
Threads and Lightweight Processes

• Processes do not allow concurrency with other processes in common address space

• Traditional processes cannot take advantage of multiprocessor architectures; processes exist in separate address
space and have to communicate with each other via shared memory and other synchronization methods

• Threads remove such limitations

• Motivation

– Multiple instantiation of various programs such as database servers

– Process forks for each request

– I/O operations provide concurrency benefits

– fork(2) is an expensive system call, even with copy-on-write techniques

– Processes have to communicate via shared memory or message passing, with inherent overhead for these
techniques

– Processes cannot share some resources such as network connections between different processes

– Thread abstraction

∗ Computational unit that is part of overall processing work of application
∗ Few interactions with each other and hence, low synchronization requirements

– Traditional Unix process is single threaded

• Multiple threads and processors

– True parallelism can be achieved by running each thread on a different processor

– Threads can be multiplexed if their number exceeds the number of available processors

– Multithreaded processes have to be concerned with every object in their address space

– There must be inter-thread synchronization to avoid corruption of data

– With multiple processors, it complicates the issue even further

• Concurrency and parallelism

– Parallelism

∗ Number of processes actually running in parallel
∗ Limited by the number of physical processors

– Concurrency

∗ Maximum number of processes simultaneously possible with unlimited number of processors
∗ Depends on the way the application is written
∗ Possible at user or system level
∗ System concurrency
· Provided by kernel by recognizing multiple threads of control
· Hot threads within a process
· Scheduled independently by the kernel

∗ User concurrency
· Provided by the application through user-level thread libraries
· Cold threads, or coroutines
· Not recognized by the kernel
· Scheduled and managed by the applications themselves
· No true concurrency



Threads and Lightweight Processes 2

– Kernel threads allow parallel execution on multiprocessors but are not suitable for structuring user appli-
cations

– Dual concurrency model

∗ Combines system and user concurrency
∗ Kernel recognizes multiple threads in a process
∗ Libraries add user threads not seen by the kernel
∗ User threads can provide for synchronization between routines without the overhead of system calls

Fundamental abstractions

• Process divided into a set of threads and a set of resources

• Thread

– Dynamic object to represent a control point in the process

– Executes a sequence of instructions

– Resources include address space, open files, user credentials, and such, and are shared by all threads in
the process

– Each thread has private objects, such as program counter, stack, and register context

– Drawbacks of centralizing resource ownership in a process

∗ Multithreading a server with suid privileges
∗ Security is checked by single-threading all system calls

• Kernel threads

– Need not be associated with a user process

– Created and destroyed internally by the kernel

– Shares kernel text and global data, and has its own kernel stack

– Can be independently scheduled by kernel

– Useful for operations such as asynchronous I/O

∗ Request can be synchronously handled by the kernel thread

– Inexpensive to create and use

∗ Require space only for kernel stack and register context
∗ Fast context switching as no memory mappings are to be flushed

• Lightweight processes

– Kernel supported user thread

– Requires kernel thread support by the system

– Independently scheduled but shares the address space and other resources in the process

– Can make system calls and block for I/O or resources

– In addition to kernel stack and register context, needs to maintain some user state

∗ Register context

– Useful for independent tasks with little interaction with other lightweight processes

– User code is pre-emptible and all lwps in a process share a common address space

∗ Concurrent access to critical data must be synchronized
∗ Kernel provides facilities to lock shared variables and to block an lwp from accessing shared data



Threads and Lightweight Processes 3

– lwp operations – creation, destruction, synchronization – require system calls, making lwps expensive

– Consider busy-waiting instead of blocking for resources held for a brief period of time, as blocking a thread
requires kernel involvement and is expensive

– Each lwp consumes significant kernel resources (physical memory for kernel stack)

