
Process Scheduling

CPU as a shared resource

• Processes in the system compete for cpu

– Scheduler decides the process to be allocated the cpu

– In time sharing system, many processes have to run concurrently

– Concurrency is achieved by interleaving the processes on time share basis

∗ Time quantum or time slice
∗ Amount of time the process can have cpu before being evicted

• Unix scheduler

– Works on two aspects

1. Policy
∗ Rules used to select the process to schedule next on cpu

∗ Also deals with the time to switch from one process to another
∗ Several conflicting objectives of policy
· Fast response time for interactive applications
· High throughput for background jobs
· Avoidance of process starvation

2. Implementation
∗ Data structures and algorithms to carry out the policies
∗ Policy must be implemented efficiently with minimum overhead

– Context switch

∗ Implemented as a part of scheduler
∗ Kernel saves hardware execution context of current process from the u area in its pcb

∗ Context contains values of general purpose, memory management, and other special registers
∗ Kernel loads the hardware registers with the context of next process from the pcb of this process
∗ cpu starts executing the next process from saved context
∗ Expensive operation
· Kernel must also flush data, instruction, and address translation cache to avoid incorrect memory

accesses
· New process incurs several memory accesses upon start

Clock interrupt handling

• Hardware clock interrupts the system at fixed-time intervals

– cpu tick, clock tick, or tick

∗ Time period between successive clock interrupts
∗ Unix typically sets the tick to 10 ms
∗ Clock frequency, or number of ticks per second, is stored in param.h as HZ

∗ 10 ms tick implies a value of 100 for HZ
∗ Kernel functions measure the time in number of ticks, rather than seconds or milliseconds

• Interrupt handling

Process Scheduling 2

– Handler runs in response to hardware clock interrupt, with priority second only to power failure interrupt

– Tasks of handler

∗ Rearm the hardware clock, if necessary
∗ Update cpu usage statistics for current process
∗ Perform scheduler-related functions
· Priority recomputation
· Time-slice expiration handling

∗ Send a SIGXCPU signal to current process if it has exceeded its cpu usage quota
∗ Update the time-of-day clock and other related clocks
∗ Handle callouts
∗ Wake up system processes such as swapper and pagedaemon when appropriate
∗ Handle alarms

– All of the above tasks are not performed at every tick

– Major tick

∗ Occurs once every n ticks
∗ Scheduler performs some of its tasks only on major ticks

• Callouts

– Records a function to be invoked by kernel at a later time

– On Solaris, a callout is registered by timeout(9F)

timeout_id_t timeout(void (* func)(void *), void *arg, clock_t ticks);

∗ func is the kernel function to invoke when the time increment expires
∗ arg is the argument to the function
∗ ticks is the number of clock ticks to wait before the function is called

– Can be called from user or interrupt context

– Example: In the following example, the device driver has issued an i/o request and is waiting for the
device to respond. If the device does not respond within 5 seconds, the device driver will print out an
error message to the console.

#include <sys/types.h>
#include <sys/conf.h>

static void xxtimeout_handler (void *arg)
{

struct xxstate * xsp = (struct xxstate *) arg;
mutex_enter (&xsp->lock);
cv_signal (&xsp->cv);
xsp->flags |= TIMED_OUT;
mutex_exit (&xsp->lock);

xsp->timeout_id = 0;
}

static uint_t xxintr (caddr_t arg)
{

struct xxstate * xsp = (struct xxstate *) arg;
.
.
.

Process Scheduling 3

mutex_enter (&xsp->lock);

/* Service interrupt */

cv_signal (&xsp->cv);
mutex_exit (&xsp->lock);
if (xsp->timeout_id)
{

(void) untimeout (xsp->timeout_id);
xsp->timeout_id = 0;

}

return (DDI_INTR_CLAIMED);
}

static void xxcheckcond(struct xxstate * xsp)
{

.

.

.
xsp->timeout_id = timeout (xxtimeout_handler, xsp, \

(5 * drv_usectohz (1000000)));

mutex_enter (&xsp->lock);
while (/* Waiting for interrupt or timeout */)

cv_wait (&xsp->cv, &xsp->lock);

if (xsp->flags & TIMED_OUT)
cmn_err (CE_WARN, "Device not responding");

.

.

