Process Scheduling

CPU as a shared resource

e Processes in the system compete for cpU

— Scheduler decides the process to be allocated the cpu
— In time sharing system, many processes have to run concurrently
— Concurrency is achieved by interleaving the processes on time share basis

* Time quantum or time slice
x Amount of time the process can have CPU before being evicted

e Unix scheduler

— Works on two aspects
1. Policy
*x Rules used to select the process to schedule next on CPU
x Also deals with the time to switch from one process to another
x Several conflicting objectives of policy
- Fast response time for interactive applications
- High throughput for background jobs
- Avoidance of process starvation
2. Implementation
% Data structures and algorithms to carry out the policies
% Policy must be implemented efficiently with minimum overhead

— Context switch

* Implemented as a part of scheduler

x Kernel saves hardware execution context of current process from the u area in its PCB

x Context contains values of general purpose, memory management, and other special registers

x Kernel loads the hardware registers with the context of next process from the PCB of this process
*x CPU starts executing the next process from saved context

* Expensive operation

- Kernel must also flush data, instruction, and address translation cache to avoid incorrect memory
accesses

- New process incurs several memory accesses upon start

Clock interrupt handling

e Hardware clock interrupts the system at fixed-time intervals

— CPU tick, clock tick, or tick

* Time period between successive clock interrupts

+ Unix typically sets the tick to 10 ms

x Clock frequency, or number of ticks per second, is stored in param.h as HZ

x 10 ms tick implies a value of 100 for HZ

* Kernel functions measure the time in number of ticks, rather than seconds or milliseconds

e Interrupt handling

Process Scheduling 2

— Handler runs in response to hardware clock interrupt, with priority second only to power failure interrupt
— Tasks of handler

*
*

*

*
*
*
*

*

Rearm the hardware clock, if necessary
Update CPU usage statistics for current process
Perform scheduler-related functions
- Priority recomputation
- Time-slice expiration handling
Send a SIGXCPU signal to current process if it has exceeded its CPU usage quota
Update the time-of-day clock and other related clocks
Handle callouts
Wake up system processes such as swapper and pagedaemon when appropriate
Handle alarms

— All of the above tasks are not performed at every tick

— Major tick

*

*

e Callouts

Occurs once every n ticks
Scheduler performs some of its tasks only on major ticks

— Records a function to be invoked by kernel at a later time

— On Solaris, a callout is registered by timeout (9F)

*

*

*

timeout_id_t timeout(void (* func) (void *), void *arg, clock_t ticks);

func is the kernel function to invoke when the time increment expires
arg is the argument to the function
ticks is the number of clock ticks to wait before the function is called

— Can be called from user or interrupt context

— Example: In the following example, the device driver has issued an 1/0 request and is waiting for the
device to respond. If the device does not respond within 5 seconds, the device driver will print out an
error message to the console.

#include <sys/types.h>
#include <sys/conf.h>

static void xxtimeout_handler (void *arg)

{

}

struct xxstate * xsp = (struct xxstate *) arg;
mutex_enter (&xsp->lock);

cv_signal (&xsp->cv);

xsp->flags |= TIMED_OUT;

mutex_exit (&xsp->lock);

xsp->timeout_id = O;

static uint_t xxintr (caddr_t arg)

{

struct xxstate * xsp = (struct xxstate *) arg;

Process Scheduling 3

mutex_enter (&xsp->lock);
/* Service interrupt */

cv_signal (&xsp->cv);

mutex_exit (&xsp->lock);

if (xsp->timeout_id)

{
(void) untimeout (xsp->timeout_id);
xsp—>timeout_id = 0;

3

return (DDI_INTR_CLAIMED);
}

static void xxcheckcond(struct xxstate * xsp)

{

xsp->timeout_id = timeout (xxtimeout_handler, xsp, \
(5 * drv_usectohz (1000000)));

mutex_enter (&xsp->lock);
while (/* Waiting for interrupt or timeout */)

cv_wait (&xsp->cv, &xsp->lock);

if (xsp->flags & TIMED_OUT)
cmn_err (CE_WARN, "Device not responding");

mutex_exit (&xsp->lock);

