a basis for our comparisons. In this section, we

describe the HTLD, briefly introduce LOCALOCAL

LINESINES, and outline the organization of this paper.
erved.

mail to: sanjiv@aryabhat.umsl.edu


Fig. 2. The Muff Transform parameter pair.

2292 S. Climer, S.K. Bhatia / Pattern Recognition Letters 24 (2003) 2291–2300
1.1. Hough Transform Line Detector

The HTLD draws on global properties of im-

ages to derive global properties of probable lines

(Ballester, 1994). Examples of global properties of
lines are slope and y-intercept. In contrast, local

properties of lines refer to specific information

about line segments such as length, midpoint, and

endpoints, as well as slope. HTLD is used to

identify probable lines that span the entire image

and then the results are post-processed to identify

the endpoints of the actual line segments. The

spanning lines are identified using two parameters
that are necessary and sufficient for the purpose.

When Paul Hough introduced this algorithm in

1962, he specified the slope and y-intercept as these
parameters (Leavers, 1992). This selection led to

difficulties in practice, as it results in an infinite

parameter space (Trucco and Verri, 1998). Since

that time, a number of parameter pairs have been

suggested. Two popular choices are the q and h
pair and the Muff Transform. Duda and Hart

suggested q and h, where q is the length of a

normal of the spanning line to the origin and h
is the angle this normal makes with the positive

x-axis (Leavers, 1992). Fig. 1 depicts an example

spanning line with the q and h parameters identi-

fied.

As shown in Fig. 2, the Muff Transform uses
the two points where the spanning line inter-

sects the edges of the image (Leavers, 1992). The

transform starts at the lower left corner of the

image and measures in a counter-clockwise direc-
Fig. 1. The use of q and h as parameters.
tion along the perimeter of the image. It defines

two parameters––s1 and s2––as the distance to the

first and second intersection points, respectively.

Parameter pair selection is important as the

possible range of each parameter must be quan-

tized, and the speed and quality of the HTLD is
dependent on this quantization. An accumulator

cell is initialized for each possible pair of discrete

parameter values. Thus, both space and time re-

quirements of the HTLD increase rapidly with

increasing numbers of discrete values. Unfortu-

nately, reducing the number of intervals also re-

duces the resolution of the detector.

The algorithm for the HTLD, as described
in (Trucco and Verri, 1998) and using the hq; hi
parameter space, is presented in Fig. 3. The input

is an M � N edge image. The range of q is

½0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 þ N 2
p

Þ and the range of h is ½0; pÞ [8]. R and

T are the number of discretized values for q and h,
respectively. These values should be chosen to

allow maximum resolution, given time constraints.

The algorithm proceeds as follows. An R� T
matrix A of accumulator cells is initialized to zero.

The edge image is searched row by row to find

each edge point. When an edge point is encoun-

tered, T calculations are performed. For each

quantized value of h, calculate q for the given edge

point. Increment the corresponding accumulator

cells for each calculation. Thus, for each edge

pixel, T accumulator cells are incremented, one
for each discrete value of h.



Fig. 3. HTLD algorithm.

S. Climer, S.K. Bhatia / Pattern Recognition Letters 24 (2003) 2291–2300 2293
After all edge points have been explored, ac-
cumulator cells corresponding to spanning lines

containing large numbers of edge points have

higher tallies than those with lower numbers of

edge points. Therefore, probable lines are specified

by accumulator cells with tallies greater than a

pre-specified threshold. Challenges associated with

deriving an optimal threshold and with reducing

peak splitting among adjacent parameter pairs are
detailed in (Leavers, 1992).

HTLD indicates the lines by their global prop-

erties, i.e., their parameter pair values. However,

the parameter pair does not contain information

about the actual location of the line segment, or

whether a detected spanning line contains a single,

long line segment or several short line segments.