.
mutex_exit (&xsp->lock);
.
.
.

}

– The return value from timeout(9F) is needed to cancel the callout

– Callout is cancelled by untimeout(9F)

– Callouts can be used for periodic tasks such as

∗ Retransmission of network packets
∗ Certain scheduler and memory management functions
∗ Monitor devices to avoid losing interrupts
∗ Polling devices that do not support interrupts

– Callouts are normal kernel operations and must not execute at interrupt priority

∗ Clock interrupt handler does not directly invoke callouts
∗ Handler checks at every tick if any callouts are due
∗ If yes, it sets a flag to indicate that a callout handler must run
∗ System checks the flag when it returns to base interrupt priority and if set, invokes the callout handler
∗ Handler will invoke each callout that is due
∗ So, callouts run only after all pending interrupts have been serviced

Process Scheduling 4

– Kernel maintains a list of pending callouts

∗ List is checked on every cpu tick at high interrupt priority and so, checking time must be optimized
∗ Insertions into the list occur at lower priority and much less frequently than once per tick

– Implementing callout list

∗ Sort the list in order of “time to fire”
∗ Kernel decrements the time of first entry at each tick and issues callout if the time reaches zero
∗ Another approach will be to store the absolute time and compare it with current time
∗ Timing wheel
· Based on a hashing approach and does away with the insertion of callouts to maintain sorted

order
· Fixed-size, circular array of callout lists
· At every tick, clock interrupt handler advances a current time pointer to the next element in the

array, wrapping around at the end of array
· Callouts on the queue are checked for time expiration
· New callouts get inserted in the queue that is N elements or ticks away from current queue

• Alarms

– Request by a process to send it a signal after a specified time

– Three types of alarms

1. Real-time alarm
∗ Signaled after actual elapsed time
∗ Notified via SIGALRM signal
∗ Requested by the process using

unsigned int alarm (unsigned int sec);

to send SIGALRM after sec seconds have elapsed
2. Profiling alarm
∗ Measures the amount of time the process has been executing
∗ Notified via SIGPROF signal

3. Virtual-time alarm
∗ Measures the time spent by process in user mode
∗ Notified via SIGVTALRM signal

– Implemented through the system calls setitimer(2) and getitimer(2)

int setitimer (int which, // Timer type
const struct itimerval * value, // Value to set timer to
struct itimerval * ovalue); // Returns previous timer

int getitimer (int which, // Timer type
struct itimerval * value); // Current value of timer

∗ Used to get or set the timer value for specified timer
∗ setitimer(2) returns the previous value of timer if the pointer is not set to NULL

∗ itimerval is defined as
struct timeval
{

time_t tv_sec; // Seconds
suseconds_t tv_usec; // Microseconds

};

struct itimerval

Process Scheduling 5

{
struct timeval it_interval; // Timer interval
struct timeval it_value; // Current value

};

· time_t and suseconds_t are just long
· The value specified in timeval units is converted by kernel to the appropriate number of cpu

ticks

– Alarms are handled only when a process is scheduled to run

∗ Process priority plays an important role in determining when the alarm is handled
∗ High resolution timers are useful only for high priority processes
∗ Profiling and virtual time alarms may not suffer from this problem because they do not measure real

time
∗ The clock interrupt handler charges the entire tick to the current process even if the process uses only

a part of it
∗ The time measured by profiling and virtual time alarms gives the number of clock interrupts that

have occurred instead of actual time
∗ Averages out over long time though may be grossly inaccurate for a single alarm

Scheduler goals

• Scheduler must be fair and deliver acceptable performance to each process

• Classifies processes based on their scheduling needs and performance expectations

– Interactive processes

∗ Spend a lot of time waiting for user inputs
∗ Inputs must be processed quickly
∗ Must reduce the average time and variance between user action and application response
∗ For typing or mouse movement, acceptable response is 50–150ms

– Batch processes

∗ Measure of scheduling efficiency is tasks’ completion time in presence of other activity as compared
to time required on an otherwise inactive system

– Real-time processes

∗ Require predictable scheduling behavior with guaranteed bounds on response time
∗ Application may care more about minimizing variance than simply getting more cpu time

• Traditional schedulers work with interactive and batch processes only; real-time scheduling is provided on a
system that may not run any of the interactive or batch processes