∗ Not practical to support a large number of lwps
∗ lwps are scheduled by kernel – applications transferring control from one thread to another cannot

do so efficiently
∗ User can monopolize cpu by creating a large number of lwps

• User threads

– Thread abstraction entirely at the user level, with no kernel involvement

– Extremely lightweight, and consume no kernel resources

– Accomplished through library packages, such as pthreads

– Thread operations are entirely performed by the library

– No kernel involvement, and hence, extremely fast operations

– Multiplexing user threads on top of lwps gives a powerful programming environment

– Library acts as a miniature kernel for the threads it controls

– User-level context of a thread is saved without kernel intervention

– Kernel retains responsibility for process switching

∗ Preemption of a process preempts all its user threads
∗ If a user thread makes a blocking system call, it blocks the underlying lwp

∗ If a process had only one lwp, all its threads are blocked

– Library provides synchronization objects for shared data structures

∗ Semaphore and a queue of threads blocked on it

– Critical thread size

∗ Number of instructions to be useful as a separate entity
∗ A few hundred instructions

– Limitations of user threads

∗ Total separation of information between kernel and thread library
∗ No inter-thread protection mechanism from kernel
∗ Kernel may preempt a higher-priority user thread to schedule an lwp running a low-priority user

thread
∗ Without kernel support, user threads may improve concurrency but do not increase parallelism
· User threads within an lwp do not execute in parallel even on a multiprocessor

Lightweight process design

• System calls

– Need to preserve semantics of a single-threaded Unix environment

– Multithreaded case should behave in a reasonable manner to approximate single-threaded semantics

• Semantics of fork(2)

– Creates a child process which is almost an exact clone of parent



Threads and Lightweight Processes 4

– In multithreaded case, we have the option to duplicate all lwps of the parent or only the one that invoked
the fork

– Case 1: Copy only the calling lwp of the parent

∗ More efficient
∗ Better if child immediately execs
∗ Problem: User process may contain references to other lwps
∗ Child process must not try to acquire locks held by threads that do not exist in child (deadlock?)

– Case 2: Copy all lwps of parent

∗ Useful when entire process is to be cloned
∗ What if an lwp in the parent is blocked on a system call
· Undefined state in child
· Can return the status code EINTR (system call interrupted)

∗ An lwp may have open connections
· Closing connections can send unexpected messages to remote host

– Situation can be resolved by offering two variants of fork, to handle the above two cases

• Other system calls

– What if an lwp closes a file being used by another

– What about file pointer being moved by two different lwps

– Dynamic memory allocation

– These calls should be made thread safe

• Signal delivery and handling

– Signals are delivered to and handled by processes

– Which lwp should handle the signals?

– Kernel delivers the signal to an lwp; thread library directs it to a specific thread

– How to handle signals?

1. Send it to each thread
∗ Highly expensive
∗ Useful when entire set of threads is to be sent a message, such as SIGABORT

∗ SIGSTP and SIGINT are generated by external events and cannot be associated with any thread
2. Specify a master thread for all signals
∗ Asymmetric treatment of threads
∗ Not compatible with smp approach

3. Send it to any arbitrarily chosen thread
4. Use heuristics to determine the thread for signal
∗ SIGSEGV and SIGILL are caused by thread and should be delivered accordingly

5. Create a new thread to handle each signal
∗ Only applicable in certain situations

– Should all threads share a common set of signal handlers?

• Stack growth

– Stack overflow causes a SIGSEGV

– Kernel sees the signal originating from stack and automatically extends the stack instead of signaling the
process

– Multithreaded process has one stack for each user thread, allocated at the user level by thread library



Threads and Lightweight Processes 5

∗ Incorrect for the kernel to extend stack
∗ Stack is to be handled by user thread library

– In multithreaded systems, kernel has no knowledge of user stacks

∗ SIGSEGV is sent by kernel to appropriate thread who will be responsible

User-level thread libraries

• Design issues: API and implementation

• Programming interface

– Operations to be provided

∗ Creation and termination of threads
∗ Suspending and resuming threads
∗ Priority assignment
∗ Scheduling and context switching
∗ Synchronization
∗ Messaging