Furthermore, the tally for a parameter pair in-
cludes every edge pixel that happens to occur

along the spanning line, even if it is not part of any

line segment at all. This shortcoming may result in

inappropriately high tallies for some parameter

pairs. Moreover, it could result in false-positive

lines being detected. For example, if a small tex-

tured or patterned object occurs in an image, there

would be a high concentration of edge pixels in the
immediate area. These edge pixels would increase

the tallies of the corresponding spanning lines,

although there is no real line segment present. For

these reasons, the image and the output need to be

post-processed to find what lines actually exist,

and the endpoints and lengths of these lines.
The complexity of the HTLD is a function of
the number of pixels in the image as well as the

number of intervals, R and T , chosen for the pa-

rameters. In order to get satisfactory results, larger

images would require greater numbers of intervals.

We compare the complexity of HTLD and LOCALOCAL

LINESINES in Section 3.

1.2. LOCALOCAL LINESINES

A drawback of HTLD is that it uses global

properties of images, thereby increasing the com-

plexity of the program. It returns global infor-

mation about each of the detected lines which

requires additional processing to determine the

actual locations and lengths of the lines.

With this in mind, we have designed and
implemented a line detector, LOCALOCAL LINESINES, that

draws on local information and outputs local

properties of each probable line.

In LOCALOCAL LINESINES, we apply a mask on each edge

point, to yield weighted sums of other local edge

points and return probable n-pixel long line seg-

ments. These segments are then deleted and a tag is

placed in the far endpoint to facilitate the cate-
nation of segments. This process is linear in the

number of pixels, so its complexity is dramatically

less than the HTLD and it scales well. Further-

more, the program returns the endpoints, slope,

and length of each line, ready for use without

further processing.



2294 S. Climer, S.K. Bhatia / Pattern Recognition Letters 24 (2003) 2291–2300
The rest of the paper is organized as follows. In

Section 2, the LOCALOCAL LINESINES algorithm is described

in greater detail. In Section 3, we derive its reso-

lution and complexity and compare the results

with the HTLD. Section 4 describes our imple-

mentation of this algorithm and illustrates the
output of LOCALOCAL LINESINES. Finally, Section 5 sum-

marizes our conclusions and ideas for future work.
Fig. 5. 12� 21 mask.
2. LOCALOCAL LINESINES algorithm

The algorithm for LOCALOCAL LINESINES is summarized

in Fig. 4. As with HTLD, the input to the system is
an edge image. The edge image is scanned one row

at a time until an edge point is encountered. When

an edge point ði; jÞ is encountered, a convolution

mask is applied to the system. In our system, the

convolution mask for an n-pixel line is ðnþ 2Þ�
ð2nþ 1Þ, where n is the minimum length of iden-

tified lines. In our experiments, we set n equal to 10

pixels, resulting in a 12� 21 mask (see Fig. 5). The
mask is aligned such that the pixel ði; jÞ is under

the second row and middle column of the mask.

We are interested in finding line segments that

start at ði; jÞ and end below row i or horizontally
to the right of pixel ði; jÞ. The numbers along the

edges of the mask in Fig. 5 correspond to possible
Fig. 4. LOCALOCAL LININ
endpoints for these segments. Each of these end-

points are labeled from 0 to 4n	 1 (0–39 in our

experiments for 10-pixel lines). This labeled num-

ber is referred to as the slope throughout the

program, with the slope converted to a standard

format in the results. We have a counter for each

slope, and we initialize these slope counters to zero

each time we apply the mask.
The next step is to find all the local edge points

in the image under the convolution mask. For each

of these other local edge points, the counters cor-

responding to the possible slopes of lines that

could contain both that point and the point ði; jÞ
are incremented by a weighted number. The weight
ESES algorithm.



Fig. 6. Two-pixel wide rectangle used to determine weights for

pixels for a line with slope 0.

Fig. 7. 3-dimensional mask matrix.

S. Climer, S.K. Bhatia / Pattern Recognition Letters 24 (2003) 2291–2300 2295
of the number reflects the likelihood that the point

lies on a line that starts at point ði; jÞ and has the
corresponding slope. The method used to deter-

mine this weight is demonstrated for the slope of 0

in Fig. 6. A two-pixel wide rectangle is centered on

the point ði; jÞ and a given endpoint along the sides

or bottom edge of the mask. Then the aligned

rectangle is shaded. The shaded area of each pixel

is used for the weight of the corresponding pixel

for the given slope. For example, for slope 0, the
mask weights are one for pixels located horizon-

tally to the right of ði; jÞ and one-half for pixels

directly above or below these horizontal pixels.