Traditional Unix scheduling

• Traditional Unix (both svr3 and 4.3bsd) is targeted at time-sharing, interactive environments

– Several users run batch as well as interactive processes concurrently

– Scheduling policy favors interactive users while preventing starvation of batch processes

• Based on priority

– Priority of each process changes with time

– Scheduler always selects the process with highest priority

Process Scheduling 6

– Preemptive time slicing for processes of equal priority

– Priority changes dynamically depending on cpu usage patterns

– A higher priority process preempts the current process even if it has not completed its time quantum

– Kernel is nonpreemptible

∗ Process in kernel mode cannot be preempted by a higher priority process
∗ Running process can give up cpu by blocking on a resource, or when it returns from kernel mode

• Process priorities

– Integer value between 0 and 127

– Lower number implies higher priority

– Kernel mode priorities are between 0 and 49 and user mode priorities are between 50 and 127

– Priority information in proc structure

p_pri Current scheduling priority
p_usrpri User mode priority
p_cpu Measure of recent cpu usage
p_nice User-controllable nice value

∗ p_pri is used by scheduler to select the process to schedule
∗ In user mode, p_pri == p_usrpri

∗ If a process blocks in a system calls, and then wakes up, its priority is temporarily boosted to give
preference to kernel mode processing

∗ p_usrpri holds the priority to return to from kernel mode
∗ p_pri in this case holds temporary kernel priority

– Blocked processes are assigned a sleep priority

∗ Sleep priority is a kernel value and is between 0 and 49
∗ Sleep priority for terminal input is 28 and for disk i/o is 20
∗ When a process wakes up after blocking, kernel sets its p_pri value to sleep priority of the event or

resource
∗ Lower priority numbers allow system calls to be executed promptly
· Process may have locked some key kernel resources during system call

– Returning to user mode resets the process priority, possibly below that of another runnable process, leading
to context switch

– User mode priority

∗ Based on nice value and recent cpu usage
∗ Nice value is a number between 0 and 39, with default being 20
∗ Increasing nice value decreases the priority
∗ Background processes automatically get higher nice values
∗ Only superuser can decrease the nice value of a process

– Monitoring cpu usage

∗ Useful in making scheduling decisions for processes
∗ Derived from the field p_cpu

· Measure of recent cpu usage for process
· initialized to zero upon process creation
· Incremented by clock handler for every tick, to a maximum of 127
· At every second, kernel invokes schedcpu() using a callout to decrease the p_cpu value of each

process by a decay factor
· Decay factor in svr3 is 1

2

Process Scheduling 7

· Decay factor in bsd is given by

decay =
2× λ

2× λ+ 1
where λ is the load average, or average number of runnable process during the last second
· The user priority of each process is computed by

p usrpri = PUSER +
p cpu

4
+ 2× p nice

where PUSER is the baseline user priority of 50

– Process has accumulated too much cpu time

∗ p_cpu factor will increase
∗ Leads to a large p_usrpri value and lower priority
∗ A waiting process has its p_cpu lowered by decay leading to higher priority
∗ Scheme prevents starvation of a lower priority process
∗ Heavily favors i/o-bound processes compared to compute-bound processes

– cpu usage factor provides for fairness and parity in scheduling time sharing processes

∗ Processes move up and down in a narrow range of priorities based on their recent cpu usage
∗ If priorities change too slowly, processes at lower priorities remain there for long periods leading to

starvation

– Decay factor provides an exponentially weighted average of cpu usage over process’ lifetime

∗ svr3 formula
· Simple exponential average
· Elevates priorities when system load rises
· Heavily loaded system gives only a small amount of time to each process
· cpu usage value remain low
· Decay factor reduces it even lower
· cpu usage does not have much impact on priority
· Lower priority processes starve

∗ bds formula
· Decay factor depends on system load λ

· High load yields small decay
· Processes with too much cpu time lose their priority quickly

• Scheduler implementation

– Implemented by an array of 32 queues, called qs

– The 128 priority levels are evenly divided in these queues (4 adjacent priority levels per queue)

– Queues are doubly linked lists, containing a pointer to the proc structures

– A global variable whichqs contains a bitmask to indicate if there is a process in the queue