}

The return value from timeout (9F) is needed to cancel the callout

Callout is cancelled by untimeout (9F)
— Callouts can be used for periodic tasks such as

Retransmission of network packets
Certain scheduler and memory management functions
Monitor devices to avoid losing interrupts

EOEEE B

Polling devices that do not support interrupts
— Callouts are normal kernel operations and must not execute at interrupt priority

Clock interrupt handler does not directly invoke callouts

Handler checks at every tick if any callouts are due

If yes, it sets a flag to indicate that a callout handler must run

System checks the flag when it returns to base interrupt priority and if set, invokes the callout handler
Handler will invoke each callout that is due

* Xk X X X X

So, callouts run only after all pending interrupts have been serviced

Process Scheduling 4

— Kernel maintains a list of pending callouts

* List is checked on every CPU tick at high interrupt priority and so, checking time must be optimized
x Insertions into the list occur at lower priority and much less frequently than once per tick

— Implementing callout list

x Sort the list in order of “time to fire”

x Kernel decrements the time of first entry at each tick and issues callout if the time reaches zero
x Another approach will be to store the absolute time and compare it with current time

* Timing wheel

- Based on a hashing approach and does away with the insertion of callouts to maintain sorted
order

- Fixed-size, circular array of callout lists

- At every tick, clock interrupt handler advances a current time pointer to the next element in the
array, wrapping around at the end of array

- Callouts on the queue are checked for time expiration
- New callouts get inserted in the queue that is N elements or ticks away from current queue

e Alarms

— Request by a process to send it a signal after a specified time
— Three types of alarms

1. Real-time alarm
* Signaled after actual elapsed time
* Notified via SIGALRM signal
* Requested by the process using
unsigned int alarm (unsigned int sec);
to send SIGALRM after sec seconds have elapsed
2. Profiling alarm
* Measures the amount of time the process has been executing
* Notified via SIGPROF signal
3. Virtual-time alarm
* Measures the time spent by process in user mode
* Notified via SIGVTALRM signal

— Implemented through the system calls setitimer(2) and getitimer(2)

int setitimer (int which, // Timer type
const struct itimerval * value, // Value to set timer to
struct itimerval * ovalue); // Returns previous timer
int getitimer (int which, // Timer type
struct itimerval * value); // Current value of timer

x Used to get or set the timer value for specified timer
x setitimer(2) returns the previous value of timer if the pointer is not set to NULL
* itimerval is defined as

struct timeval

{
time_t tv_sec; // Seconds
suseconds_t tv_usec; // Microseconds

};

struct itimerval

Process Scheduling 5

struct timeval it_interval; // Timer interval
struct timeval it_value; // Current value
};
- time_t and suseconds_t are just long

- The value specified in timeval units is converted by kernel to the appropriate number of cpu
ticks

— Alarms are handled only when a process is scheduled to run

* Process priority plays an important role in determining when the alarm is handled

x High resolution timers are useful only for high priority processes

* Profiling and virtual time alarms may not suffer from this problem because they do not measure real
time

* The clock interrupt handler charges the entire tick to the current process even if the process uses only
a part of it

x The time measured by profiling and virtual time alarms gives the number of clock interrupts that
have occurred instead of actual time

x Averages out over long time though may be grossly inaccurate for a single alarm

Scheduler goals

e Scheduler must be fair and deliver acceptable performance to each process
e Classifies processes based on their scheduling needs and performance expectations

— Interactive processes

* Spend a lot of time waiting for user inputs

* Inputs must be processed quickly

* Must reduce the average time and variance between user action and application response
* For typing or mouse movement, acceptable response is 50-150ms

— Batch processes

x Measure of scheduling efficiency is tasks’ completion time in presence of other activity as compared
to time required on an otherwise inactive system

— Real-time processes

* Require predictable scheduling behavior with guaranteed bounds on response time
x Application may care more about minimizing variance than simply getting more CPU time

e Traditional schedulers work with interactive and batch processes only; real-time scheduling is provided on a
system that may not run any of the interactive or batch processes