The selection of this weighting method is

somewhat arbitrary. Experiments with alternative

weighting methods, as well as different mask sizes

and/or shapes, may result in enhanced system

performance. Note that once a mask size, shape,
and weight values have been determined, the values

can be stored in a file. Thus, the values need not be

calculated during the application of the algorithm;

they only need to be recomputed to fine-tune the

code for a particular application domain.

We used a 3-dimensional array (shown in Fig.

7) to implement the weighted mask. The rows and

columns in this 3D array correspond to the con-
volution mask (12� 21 mask in our example). The

third dimension corresponds to the possible slopes

for an n-pixel line. There are 4n of these possible

slopes. Thus, for a 10-pixel line, the 3D mask has

dimensions of 12� 21� 40. This 3D mask facili-

tates the computation of values for a given edge

pixel. For each edge point found under the 12� 21

convolution mask projection, the weighted values
along the third dimension (the slope axis) are

added to the corresponding slope counters.

Once all of the edge points have been found

under the 2D mask area, the slope tallies are

checked for totals greater than or equal to the tol-

erance level, as specified by a configurable para-
meter min_points. The parameter min_points

can be adjusted to tailor the system to the quality

of the input. Thus, the system is robust and tol-

erates missing and contaminated data well. The

selected values correspond to probable n-pixel line
segments starting at the point ði; jÞ, with the given

slope.

It is possible to have a fan of line segments, that
is, several line segments with adjacent slopes

values. For instance, if all the edge pixels of a given

line were detected, using the weights of the current

mask and min_points equal to a small number,

several lines may be detected with adjacent slope

values. Since we can assume that there would not

be two or more lines with the specified start point

and very similar slopes, we should single out one
line from the fan. LOCALOCAL LINESINES does this by

comparing the tallies of each line in the fan and

selecting the slope with the highest tally.

Once a line is determined, its properties are

stored and the pixels in the line are deleted. The

endpoints and slope of the line are stored in an

array, with each element in the array representing

a line. The index of the line is placed at the seg-
ment�s endpoint on the image, to facilitate cate-

nation with other line segments. For this reason,

we assign the first line that is encountered, to have

an index 2. This ensures that the line segment

markers are not confused with edge points. Other



2296 S. Climer, S.K. Bhatia / Pattern Recognition Letters 24 (2003) 2291–2300
pixels in the line are deleted from the image by

setting them to zero. The corresponding slope

mask is used to select the pixels to be deleted. If the

weight for the pixel is greater than a threshold

value specified by a configurable parameter del-

tol, then the pixel is deleted.
The new line may be a continuation of an ex-

isting line segment. If the pixel at or in the neigh-

borhood of location ði; jÞ has a value greater than

one, it is the endpoint of another line whose index

is the value of the pixel. In this case, the slopes of

the new line and nearby existing lines are com-

pared. If they are within a given tolerance, speci-

fied by a configurable parameter slopetol, then
the new line is catenated to the existing line. The

slope for a complete line is calculated as the

average of the slopes of its n-pixel segments.

At the end of the process, the slope tallies are

reset to zero and the search continues to the next

edge point in the image. This procedure continues

until all the edge points in the image have been

explored or deleted.
Finally, the local properties of the lines are

displayed. The slope of each line is an average of

the slopes of the constituent n-pixel long segments.

The length of each line is simply determined from

its endpoints. These two values (slope and length),

along with the endpoints, are displayed for each

line in the image that is longer than a user-specified

minimum length.
While the starting point of a line segment is

identified with as much resolution as possible for

the given data, the length of the segment may be off

by several pixels. If a line is composed of an integral

number of n-pixel long segments, no rounding will

occur. Otherwise, if the last segment is less than

min_points, it will be truncated; and if it is

greater than or equal to min_points, it will be
extended to n pixels. If an application requires

greater precision for the length of the segments, the

output of LOCALOCAL LINESINES could be post-processed to

determine the exact length of each segment.
3. Resolution and complexity

In this section, we compare the resolution and

complexity of LOCALOCAL LINESINES and HTLD. The res-
olution and complexity of the HTLD is a function