– Only runnable processes reside in the queue

– Selecting a process to run

∗ Context switcher, swtch(), selects the first queue using whichqs

∗ It removes the process at the head of the queue and performs context switching
∗ When swtch() returns, the newly scheduled process is dispatched

– Context switch

∗ swtch() saves the register context (general purpose registers, program counter, stack pointer, memory
management registers, etc) in the pcb in the u area of the process

Process Scheduling 8

∗ Then, it loads the registers from the saved context of the new process
∗ p_addr field in the proc structure points to the page table entries of the u area and is used by swtch

to locate the new pcb

• Run queue manipulation

– Scheduler always runs the process with highest priority, unless current process is executing in kernel mode

– The process is assigned a fixed time quantum (100ms in 4.3bsd)

– This affects scheduling of multiple processes on the same queue

– Every 100 milliseconds, kernel invokes roundrobin() through a callout to schedule the next process from
the same queue

∗ If a higher priority process is runnable, it is scheduled without waiting for roundrobin()

– If all other runnable processes are on lower priority queues, the current process continues to run even
though its quantum has expired

– Once every second, the priority of each process is recomputed by schedcpu()

∗ The process may end up on a different queue due to the priority recomputation

– Every four ticks, the priority of the current process is recomputed by clock interrupt handler

– Three situations for context switch

1. Voluntary context switch; current process blocks on a resource or exits
2. Priority of another process becomes more than the current one
3. Current process, or an interrupt handler, wakes up a higher priority process

– In voluntary switch, kernel directly calls swtch() from sleep() or exit()

– Involuntary switch events occur when system is in kernel mode and hence, cannot preempt the process
immediately

∗ Kernel sets a flag called runrun to indicate that a higher priority process is waiting to be scheduled
∗ When the process is about to return to user mode, kernel checks the runrun flag
∗ If runrun is set, kernel transfers control to swtch() to initiate context switch

• Analysis

– Simple and effective algorithm

– Adequate for general time sharing with a mixture of interactive and batch jobs

– Dynamic recomputation of priorities prevents starvation

– Favors i/o-bound jobs with small infrequent cpu bursts

– Scheduler limitations

∗ Does not scale well for large number of processes; inefficient to recompute priorities
∗ No way to guarantee a portion of cpu resources to a group of processes
∗ No guarantees of response time to real-time applications
∗ No application control over priorities; nice mechanism is not sufficient
∗ Kernel is nonpreemptive resulting in a long wait for runnable high priority processes; known as priority

inversion

SVR4 Scheduler

• Improves on traditional approach due to complete redesign

• Major objectives

Process Scheduling 9

– Support different type of applications, including real-time applications

– Separate scheduling policy from implementation

– More control for applications over priority and scheduling

– Scheduling framework with well-defined interface to the kernel

– Allow new scheduling policies to be added in a modular manner, including dynamic loading of scheduler
implementation

– Limit dispatch latency for time critical applications

• Scheduling class

– Fundamental abstraction in the system

– Defines scheduling policy for all processes in the class

– System can provide several scheduling classes

∗ Two default classes are: time sharing and real-time

• Class-independent routines in the scheduler

– Implement common services such as context switching, run queue manipulation, and preemption

– Defines the procedural interface for class-dependent functions such as priority computation and inheritance

– Real-time class uses fixed priority

– Time sharing class varies the priority dynamically in response to events

• Object-oriented design

– Scheduler represents an abstract base class

– Each scheduling class is a derived class

• Class-independent layer

– Responsible for context switching, run queue management, and preemption

– Highest priority process is given the cpu, except when the kernel is active; kernel stays nonpreemptible

– Number of priorities is increased to 160 with a separate dispatch queue for each priority

– Numerically larger values correspond to higher priorities

∗ Assignment and recomputation of priorities are performed by class-dependent layer

– Data structures for run queue management

∗ dqactmap

· Bitmap to show the queues with at least one runnable process
· Processes are placed on the queue by setfrontdq() and setbackdq(), and removed by dispdeq()

· The functions may be called from mainline kernel code as well as from the class-dependent routines
· A newly runnable process is placed at the back of the queue
· A process that is preempted before expiration of its quantum is placed at the front of the queue