Traditional Unix scheduling

e Traditional Unix (both SVR3 and 4.3BsD) is targeted at time-sharing, interactive environments

— Several users run batch as well as interactive processes concurrently

— Scheduling policy favors interactive users while preventing starvation of batch processes
e Based on priority

— Priority of each process changes with time

— Scheduler always selects the process with highest priority

Process Scheduling 6

— Preemptive time slicing for processes of equal priority

Priority changes dynamically depending on CPU usage patterns

A higher priority process preempts the current process even if it has not completed its time quantum
— Kernel is nonpreemptible

* Process in kernel mode cannot be preempted by a higher priority process

* Running process can give up CPU by blocking on a resource, or when it returns from kernel mode

e Process priorities

— Integer value between 0 and 127

— Lower number implies higher priority

Kernel mode priorities are between 0 and 49 and user mode priorities are between 50 and 127

Priority information in proc structure

p_pri Current scheduling priority
p_usrpri User mode priority

p_cpu Measure of recent CPU usage
p_nice User-controllable nice value

* p_pri is used by scheduler to select the process to schedule

*

In user mode, p_pri == p_usrpri

*

If a process blocks in a system calls, and then wakes up, its priority is temporarily boosted to give
preference to kernel mode processing

*

p_usrpri holds the priority to return to from kernel mode

*

p_pri in this case holds temporary kernel priority

— Blocked processes are assigned a sleep priority

*

Sleep priority is a kernel value and is between 0 and 49

*

Sleep priority for terminal input is 28 and for disk 1/0 is 20

*

When a process wakes up after blocking, kernel sets its p_pri value to sleep priority of the event or
resource

* Lower priority numbers allow system calls to be executed promptly
- Process may have locked some key kernel resources during system call

— Returning to user mode resets the process priority, possibly below that of another runnable process, leading
to context switch

— User mode priority

Based on nice value and recent CPU usage

Nice value is a number between 0 and 39, with default being 20
Increasing nice value decreases the priority

Background processes automatically get higher nice values

* Xk X X ¥

Only superuser can decrease the nice value of a process
— Monitoring CPU usage

* Useful in making scheduling decisions for processes
* Derived from the field p_cpu
- Measure of recent CPU usage for process
- initialized to zero upon process creation
- Incremented by clock handler for every tick, to a maximum of 127

- At every second, kernel invokes schedcpu() using a callout to decrease the p_cpu value of each
process by a decay factor

- Decay factor in SVR3 is %

Process Scheduling 7

- Decay factor in BSD is given by
2 X A

2xA+1

where X is the load average, or average number of runnable process during the last second

decay =

- The user priority of each process is computed by

. p-cpu)
p-usrpri = PUSER + 1 + 2 X pnice
where PUSER is the baseline user priority of 50
— Process has accumulated too much CPU time
* p_cpu factor will increase
* Leads to a large p_usrpri value and lower priority
x A waiting process has its p_cpu lowered by decay leading to higher priority
* Scheme prevents starvation of a lower priority process
* Heavily favors 1/0-bound processes compared to compute-bound processes
— CPU usage factor provides for fairness and parity in scheduling time sharing processes
* Processes move up and down in a narrow range of priorities based on their recent CPU usage
x If priorities change too slowly, processes at lower priorities remain there for long periods leading to
starvation
— Decay factor provides an exponentially weighted average of CPU usage over process’ lifetime
* SVR3 formula
- Simple exponential average
- Elevates priorities when system load rises
- Heavily loaded system gives only a small amount of time to each process
- CPU usage value remain low
- Decay factor reduces it even lower
- CPU usage does not have much impact on priority
- Lower priority processes starve
* BDS formula
- Decay factor depends on system load A
- High load yields small decay
- Processes with too much CPU time lose their priority quickly

e Scheduler implementation

— Implemented by an array of 32 queues, called gs
— The 128 priority levels are evenly divided in these queues (4 adjacent priority levels per queue)
— Queues are doubly linked lists, containing a pointer to the proc structures
— A global variable whichgs contains a bitmask to indicate if there is a process in the queue
— Only runnable processes reside in the queue
— Selecting a process to run
* Context switcher, swtch(), selects the first queue using whichgs
* It removes the process at the head of the queue and performs context switching
* When swtch() returns, the newly scheduled process is dispatched