– Minimize kernel involvement to avoid the overhead of mode switching

– Kernel may not have knowledge of user threads

– Thread library may use system calls to implement kernel functionality

∗ Kernel priority and thread priority are independent
∗ Thread priority is used by thread scheduler

• Implementing thread libraries

– Acts as a miniature kernel, performing thread maintenance and scheduling at user level

– Concurrency is provided by using asynchronous i/o facilities

– Choice of implementation under lwp

∗ Bind each thread to a different lwp

· Easy to implement but uses kernel overhead and does not offer added value
· Kernel involvement in thread synchronization and scheduling

∗ Multiplex user threads on a set of lwps
· More efficient, consumes fewer kernel resources
· Works better if threads in a processes are roughly equivalent
· Does not guarantee resources to a particular thread

∗ Allow a mixture of bound and unbound threads in same process
· Application can exploit concurrency and parallelism
· Preferential treatment of bound threads by increasing priority of underlying lwps, or by giving

an lwp exclusive control of a processor

– Thread library

∗ Contains scheduling algorithm, may multiplex multiple threads on different processors
∗ Maintains per-thread state and priority
∗ Different threads could be in state running or blocked
· Thread can enter a blocked state when it attempts to acquire a synchronization object held by

another thread
· Library unblocks the thread when the object is released



Threads and Lightweight Processes 6

· Mechanism is similar to kernel’s resource wait and scheduling algorithms

Scheduler activations

• User threads are not as efficient as the lwps due to lack of kernel-level integration

• New architectures for user libraries tend to have closer integration between kernel and user threads

– Kernel is responsible for processor allocation

– Thread library provides scheduling

∗ Thread library informs kernel of events affecting processor allocation
∗ Library may request additional processors or give up processors
∗ Kernel controls processor allocation and may randomly preempt a processor and allocate it to another

process
∗ Library has complete control over which threads to be scheduled on processors
∗ If kernel takes away a processor, it informs the library which reallocates the threads
∗ If a thread blocks inside the kernel, kernel informs the library which schedules another thread on the

processor

• New abstractions to support the above

– upcall

∗ Call made by kernel to thread library

– scheduler activation

∗ Execution context used to run a user thread
∗ Similar to an lwp and has its own kernel and user stacks

– Upcall passes an activation to library to be used to process the event, run a new thread, or invoke a system
call

– Kernel does not time slice activations on a processor

– At any time, a process has exactly one activation for each process

– Handling blocking operation in scheduler activation framework

∗ When a thread blocks in kernel, kernel creates a new activation and upcalls to the library
∗ Library saves the thread state from old activation and informs the kernel that it can reuse the old

activation
∗ Library then schedules another thread on the new activation
∗ When blocking is complete, kernel makes another upcall to library to inform about the event, requiring

a new activation
∗ Kernel may assign a new processor to run this new activation, or preempt one of the current activations

of the process
∗ In the second case, kernel has to make two upcalls to inform about the two threads (preempted and

scheduled)
∗ Library puts both threads on ready list and then decides the one to schedule

– Advantages of scheduler activation

∗ Extremely fast as the operations do not require kernel intervention
∗ Kernel informs library of blocking and preemption; library can make better scheduling and synchro-

nization decisions, and avoid deadlocks and incorrect semantics

Multithreading in Solaris and SVR4



Threads and Lightweight Processes 7

• Solaris supports kernel threads, lightweight processes, and user threads

– User process may have several hundred threads

– Thread library multiplexes the threads onto a small number of lwps

– User can control the number of lwps and can also bind threads to individual lwps

• Kernel threads

– Lightweight objects that can be independently scheduled and dispatched

– Need not be associated with any process

– May be created, run, and destroyed by the kernel

– Kernel does not have to remap the virtual address space to switch between threads

– Kernel thread uses a small data structure and a stack

∗ Saved copy of kernel registers
∗ Priority and scheduling information
∗ Pointer to put thread on scheduler queue or resource wait queue
∗ Pointer to the stack
∗ Pointer to associated lwp and proc structures, or NULL if thread is not bound to an lwp

