Signals and Session Management

Signals

e Mechanism to notify processes of system events

e Primitives for communication and synchronization between user processes

Signal generation and handling

e Allow an action to be performed when an event occurs

— Events are defined by integers mapped to symbolic constants
* Symbolic constants help preserve the portability of code

— Events can be asynchronous or synchronous
e Two phases of signaling process

1. Signal generation
— Occurrence of event that requires notification to a process
2. Signal delivery

— Signal is recognized by the process and appropriate action is performed
— Signal is pending between generation and delivery

e Signal handling

— Default action for signal performed by kernel when the process does not specify alternative
— Five possible default actions
1. abort
x Terminates the process after dumping core

* Process’s address space and register context is written to a file called core in the process’s current
working directory

2. exit
+* Terminate the process without generating core dump
3. ignore
x Ignore all signals
4. stop
* Suspend the process
5. continue

+* Resume a suspended process
— Process can override the default action and specify an alternative signal handler method
— A process may temporarily block a signal

x A blocked signal is not delivered until it is unblocked
x User cannot ignore, block, or specify an alternative handler for SIGKILL and SIGSTOP

Any signal handling action, including process termination, is performed by the receiving process itself

x Action can be taken only when the process is scheduled to run
* On a busy system, a low priority process may take a while to respond to a signal
x Problem may be compounded if the process is swapped out, suspended, or blocked

— Process becomes aware of signal when kernel calls issig() on its behalf



Signals and Session Management 2

— Kernel calls issig()
* Before returning to user mode from system call or interrupt
x Just before blocking on an interruptible event
x Immediately after waking up from an interruptible event
— If issig() returns true, kernel calls psig() to dispatch the signal who
x terminates the process, generating core file if needed
x or calls sendsig() to invoke user-defined signal handler
— sendsig()
* returns the process to user mode
* transfers control to signal handler
* arranges for the process to resume the interrupted code after signal handler completes

— If signal comes in the middle of system call, system call aborts and returns EINTR
e Signal generation

— Major signal sources because of which kernel generates signals are:

x Exception — Attempt to execute an illegal instruction
x Other processes — Signal from one process to another through kill or sigsend system calls
x Terminal interrupts — Signals for foreground processes, such as ~C, ~\, and ~Z
x Job control — Signals for the background processes attached to a terminal
* Quotas — Signal sent by kernel when a process exceeds its limits for resources (check 1imit (1) man
page)
* Notifications — Request by a process for being informed of events such as device being ready
x Alarms — Set for a certain time so that kernel informs the process via a signal upon expiry of that
time period
- ITIMER_REAL measures the real clock time and generates SIGALRM

- ITIMER_VIRTUAL measures the virtual clock time (when the process runs in user mode) and
generates SIGVTALRM

- ITIMER_PROF measures the total time used by the process in user and kernel modes, and generates
SIGPROF

e Typical scenarios

— Terminal interrupt

— Exceptions
e Sleep and signals

— Should the sleeping process be awakened to receive the signal?
— Disk I/O vs. keyboard character wait
— Uninterruptible sleep
* Process sleeps for short term event like disk I/0O
x Cannot be disturbed by the signal
* Signal generated for the process is marked as pending without any further action
* Process notices signal only when it is about to return to user mode or block on an interruptible event
— Interruptible sleep
* Process waiting for an event that may not occur for a long time
x Wake up the process if there is a signal for it

— Process about to block on interruptible event checks for signals just before blocking



Signals and Session Management 3

If a signal is found, it is handled and system call is aborted
A signal after blocking the process will make the kernel to wake up the process
The awakened process will first call issig() to check for signal

EE B

issig() is always followed by psig() to check for pending signal

Unreliable signals

e Original implementation of signals (prior to SVR2) is unreliable

Problem with signal delivery

Signal handlers are not persistent and do not mask recurring instances of same signal

After signal occurrence, kernel resets the signal action to default
— Users must reinstall signal handlers after each signal occurrence leading to race condition

x Suppose user hits CTRL-C twice in quick succession
x First CTRL-C resets the signal handler action to default and invokes the handler
x Second CTRL-C may not be caught if the handler is not installed right away

*

This is why these signals are called unreliable

Performance problem with sleeping processes
x All information regarding signal handling is stored in u_signal[] in u area, with one entry for each
signal type
x The entry contains the address of user-defined handler, or SIG_DFL to specify the default action, or
SIG_IGN to ignore the signal

x Kernel passes the signal to process to deal with because it cannot read the u area of a process that is
not current process

- If the process is sleeping, kernel wakes it up
- If the process is to ignore the signal, it simply does so and goes back to sleep

e SVR2 lacks a facility to block a signal temporarily

e SVR2 also lacks job control

Reliable signals

e Primary features

Persistent handlers
* Signal handlers are not reset to default after handling a signal
— Masking
A signal can be masked/blocked temporarily
Kernel will remember that the signal is blocked and not immediately post it to the process
Signal will be posted when the process unblocks