— Context switch

* swtch() saves the register context (general purpose registers, program counter, stack pointer, memory
management registers, etc) in the PCB in the u area of the process

Process Scheduling 8

* Then, it loads the registers from the saved context of the new process

* p_addr field in the proc structure points to the page table entries of the u area and is used by swtch
to locate the new PCB

e Run queue manipulation

— Scheduler always runs the process with highest priority, unless current process is executing in kernel mode
— The process is assigned a fixed time quantum (100ms in 4.3BSD)
— This affects scheduling of multiple processes on the same queue

— Every 100 milliseconds, kernel invokes roundrobin() through a callout to schedule the next process from
the same queue

x If a higher priority process is runnable, it is scheduled without waiting for roundrobin()

— If all other runnable processes are on lower priority queues, the current process continues to run even
though its quantum has expired

— Once every second, the priority of each process is recomputed by schedcpu()

x The process may end up on a different queue due to the priority recomputation
— Every four ticks, the priority of the current process is recomputed by clock interrupt handler
— Three situations for context switch

1. Voluntary context switch; current process blocks on a resource or exits

2. Priority of another process becomes more than the current one

3. Current process, or an interrupt handler, wakes up a higher priority process
— In voluntary switch, kernel directly calls swtch() from sleep() or exit ()

— Involuntary switch events occur when system is in kernel mode and hence, cannot preempt the process
immediately

x Kernel sets a flag called runrun to indicate that a higher priority process is waiting to be scheduled
* When the process is about to return to user mode, kernel checks the runrun flag
x If runrun is set, kernel transfers control to swtch() to initiate context switch

e Analysis

Simple and effective algorithm
— Adequate for general time sharing with a mixture of interactive and batch jobs
— Dynamic recomputation of priorities prevents starvation

— Favors 1/0-bound jobs with small infrequent CPU bursts

Scheduler limitations
x Does not scale well for large number of processes; inefficient to recompute priorities
x No way to guarantee a portion of CPU resources to a group of processes
x No guarantees of response time to real-time applications
+x No application control over priorities; nice mechanism is not sufficient

* Kernel is nonpreemptive resulting in a long wait for runnable high priority processes; known as priority
1nVersion

SVR4 Scheduler

e Improves on traditional approach due to complete redesign

e Major objectives

Process Scheduling 9

— Support different type of applications, including real-time applications
— Separate scheduling policy from implementation

— More control for applications over priority and scheduling

Scheduling framework with well-defined interface to the kernel

Allow new scheduling policies to be added in a modular manner, including dynamic loading of scheduler
implementation

— Limit dispatch latency for time critical applications

Scheduling class

— Fundamental abstraction in the system
— Defines scheduling policy for all processes in the class
— System can provide several scheduling classes

* Two default classes are: time sharing and real-time

Class-independent routines in the scheduler

Implement common services such as context switching, run queue manipulation, and preemption

Defines the procedural interface for class-dependent functions such as priority computation and inheritance
— Real-time class uses fixed priority

— Time sharing class varies the priority dynamically in response to events

Object-oriented design

— Scheduler represents an abstract base class

— Each scheduling class is a derived class

Class-independent layer

— Responsible for context switching, run queue management, and preemption

Highest priority process is given the CPU, except when the kernel is active; kernel stays nonpreemptible
— Number of priorities is increased to 160 with a separate dispatch queue for each priority
— Numerically larger values correspond to higher priorities

x Assignment and recomputation of priorities are performed by class-dependent layer

Data structures for run queue management

* dqactmap
- Bitmap to show the queues with at least one runnable process
- Processes are placed on the queue by setfrontdq() and setbackdq(), and removed by dispdeq()
- The functions may be called from mainline kernel code as well as from the class-dependent routines
- A newly runnable process is placed at the back of the queue
- A process that is preempted before expiration of its quantum is placed at the front of the queue

— Real-time performance
* Kernel is nonpreemptive, leading to problems for real-time jobs
* Dispatch latency