– Real-time performance

∗ Kernel is nonpreemptive, leading to problems for real-time jobs
∗ Dispatch latency
· Delay between the time when processes become runnable and when they are actually scheduled

to run
· Low value for real-time processes required

∗ Preemption points

Process Scheduling 10

· Places in kernel code where kernel data structures are in stable state, and kernel is about to
embark on a lengthy computation
· At such points, kernel checks a flag called kprunrun

· If set, it indicates that a real-time process is ready to run and kernel preempts the current process
· Examples of preemption points:

Before beginning to parse each individual pathname component in lookuppn()

In open(2), before creating a file if it does not exist
In memory subsystem, before freeing the pages of a process

– runrun flag is used, as in traditional systems, to preempt the processes about to return to user mode

– Machine-independent part of the context switch is performed by pswtch(), called by swtch()

∗ After return from pswtch(), swtch() performs machine-dependent part of the context switch to
manipulate register context and flush translation buffers
∗ pswtch() performs the following functions:
· Clear the runrun and kprunrun flags
· Remove the process from dispatch queue
· Update dqactmap

· Set the state of the process to SONPROC (running on a processor)
· Update memory management registers to map u area and virtual address translation maps of the

new process

• Interface to scheduling classes

– Generic interface with virtual functions implemented differently by each scheduling class

∗ Interface defines the semantics and linkages for specific class implementations

– struct classfuncs

∗ Vector of pointers to functions to implement class-dependent interface
∗ Global class table contains one entry for each class, containing
· Class name
· Pointer to an initialization function
· Pointer to classfuncs vector for the class

– Upon process creation

∗ New process inherits priority class from its parent
∗ Process may be moved to a different class using priocntl(2)

∗ Scheduling classes use three field in proc structure
1. p_cid is the class id, or an index into the global class table
2. p_clfuncs is a pointer to the classfuncs vector for the class of the process; copied from class

table entry
3. p_clproc is a pointer to a class-dependent private data structure

– Calls to generic interface are resolved through a set of macros

– Scheduling class decides the policies for priority computation and scheduling of the processes in the class

∗ Determines the range of priorities for its processes
∗ Determines the conditions under which the priorities can change
∗ Decides the time slice for the process each time it runs
· Time slice may be the same for all processes, or may vary across processes depending on priority
· Time slice can be anything from one tick to infinity

– Entry points of class-dependent interface include:

∗ CL_TICK is called from clock interrupt handler

Process Scheduling 11

· Monitors time slice
· Recomputes priority
· Handles time quantum expiration

∗ CL_FORK and CL_FORKRET are called from fork(2)

· CL_FORK initializes the child’s class-specific structures
· CL_FORKRET may set runrun to allow a child to run before the parent

∗ CL_ENTERCLASS and CL_EXITCLASS

· Called upon entry or exit to scheduling class
· Allocate and deallocate class-dependent data structures

∗ CL_SLEEP is called from sleep() and may recompute process priority
∗ CL_WAKEUP is called from wakeprocs()

· Puts the process on the appropriate run queue
· May set runrun or kprunrun

– Scheduling class decides the actions for each function
∗ Makes scheduling versatile
· In traditional scheduling, clock interrupt handler recomputes priority on every fourth tick
· In new system, handler simply calls CL_TICK for the class to which the process belongs
· For example, real-time class uses fixed priorities and does no recomputation; class-dependent code

determines when the time quantum has expired and sets runrun to initiate a context switch
– The 160 priorities are divide into three ranges

0-59 Time-sharing class
60-99 System priorities
100-159 Real-time class

• Time-sharing class

– Default class for a process
∗ Changes process priorities dynamically
∗ Uses round robin scheduling for processes with the same priority
∗ Uses static dispatcher parameter table to control process priorities and time slices
∗ Time slice depends on the scheduling priority
∗ Parameter table defines the time slice for each priority
· Lower the priority, larger the time slice

– Uses event-driven scheduling
∗ Instead of recomputing priorities of all processes every second, changes the priority of a process in

response to specific events related to the process
∗ Scheduler penalizes the process by reducing its priority each time it uses up its time slice
∗ Boosts the priority if the process blocks on an event or resource, or if it takes a long time to use up

its quantum
∗ Since only one priority is recomputed, it is fast
∗ Dispatcher parameter table defines how various events change the priority of a process