EE

This can be used to protect critical regions of the code from being interrupted by signals
— Sleeping processes

* Signal handling information can be kept in proc area instead of u area to make it visible to kernel
Unblock and wait

x Process is blocked by pause(2) until a signal arrives



Signals and Session Management 4

*

Another function — sigpause(2) automatically unmasks a signal and blocks the process until the
signal is received

e SVR3 implementation

— sigpause(2) system call

*
*
*
*

*

*

Let a process declare a handler for SIGQUIT signal and set a global flag when the signal is caught
Process waits for the flag to be set (critical section)

If signal arrives after check but before wait, it will be missed and process will wait forever
Process should mask SIGQUIT while testing the flag

If it enters wait with masked signal, signal can never be delivered

sigpause(2) unmasks the signal and blocks the process atomically

— SVR3 lacks support for job control and facilities for automatic restart of system calls

e BSD signal management

— Most system calls take a 32-bit signal mask argument, one bit per signal

* X X X

*

A single call can operate on multiple signals
sigsetmask(3B) specifies the set of signals to be blocked
One or more signals can be added to the set using sigblock(3B)

In BSD, sigpause(2) automatically installs a new mask of blocked signals and puts the process to
sleep until a signal arrives

sigvec(3B) installs a handler for one signal, and can specify a mask to be associated with it

When a signal is generated, kernel will install a new mask of blocked signal that contains current
mask, mask specified by sigvec(3B) and current signal

- Handler always runs with current signal blocked so that a second instance of the signal will not
be delivered until the handler completes

- When the handler returns, blocked signals mask is restored to its previous value

— Signals are handled on a separate stack

*
*
*
*

*

Processes may manage their own stack so that the process stack is also shared for signals
Stack overflow itself may cause a SIGSEGV exception
Running signal handlers on separate stak may resolve this problem

C library function sigstack(3C) allows the calling process to indicate to the system an area of its
address space to be used for processing signals

User should make sure that the stack is large enough as the kernel does not know stack bound

— Additional signals

*

*

*

Required for tasks like job control
User can run several processes, with at most one being in the foreground
Different shells use signals to move jobs between foreground and background

— Automatic restart of system calls

EEE

Allowed for slow calls that may be aborted by signals

Exemplified by read(2) and write(2)

These calls restart after the handler returns instead of being aborted with EINTR

siginterrupt (3B) allows signals to interrupt functions, and to change the function restart behavior

Signals in SVR4

e System calls provide a superset of SVR3 and BSD signal functionality



Signals and Session Management 5

e Compatibility interface with older releases is provided through library functions (check out the man sections
of calls in previous sections)

e Directly correspond to the POSIX.1 functions in name, calling syntax, and semantics

Signals implementation

e Kernel must maintain some state in both the u area and the proc structure for efficiency

— u area contains information required to properly invoke signal handlers, using the following fields

*

u_signal[] — Vector of signal handlers for each signal

*

u_sigmask[] — Signal masks for each handler
* u_signalstack — Pointer to alternate signal stack
* u_sigonstack — Mask of signals to handle on alternate stack
% u_oldsig — Set of handlers to exhibit unreliable signals
— proc structure contains fields related to generation and posting of signals, with the following fields
% p_cursig — Current signal being handled
* p_sig — Pending signals mask
* p_hold — Blocked signals mask
* p_ignore — Ignored signals mask

e Signal generation

— Kernel checks the proc structure of the receiving process

Is signal ignored? If yes, kernel just returns

If not, kernel adds the signal to the set of pending signals in p_cursig
x Multiple instances of same signal cannot be recorded
— Process will only know that at least one instance of the signal was pending
— Process in interruptible sleep is awakened to deliver the signal if the signal is not blocked
— Job control signals (SIGSTOP, SIGSUSP, and SIGCONT) directly suspend or resume the process instead of
being posted
e Delivery and handling

— Process checks for signal using issig()

x When about to return from kernel mode after system call or interrupt
x At the beginning or end of interruptible sleep

issig() looks for set bits in p_cursig, the current signal being handled

« If any bit is set, issig() checks p_hold (blocked signal mask) to see if the signal is currently blocked

* If signal is not blocked, issig() stores the signal number in p_sig (pending signal mask) and returns
true

If a signal is pending, kernel calls psig() to handle it
* psig() checks information in u area for the signal
* If there is no handler, psig() takes the default action, possibly process termination

* If there is a handler, psig() adds current signal to p_hold (blocked signals mask), as well as any
signal specified in the u_sigmask[] vector (signals corresponding to the handler)

* Current signal is not added if SA_NODEFER flag is specified for the handler
x If SA_RESETHAND flag is specified, action in the u_signal[] vector is set to SIG_DFL

— Finally, psig() calls sendsig()



Signals and Session Management

* sendsig() arranges for process to return to user mode and pass control to handler
* When handler completes, process resumes code being executed prior to receiving the signal
x If alternate stack is to be used, sendsig() invokes the handler on that stack

Exceptions