- Delay between the time when processes become runnable and when they are actually scheduled
to run

- Low value for real-time processes required
* Preemption points

Process Scheduling 10

- Places in kernel code where kernel data structures are in stable state, and kernel is about to
embark on a lengthy computation

- At such points, kernel checks a flag called kprunrun
- If set, it indicates that a real-time process is ready to run and kernel preempts the current process
- Examples of preemption points:
Before beginning to parse each individual pathname component in lookuppn ()
In open(2), before creating a file if it does not exist
In memory subsystem, before freeing the pages of a process
— runrun flag is used, as in traditional systems, to preempt the processes about to return to user mode
— Machine-independent part of the context switch is performed by pswtch(), called by swtch()
x After return from pswtch(), swtch() performs machine-dependent part of the context switch to
manipulate register context and flush translation buffers
x pswtch() performs the following functions:
- Clear the runrun and kprunrun flags
- Remove the process from dispatch queue
- Update dqactmap
- Set the state of the process to SONPROC (running on a processor)

- Update memory management registers to map u area and virtual address translation maps of the
new process

e Interface to scheduling classes

— Generic interface with virtual functions implemented differently by each scheduling class
* Interface defines the semantics and linkages for specific class implementations
— struct classfuncs
x Vector of pointers to functions to implement class-dependent interface
x Global class table contains one entry for each class, containing
- Class name
- Pointer to an initialization function
- Pointer to classfuncs vector for the class
— Upon process creation
x New process inherits priority class from its parent
* Process may be moved to a different class using priocntl(2)
* Scheduling classes use three field in proc structure
1. p_cid is the class id, or an index into the global class table
2. p_clfuncs is a pointer to the classfuncs vector for the class of the process; copied from class
table entry
3. p_clproc is a pointer to a class-dependent private data structure

— Calls to generic interface are resolved through a set of macros
— Scheduling class decides the policies for priority computation and scheduling of the processes in the class

x Determines the range of priorities for its processes
* Determines the conditions under which the priorities can change
* Decides the time slice for the process each time it runs
- Time slice may be the same for all processes, or may vary across processes depending on priority
- Time slice can be anything from one tick to infinity
— Entry points of class-dependent interface include:

x CL_TICK is called from clock interrupt handler

Process Scheduling 11

- Monitors time slice
- Recomputes priority
- Handles time quantum expiration
* CL_FORK and CL_FORKRET are called from fork(2)
- CL_FORK initializes the child’s class-specific structures
- CL_FORKRET may set runrun to allow a child to run before the parent
CL_ENTERCLASS and CL_EXITCLASS
- Called upon entry or exit to scheduling class
- Allocate and deallocate class-dependent data structures
CL_SLEEP is called from sleep() and may recompute process priority
* CL_WAKEUP is called from wakeprocs()
- Puts the process on the appropriate run queue

*

*

- May set runrun or kprunrun
— Scheduling class decides the actions for each function
* Makes scheduling versatile
- In traditional scheduling, clock interrupt handler recomputes priority on every fourth tick
- In new system, handler simply calls CL_TICK for the class to which the process belongs
- For example, real-time class uses fixed priorities and does no recomputation; class-dependent code
determines when the time quantum has expired and sets runrun to initiate a context switch
— The 160 priorities are divide into three ranges
0-59 Time-sharing class
60-99 System priorities
100-159 Real-time class

e Time-sharing class

— Default class for a process

Changes process priorities dynamically

Uses round robin scheduling for processes with the same priority

Uses static dispatcher parameter table to control process priorities and time slices
Time slice depends on the scheduling priority

Parameter table defines the time slice for each priority

EE R

- Lower the priority, larger the time slice
— Uses event-driven scheduling

x Instead of recomputing priorities of all processes every second, changes the priority of a process in
response to specific events related to the process

* Scheduler penalizes the process by reducing its priority each time it uses up its time slice

x Boosts the priority if the process blocks on an event or resource, or if it takes a long time to use up
its quantum

* Since only one priority is recomputed, it is fast

x Dispatcher parameter table defines how various events change the priority of a process