– Uses struct tsproc to store class-dependent data

struct tsproc
{

ts_timeleft // Time remaining in the quantum
ts_cpupri // System part of the priority
ts_upri // User part of the priority (nice value)
ts_umdpri // User mode priority (ts_cpupri + ts_upri, but less than 59)
ts_dispwait // Number of seconds of clock time since start of quantum

};

Process Scheduling 12

– Process resumes after sleeping

∗ Priority of process is kernel priority, determined by sleep condition
∗ Upon return to user mode, priority is restored from ts_umdpri

∗ User mode priority is restricted to the range 0–59
∗ ts_upri

· Ranges from -20 to +19, with default being 0
· Can be changed by priocntl(2) but only superuser can increase it

∗ ts_cpupri is adjusted according to dispatcher parameter table

– Dispatcher parameter table

∗ Present in every class (including system priorities), but is not a required structure for every class
∗ Contains one entry for each priority in the class
∗ For time sharing class, each entry contains the following fields
· ts_globpri – global priority for the entry (same as index in the table)
· ts_quantum – time quantum for the priority
· ts_tqexp – new ts_cpupri to set when time quantum expires
· ts_slpret – new ts_cpupri to set when returning to user mode after sleeping
· ts_maxwait – number of seconds to wait for quantum expiry before using ts_lwait

· ts_lwait – used in place of ts_tqexp if process took longer than ts_maxwait to use up its
quantum

∗ Two uses of the table
1. Can be indexed by current ts_cpupri value to access the ts_tqexp, ts_slpret, and ts_lwait

field, since these fields provide a new value of ts_cpupri based on its old value
2. Can be indexed by ts_umdpri to access the ts_globpri, ts_quantum, and ts_maxwait fields,

since these fields relate to the overall scheduling priority

• Real-time class

– Uses priorities in the range 100–159

∗ Higher priority than any time-sharing process, including those in kernel mode
∗ Real-time process is scheduled before any kernel process
∗ Non real-time processes in kernel mode are not preempted immediately
· Real-time process waits until the current process returns to user mode, or reaches a kernel pre-

emption point
∗ Only superuser processes can enter the real-time class; by calling priocntl(2) and specifying the

priority and time quantum

– Fixed priority and time quantum

∗ Process can change these by making an explicit call to priocntl(2)

∗ Real-time dispatcher parameter table is simple
· Only stores the default quantum for each priority
· Used if a process does not specify a quantum while entering real-time class
· Dispatch parameter table assigns larger time slices for lower priorities
· Class-dependent data of a real-time process is stored in struct rtproc, including the current

time quantum, time remaining in the quantum, and current priority

– Processes require bounded dispatch latency as well as bounded response time

∗ Both the times must have a well-defined and reasonable upper time limit

– Response time

∗ Sum of time required by interrupt handler to process the event, dispatch latency, and time taken by
real-time process itself to respond to the event

Process Scheduling 13

∗ Traditional kernels cannot provide reasonable bound for dispatch latency since the kernel is nonpre-
emptible
· Process may have to wait for long time if current process is involved in elaborate kernel processing

– Preemption points

∗ Divide lengthy kernel algorithms into smaller bounded units of work
∗ When a real-time process becoming runnable
· rt_wakeup() handles the class-dependent wakeup processing
· Sets the kernel flag kprunrun

· When kernel process notices the flag (at some preemption point) it initiates a context switch to
the waiting real-time process

∗ Wait is bounded by maximal code path between two preemption points

• priocntl(2) system call

– Process scheduler control

– Provides facilities to manipulate the priorities and scheduling behavior of a process, including a light
weight process

– The specific operations performed include

∗ Changing the priority class of a process
∗ Setting ts_upri for a time sharing process
∗ Resetting priority and quantum for real-time processes
∗ Obtaining current value for several scheduling parameters

– Most of the operations are restricted to superuser

– A variant of the call – priocntlset(2) provides for generalized process scheduler control over a number
of processes

• Analysis

– Flexible approach for addition of scheduling classes

– Scheduler can be tailored to specific needs of applications

– System administrator can alter the system behavior by changing the settings in dispatcher tables and
rebuilding the kernel