of the number of intervals chosen when quantizing

the chosen parameters. Let us choose the para-

meter pair q and h as a basis for comparisons. In

this section, we show that the number of possible

intervals for q and h in LOCALOCAL LINESINES is the maxi-
mum number that can be justified for pixelized

data. Despite this maximal resolution, the com-

plexity of LOCALOCAL LINESINES for anM � N image is only

OðM � NÞ, or OðP Þ, where P is the number of

pixels in the image. In this section, we first examine

the resolution of LOCALOCAL LINESINES. We then compare

the complexity of LOCALOCAL LINESINES with the com-

plexity of HTLD with similar resolution.
First, consider the number of slopes that can be

justified for pixelized data. When scanning an

image row by row (from the top of the image to

the bottom), as in LOCALOCAL LINESINES, the possible lines

starting at a given pixel ði; jÞ would extend to an

endpoint located below or horizontally to the right

of the start point. Any lines that extend above or

horizontally to the left of ði; jÞ would not start at
ði; jÞ; they would have started at a pixel that was

previously examined. As seen in Fig. 5, the number

of possible slopes for a 10-pixel line starting at

ði; jÞ is 40. We assert that more slopes for pixelized

data could not be justified as there are only 40

possible endpoints for the given start point. Simi-

larly, a 20-pixel line has 80 possible endpoints. In

general, the maximum number of possible end-
points (and possible number of slopes) is 4n, where
n is the length of the line in pixels.

The resolution for LOCALOCAL LINESINES is illustrated

below with a case where n ¼ 10. In this case,

LOCALOCAL LINESINES has 40 possible slopes for a 10-pixel

line. When 10-pixel long lines are catenated, we

average their respective slopes to derive the slope

of the entire line. Thus, for a 20-pixel line, there
are 80 possible slopes. For instance, if the first 10-

pixel segment has a slope of 20 and the second 10-

pixel segment has a slope of 21, the slope for the

20-pixel line would be 20.5. Thus the possible

slopes for a 20-pixel line are ð0; 0:5; . . . ; 39:5Þ.
Furthermore, a 30-pixel line would have possible

slopes of ð0; 0:33; . . . ; 39:67Þ, or 120 possible

slopes. In general, for m 10-pixel segments, the
possible slopes are ð0=m; 1=m; . . . ; ð40m	 1Þ=mÞ,
or 40m possible slopes. For n divisible by 10,



S. Climer, S.K. Bhatia / Pattern Recognition Letters 24 (2003) 2291–2300 2297
4n ¼ 40m. Therefore, LOCALOCAL LINESINES offers the

maximum number of justifiable slope intervals for

pixelized data. We observe that the intervals for h
are not perfectly distributed for our mask. How-

ever, it should be noted that even a semi-circular

mask would not distribute the intervals uniformly,
due to pixelization.

With regard to the second parameter q, the

number of possible lengths of normals to the ori-

gin in LOCALOCAL LINESINES is the maximum that can be

justified as the lines are allowed to be detected

anywhere in the image. Therefore, the resolution

of LOCALOCAL LINESINES is the maximum that can be jus-

tified for pixel data.
Using a standard HTLD algorithm such as the

one in Fig. 3, the HTLD yields a complexity of

OðM � N � T Þ, where T is the number of discret-

ized values of h. When HTLD encounters an edge

point, T calculations are performed. The range for

h is ½0; pÞ. Thus, to achieve a resolution similar to

LOCALOCAL LINESINES, an M � N image would require

T ¼ 2ðM þ NÞ, as explained next.
Consider the lines that could be located such

that the length of their normals to the origin is the

maximum possible for an M � N image. For ex-

ample, a vertical line at the right hand edge of the

image would have a normal of length N and this

normal would intersect the line when h ¼ 0 at the

point ðM ;NÞ. This is assuming that our coordinate

system is based on using the top left corner of the
image as origin, with increasing row index towards

the bottom and increasing column index towards

the right side of the image. It is possible to have a

line whose normal intersects it at the point

ðM 	 1;NÞ, with a corresponding h > 0. For 06

h < p=2, we see that for each pixel along the right

hand side and top row, it is possible to have the

intersection of a line and its normal (a few lines in
the corner will not be considered as they would be

very short). We will get the same number of pos-

sibilities with p=26 h < p. In order to ensure

maximum resolution, we need to have a unique

value of h for each of these lines. Therefore, for

maximum resolution, T ¼ 2ðM þ NÞ.
It follows that M � N � T ¼ 2MNðM þ NÞ.