— Uses struct tsproc to store class-dependent data

struct tsproc

{
ts_timeleft // Time remaining in the quantum
ts_cpupri // System part of the priority
ts_upri // User part of the priority (nice value)
ts_umdpri // User mode priority (ts_cpupri + ts_upri, but less than 59)
ts_dispwait // Number of seconds of clock time since start of quantum

Process Scheduling 12

— Process resumes after sleeping

x Priority of process is kernel priority, determined by sleep condition
x Upon return to user mode, priority is restored from ts_umdpri
x User mode priority is restricted to the range 0-59
* ts_upri
- Ranges from -20 to 419, with default being 0
- Can be changed by priocntl(2) but only superuser can increase it
* ts_cpupri is adjusted according to dispatcher parameter table
— Dispatcher parameter table

* Present in every class (including system priorities), but is not a required structure for every class
x Contains one entry for each priority in the class
x For time sharing class, each entry contains the following fields

- ts_globpri — global priority for the entry (same as index in the table)

- ts_quantum — time quantum for the priority

- ts_tqgexp — new ts_cpupri to set when time quantum expires

- ts_slpret — new ts_cpupri to set when returning to user mode after sleeping

- ts_maxwait — number of seconds to wait for quantum expiry before using ts_lwait

- ts_lwait — used in place of ts_tqexp if process took longer than ts_maxwait to use up its
quantum

* Two uses of the table

1. Can be indexed by current ts_cpupri value to access the ts_tqexp, ts_slpret, and ts_lwait
field, since these fields provide a new value of ts_cpupri based on its old value

2. Can be indexed by ts_umdpri to access the ts_globpri, ts_quantum, and ts_maxwait fields,
since these fields relate to the overall scheduling priority

e Real-time class

— Uses priorities in the range 100-159

*

Higher priority than any time-sharing process, including those in kernel mode

*

Real-time process is scheduled before any kernel process

*

Non real-time processes in kernel mode are not preempted immediately

- Real-time process waits until the current process returns to user mode, or reaches a kernel pre-
emption point

*

Only superuser processes can enter the real-time class; by calling priocntl(2) and specifying the
priority and time quantum

— Fixed priority and time quantum
* Process can change these by making an explicit call to priocntl(2)
x Real-time dispatcher parameter table is simple
- Only stores the default quantum for each priority
- Used if a process does not specify a quantum while entering real-time class
- Dispatch parameter table assigns larger time slices for lower priorities

- Class-dependent data of a real-time process is stored in struct rtproc, including the current
time quantum, time remaining in the quantum, and current priority

— Processes require bounded dispatch latency as well as bounded response time
* Both the times must have a well-defined and reasonable upper time limit
— Response time

x Sum of time required by interrupt handler to process the event, dispatch latency, and time taken by
real-time process itself to respond to the event

Process Scheduling 13

* Traditional kernels cannot provide reasonable bound for dispatch latency since the kernel is nonpre-
emptible
- Process may have to wait for long time if current process is involved in elaborate kernel processing
— Preemption points
* Divide lengthy kernel algorithms into smaller bounded units of work
* When a real-time process becoming runnable
- rt_wakeup () handles the class-dependent wakeup processing
- Sets the kernel flag kprunrun
- When kernel process notices the flag (at some preemption point) it initiates a context switch to
the waiting real-time process
* Wait is bounded by maximal code path between two preemption points

e priocntl(2) system call

— Process scheduler control

— Provides facilities to manipulate the priorities and scheduling behavior of a process, including a light
weight process

— The specific operations performed include

Changing the priority class of a process
Setting ts_upri for a time sharing process
Resetting priority and quantum for real-time processes

EE

Obtaining current value for several scheduling parameters
— Most of the operations are restricted to superuser

— A variant of the call — priocntlset(2) provides for generalized process scheduler control over a number
of processes

e Analysis

— Flexible approach for addition of scheduling classes

Scheduler can be tailored to specific needs of applications

System administrator can alter the system behavior by changing the settings in dispatcher tables and
rebuilding the kernel