∗ Pointers to maintain a queue of all threads in a process and a queue of all threads in the system
∗ Information about the associated lwp

– Kernel is organized as a set of fully preemptible kernel threads

∗ Synchronization primitives prevent priority inversion where a low-priority thread locks a resource
needed by a high-priority thread
∗ Used to handle asynchronous activity, such as deferred disk writes

• Lightweight process implementation

– Each lwp bound to its own kernel thread for its lifetime

– proc and u must be modified for per-process and per-lwp information

∗ Solaris puts all per-process data in proc, including the process-specific part of u

– lwp part of context is kept in an lwp structure

∗ Saved values of user-level registers
∗ System call arguments, results, and error code
∗ Signal handling information
∗ Resource usage and profiling data
∗ Virtual time alarms
∗ User time and cpu usage
∗ Pointer to kernel thread
∗ Pointer to proc

– lwp is swapped out with the lwp

∗ Information, such as signal masks, must be kept in associated thread structure
∗ Solaris on Sparc reserves the global register %g7 to held a pointer to current thread
∗ All lwps share a common set of signal handlers, but can have their own signal masks
· Traps are always delivered to the lwp that generated it
· Interrupts can be delivered to any lwp that has not masked the signal

∗ lwps have no global name space and are invisible to other processes
· A process cannot directly communicate with a specific lwp in another process



Threads and Lightweight Processes 8

– Synchronization of lwps is achieved through mutex locks, condition variables, counting semaphores, and
reader-writer locks

• User threads

– Implemented by a threads library

– Managed without invoking the kernel

– Synchronization and scheduling is provided by threads library

– Thread library hides the communication between user threads and lwps

∗ Library multiplexes a number of threads on lwps
∗ Application may specify the number of lwps to be created
∗ Threads can be bound to an lwp or can be unbound in which case they share the common lwp pool

– Number of lwps determines the maximum possible parallelism

• User thread implementation

– State information maintained by each thread

∗ Thread id
· Allows threads within a process via signals

∗ Saved register state
· Program counter and stack pointer

∗ User stack
· Allocated by the library
· Not visible to kernel

∗ Signal mask
· Used by library to route signals to appropriate threads

∗ Priority
· Used by thread scheduler
· Not visible to kernel

∗ Thread local storage
· Private storage for supporting reentrant versions of C library interfaces

– Solaris allows threads in different processes to synchronize using shared memory

• Interrupt handling

– Interrupt handlers manipulate data shared by kernel

∗ Kernel must synchronize access to shared data
∗ Achieved in traditional systems by raising the interrupt priority level to block relevant interrupts
∗ Raising interrupt level is expensive
∗ Problem magnified in multiprocessor environments
· Kernel has to block interrupts on multiple processors

∗ Solaris implementation
· Not dependent on priority levels
· Uses different kernel synchronization objects such as mutex locks and semaphores
· Interrupts are handled by a set of kernel threads, called interrupt threads
· Interrupt threads are created dynamically and are assigned a higher priority than any other thread
· Use same synchronization primitives as other threads and can block themselves on resources held

by other threads
· Kernel blocks interrupts in a few exceptional situations only



Threads and Lightweight Processes 9

· Kernel maintains a pool of preallocated and partially initialized interrupt threads
· One thread per interrupt level plus a single systemwide thread for clock
· Uses about 8Kbytes per thread, and that calls for reduction of pool on systems with scarce memory

– Implementing interrupt handlers as threads adds overhead but avoids having to block interrupts for each
synchronization object

– Synchronization is more common than interrupts leading to performance improvement

• Handling system calls in Solaris

– fork(2) duplicates each lwp of parent in the child

– lwps in the middle of a system call return with EINTR error

– A new system call fork1(2) is similar to fork(2) but only duplicates the thread that invoked it

∗ Use fork1(2) if child is to exec immediately

• A good way to create applications is to develop them using user threads and later optimize by manipulating
the underlying lwps to best provide the real concurrency