Hence, the complexity of HTLD for resolution
similar to LOCALOCAL LINESINES is OðMNðM þ NÞÞ. This is
substantially more than LOCALOCAL LINESINES � complexity
of OðMNÞ. For instance, for square images,

M ¼ N and the complexity of HTLD is OðN 3Þ,
while the complexity of LOCALOCAL LINESINES is OðN 2Þ.

LOCALOCAL LINESINES, like the HTLD, scans the image

to identify each edge pixel. When an edge point is

encountered, a constant-time procedure is per-
formed, yielding linear complexity. When HTLD

encounters an edge point, a OðT Þ procedure is

performed. Therefore, the complexity of LOCALOCAL

LINESINES is substantially less than that of the HTLD

for similar resolution. Furthermore, LOCALOCAL LINESINES

deletes the edge points that compose the found

lines. Thus only a fraction of the edge points are

operated on. Finally, LOCALOCAL LINESINES � output does
not require any further processing to identify the

actual lines in the image.

The space required by LOCALOCAL LINESINES is depen-

dent on the number of line objects allocated in the

line array. If more lines are found in an image than

are allocated in the array, an error message is

output and the array size can be increased. For

applications in which space is highly constrained
and very short lines are of little interest, the mask

size could be increased and the space complexity

would be substantially reduced. For instance, if

lines that are shorter than twenty pixels are of little

use, a 22� 41 mask could be used. While the space

complexity of LOCALOCAL LINESINES is linear in the num-

ber of lines detected, the space complexity of

HTLD can be problematic, as it is similar to its
time complexity.

There are variations of HTLD that reduce time

and space requirements. These include parallel

processing, dedicated hardware, and software op-

timizations (Leavers, 1992). According to Leavers

(1992), software solutions have dominated the re-

search as they are independent of specific hardware

requirements. Software solutions include computer
friendly algorithms, probabilistic methods, hierar-

chical approaches, dynamic quantization of accu-

mulators such as the Fast Hough Transform and

Adaptive Hough Transform, along with a host of

other techniques. These methods offer performance

advantages over the standard HTLD for various

applications. However, to our knowledge, none

offer linear complexity along with maximum reso-
lution. Leavers (1992) details benefits and short-

comings of many of these optimizations.



2298 S. Climer, S.K. Bhatia / Pattern Recognition Letters 24 (2003) 2291–2300
4. Implementation and results

This program has been implemented in C++.

Our code is available by writing to the authors.

The following tests were run on Sun Solaris and
Linux running on Athlon dual processors. The

mask values are read from a text file during the

initialization phase of the program.

In Figs. 8–10 we show test images in the left

column. These images are output by a robotic

sensor. In the right column of the images, we

graphically display the corresponding results of the

LOCALOCAL LINESINES detector. As seen in the figures, the
detector correctly identifies the lines in the image.

A set of more complex examples, using photo-

graphs, are provided in Figs. 11 and 12. These

photographs are first processed using the SUSANSUSAN

edge detector (Smith and Brady, 1997). Then, the
Fig. 8. Using LOCALOCAL LININ

Fig. 9. Using LOCALOCAL LININ

Fig. 10. Using LOCALOCAL LININ
line detector is applied. In the figures, the original

photographs are shown in the left column, the pre-

processed photographs to show edges are in the

middle column, and the output of the line detector

is shown in the right column.
5. Conclusions and future work

The line detection algorithms based on HTLD
are typically characterized by high computational

costs. Hemdal has put forward an algorithm based

on measuring the periodicity of lines in a single

dimension by unwrapping the binary image and

applying Discrete Fourier Transform but the re-

sults are applicable in a limited set of problems

(Hemdal, 1998). Lagunovsky and Ablameyko have

used cluster analysis methods to extract straight
ESES on test image 1.