Process priority is changed based on events rather than every second

Favors 1/0-bound and interactive processes over CPU bound processes

Scheduling classes can be added without accessing kernel source code by the following steps:

1. Provide an implementation of each class-dependent scheduling function
2. initialize a classfuncs vector to point to these functions
3. Provide an initialization function to perform setup tasks such as data structure allocation
4. Add an entry for the class in a master configuration file, located in master.d subdirectory of kernel
build directory
* Contains pointers to the initialization function and the classfuncs vector
5. Rebuild the kernel
— In svR4, the time-sharing class process cannot be easily switched to a different class
* priocntl(2) is restricted to superuser alone
— No provision for deadline-driven scheduling
x Code path between preemption points may be too long for some time critical applications

— Extremely difficult to tune system for a mixed set of applications

Process Scheduling 14

Solaris 2.x scheduling enhancements

e Multithreaded, symmetric-multiprocessing operating system

— Several optimizations to lower the dispatch latency for high-priority, time-critical processes

e Preemptive kernel

Solaris 2.x kernel is fully preemptive (compared to preemption points of SVR4)

Guarantee of good response time

— Most global kernel data structures must be protected by appropriate synchronization objects such as
mutex locks or semaphores (essential requirement for a multiprocessor 0s)

EE

*

Interrupts

Implemented using special kernel threads
Threads can use standard synchronization primitives of the kernel
Threads block on resources if necessary

Solaris does not need to raise interrupt priority level to protect critical regions, and has only a few
nonpreemptible code segments

A higher priority process can be scheduled as soon as it becomes runnable

— Interrupt threads always run at the highest priority in the system

— Scheduling classes can be dynamically loaded

*

*

Priorities of interrupt threads are recomputed to ensure that the remain at the highest possible value
An interrupt thread blocked on a resource must be restarted on the same processor

e Multiprocessor support

— Single dispatch queue for all processors

— Some threads (such as interrupt threads) may be restricted to run on a single, specific processor

— Processors communicate with each other by sending cross-processor interrupts

— Each processor has the following scheduling variables

cpu_thread Thread currently running on this processor
cpu_dispthread Thread last selected to run

cpu_idle Idle thread for the processor

cpu_runrun Preemption flag for time-sharing threads
cpu_krunrun Kernel preemption flag set by real-time threads

cpu_chosen_level Priority of thread that will preempt the current thread

e Hidden scheduling

— Kernel may work asynchronously on behalf of the threads, without considering the priority of the thread
for which it is doing the work

— Exemplified by callouts
— SVR4 hidden scheduling

*

Prior to returning a process to user level, kernel calls runqueues () to see if there is a pending STREAMS
service request

Kernel processes the request by calling the service routine of the appropriate STREAMS module

The request is serviced by current process on behalf of a different process

If priority of other process is lower than the priority of current process, the request is handled at a
wrong priority

Normal processing of current process is delayed by lower priority work

Process Scheduling 15

— Solaris’ handling of this problem
* STREAMS processing is moved into kernel threads which run at a lower priority than any real-time
thread
x Problem: Some STREAMS processing may be initiated by real-time threads
* Problem is left unresolved
— Problem with callout processing
x All callouts are serviced at lowest interrupt priority which is still higher than any real-time priority
x Servicing the callout by a lower priority thread may delay a higher priority thread

* Problem is resolved by handling callouts using a callout thread running at maximum system priority,
which is lower than any real-time priority

x Callouts by real-time processes are maintained separately and invoked at the lowest interrupt level,
ensuring proper dispatch of time critical callouts

e Priority inversion
— Lower priority process holds a resource needed by a higher priority process, blocking the higher priority
process
— Problem can be solved by using priority inheritance or priority lending

* When a higher priority thread blocks on a resource, it temporarily transfers its priority to the lower
priority thread that owns the resource

— Priority inheritance must be transitive
— Solaris kernel must maintain extra state about locked objects to implement priority inheritance

*x Kernel must be able to identify the current thread owner of each locked object, and also the object
for which each blocked thread is waiting

* Since inheritance is transitive, kernel must be able to traverse all the objects and blocked threads in
the synchronization chain starting from any given object