– Process priority is changed based on events rather than every second

– Favors i/o-bound and interactive processes over cpu bound processes

– Scheduling classes can be added without accessing kernel source code by the following steps:

1. Provide an implementation of each class-dependent scheduling function
2. initialize a classfuncs vector to point to these functions
3. Provide an initialization function to perform setup tasks such as data structure allocation
4. Add an entry for the class in a master configuration file, located in master.d subdirectory of kernel

build directory
∗ Contains pointers to the initialization function and the classfuncs vector

5. Rebuild the kernel

– In svr4, the time-sharing class process cannot be easily switched to a different class

∗ priocntl(2) is restricted to superuser alone

– No provision for deadline-driven scheduling

∗ Code path between preemption points may be too long for some time critical applications

– Extremely difficult to tune system for a mixed set of applications

Process Scheduling 14

Solaris 2.x scheduling enhancements

• Multithreaded, symmetric-multiprocessing operating system

– Several optimizations to lower the dispatch latency for high-priority, time-critical processes

• Preemptive kernel

– Solaris 2.x kernel is fully preemptive (compared to preemption points of svr4)

– Guarantee of good response time

– Most global kernel data structures must be protected by appropriate synchronization objects such as
mutex locks or semaphores (essential requirement for a multiprocessor os)

– Interrupts

∗ Implemented using special kernel threads
∗ Threads can use standard synchronization primitives of the kernel
∗ Threads block on resources if necessary
∗ Solaris does not need to raise interrupt priority level to protect critical regions, and has only a few

nonpreemptible code segments
∗ A higher priority process can be scheduled as soon as it becomes runnable

– Interrupt threads always run at the highest priority in the system

– Scheduling classes can be dynamically loaded

∗ Priorities of interrupt threads are recomputed to ensure that the remain at the highest possible value
∗ An interrupt thread blocked on a resource must be restarted on the same processor

• Multiprocessor support

– Single dispatch queue for all processors

– Some threads (such as interrupt threads) may be restricted to run on a single, specific processor

– Processors communicate with each other by sending cross-processor interrupts

– Each processor has the following scheduling variables

cpu_thread Thread currently running on this processor
cpu_dispthread Thread last selected to run
cpu_idle Idle thread for the processor
cpu_runrun Preemption flag for time-sharing threads
cpu_krunrun Kernel preemption flag set by real-time threads
cpu_chosen_level Priority of thread that will preempt the current thread

• Hidden scheduling

– Kernel may work asynchronously on behalf of the threads, without considering the priority of the thread
for which it is doing the work

– Exemplified by callouts

– SVR4 hidden scheduling

∗ Prior to returning a process to user level, kernel calls runqueues() to see if there is a pending STREAMS
service request
∗ Kernel processes the request by calling the service routine of the appropriate STREAMS module
∗ The request is serviced by current process on behalf of a different process
∗ If priority of other process is lower than the priority of current process, the request is handled at a

wrong priority
∗ Normal processing of current process is delayed by lower priority work

Process Scheduling 15

– Solaris’ handling of this problem

∗ STREAMS processing is moved into kernel threads which run at a lower priority than any real-time
thread
∗ Problem: Some STREAMS processing may be initiated by real-time threads
∗ Problem is left unresolved

– Problem with callout processing

∗ All callouts are serviced at lowest interrupt priority which is still higher than any real-time priority
∗ Servicing the callout by a lower priority thread may delay a higher priority thread
∗ Problem is resolved by handling callouts using a callout thread running at maximum system priority,

which is lower than any real-time priority
∗ Callouts by real-time processes are maintained separately and invoked at the lowest interrupt level,

ensuring proper dispatch of time critical callouts

• Priority inversion

– Lower priority process holds a resource needed by a higher priority process, blocking the higher priority
process

– Problem can be solved by using priority inheritance or priority lending

∗ When a higher priority thread blocks on a resource, it temporarily transfers its priority to the lower
priority thread that owns the resource

– Priority inheritance must be transitive

– Solaris kernel must maintain extra state about locked objects to implement priority inheritance

∗ Kernel must be able to identify the current thread owner of each locked object, and also the object
for which each blocked thread is waiting
∗ Since inheritance is transitive, kernel must be able to traverse all the objects and blocked threads in

the synchronization chain starting from any given object