ESES on test image 2.

ESES on test image 4.



Fig. 11. Using LOCALOCAL LINESINES on Smithsonian test image 1.

Fig. 12. Using LOCALOCAL LINESINES on Smithsonian test image 2.

S. Climer, S.K. Bhatia / Pattern Recognition Letters 24 (2003) 2291–2300 2299
lines but the method is sensitive to straightness of
lines (Lagunovsky and Ablameyko, 1999).

We have received encouraging results from

LOCALOCAL LINESINES during our various experiments. We

will like to note that both HTLD and LOCALOCAL

LINESINES are robust. However, HTLD�s use of glo-

bal properties results in greater complexity than

LOCALOCAL LINESINES. Moreover, HTLD outputs global

properties of lines that require post-processing
adding an extra step to the computation. In con-

trast, LOCALOCAL LINESINES offers maximum justifiable

resolution for pixelized data, while operating in

linear time. This efficiency stems from the use of

local properties to detect lines in images.

We have identified a few improvements to be

made to LOCALOCAL LINESINES. A simple extension would

prevent the identification of gently curved lines as
straight lines. We can achieve that by making a
comparison just before catenating a new segment

to an existing line. If the difference between the

slope of the new segment and the original, first n-
pixel line segment of the line are greater than a

threshold, we would not catenate the new segment.

We are also looking into possible improvement

by fine-tuning the mask. In our experiments, we

used a 12� 21 rectangular mask. We would like
to experiment with other sizes and/or shapes

of masks. Furthermore, we can adjust the mask

values. The current values were rather arbitrarily

chosen. We can also employ various constraints

on mask values to improve performance. For

instance, the sum of weights for each slope could

be forced to equal the same value for all the

slopes. Another constraint might be to enforce a



2300 S. Climer, S.K. Bhatia / Pattern Recognition Letters 24 (2003) 2291–2300
minimum tally for a specified deterioration of a

‘‘perfect’’ line for each slope.

Finally, we note that for some slopes, there is

no set of pixels that constitute a ‘‘straight’’ line. To

account for these variations, the values of config-

urable parameters could be varied for specified
slopes, accounting for differences manifested by

the representation of sloping lines by pixel data.
Acknowledgements

We thank Andy Martignoni for providing the

robotic sensor data that we used in our tests. Bill
Smart, Chengjun Liu, and Shawna Climer con-

tributed a number of ideas and some software. The

photographs used in Figs. 11 and 12 are courtesy

of Smithsonian Institute. We will also like to thank

the anonymous referees for their comments that

helped to improve the paper.
References

Ballester, P. 1994. Applications for the Hough transform. In:

Crabtree R.H.D.R., Barnes, J. (Eds.), Proc. Astronomical

Data Analysis Software and Systems Conf. III.

Hemdal, J., 1998. One-dimensional digital processing of images

for straight-line detection. Pattern Recognition 31 (11),

1687–1690.

Jain, R., Kasturi, R., Schunck, B.G., 1995. Machine Vision.

McGraw Hill, New York, NY.

Lagunovsky, D., Ablameyko, S., 1999. Straight-line-based

primitive extraction in gray-scale object recognition. Pattern

Recognition Lett. 20, 1005–1014.

Leavers, V., 1992. Shape Detection in Computer Vision Using

the Hough Transform. Springer-Verlag, London, England.

Shpilman, R., Brailvosky, V., 1999. Fast and robust techniques

for detecting straight line segments using local models.

Pattern Recognition Lett. 20, 865–877.

Smith, S., Brady, J., 1997. SUSAN––a new approach to low

level image processing. Internat. J. Comput. Vision 23 (1),

45–78.

Trucco, E., Verri, A., 1998. Introductory Techniques for 3-D

Computer Vision. Prentice-Hall, Upper Saddle River, NJ.


	Local Lines: A linear time line detector
	Introduction
	Hough Transform Line Detector
	Local Lines

	Local Lines algorithm
	Resolution and complexity
	Implementation and results
	Conclusions and future work
	Acknowledgements
	References


