
Process and Kernel

• OS provides execution environment to run user processes

– Basic framework for code execution

– Services like file management and I/O, and interface to the same

• Process

– Single sequence of instructions in user address space

– Control point or program counter

– Multiple control points or threads

• Virtual machine and multiprogramming

– Each process has its own registers and address space

– Process gets global services (I/O) from the OS

– Kernel stores address space in different memory objects, including physical memory, disk, swap areas

– Memory management subsystem shuffles pages between physical memory and other storage objects

– Every process needs registers but there is only one set of hardware registers

∗ Kernel keeps process registers updated and loads and stores them into hardware registers for currently
running process

• Resources

– Processes contend for each resource, including cpu time, memory, peripherals

– OS acts as a resource manager, distributing the resources fairly as well as optimally

– Processes that do not get a resource (but need it) are blocked

∗ Processes can also get blocked on cpu

∗ Processes get cpu for short bursts of time, called a quantum, typically about 10 milliseconds
∗ Time slicing

• OS provides a number of facilities to application programmers, such as use of I/O devices

– Users do not have to write code to control these devices

– OS provides high-level abstract programming interface to access these devices (such as fopen(3))

– OS also provides access synchronization and error recovery with these devices

– The application programming interface (api) defines the semantics of all interactions between user code
and OS

• We will look at the OS as something that provides us with resource management

– In this respect, the kernel is the OS

– Other utilities and programs in the OS environment (including shell and basic interface commands) will
not be considered as part of the OS

– Kernel without those utilities is not of much use

– Kernel is the only indispensable part of the OS

– There is one, and only one, kernel in the system at any one time

∗ This is the reason why you cannot run more than one OS at one time on a machine, even though we
may have two OS residing on the system

∗ The second OS has to generally run in the emulation mode



Process and Kernel 2

• Kernel

– Special program that runs directly on hardware

– Implements the process model and other system services

– Loaded at start up time during the bootstrapping phase

– Initializes the system and sets up the environment to run processes

– Creates spontaneous processes (init, swapper or pagedaemon, and scheduler); other processes are created
by these processes

– Kernel remains in memory till the system is shut down

• Unix functionality

1. System call interface

– Explicit service request to kernel
– Central component of Unix api

– Executed by kernel on behalf of user processes

2. Hardware exceptions

– Synchronous errors in process (divide by zero, stack overflow)
– Handled by kernel on behalf of user process

3. Interrupt handling

– Asynchronous conditions
– Used by devices to inform the kernel of I/O completion and status change
– Interrupts are global events and are not related to any process

4. Special system processes

– Swapper and pagedaemon, to control the number of active processes and manage memory

Mode, Space, and Context

• Two different modes of execution – kernel mode and user mode

– User programs execute in user mode

– Kernel protects some parts of the address space from user-mode access

– Privileged machine instructions, such as the ones to manipulate memory management registers, can only
be executed in kernel mode

– Intel x86 architecture has four rings of execution for security, with innermost rings being more privileged;
Unix uses only two of those rings

– User processes cannot corrupt the state of the operating system, accidentally or maliciously

• Virtual memory

– Address translation from virtual to physical address, using address translation maps, or page tables

– Memory management unit (mmu) has a set of registers to identify the translation maps (page tables) of
the current process

– During context switch, the kernel loads these registers with the translation maps of the new process

– mmu registers are only accessible in kernel mode

∗ Process can only access its own space and cannot access/modify the space that belongs to a different
process

• Kernel space or system space



Process and Kernel 3

– A fixed part of virtual address space

– Only accessible in kernel mode

– Since there is a single kernel, all processes map to a single kernel address space

∗ Current process address space can be directly accessed because the information resides in the mmu

registers
∗ Information on other processes is indirectly accessed through temporary mappings
∗ Kernel is reentrant

– Used by kernel to maintain

∗ Global data structures
∗ Process-specific information
· Information to access the address space of any process

– Protected from user-mode access

∗ Processes must access the system space using system calls

• User area in memory (u area)

– Contains information about process for use by kernel

– Table of open files, process identification information, saved values of process registers

– Process cannot modify this information (but may be able to read it)

• Kernel stack

– Provided to facilitate reentrant nature of kernel

– Owned by the kernel but present in process space, just like the u area

– Process cannot access it (no user mode access)

• Execution context

– Kernel functions can execute in process context or system context

– Process context

∗ Kernel acts on behalf of the current process
∗ System call
∗ Kernel can access and modify address space, u area, and kernel stack
∗ Kernel may block the process if process wants to wait for a resource

– System context

∗ Also called interrupt context
∗ Kernel performs system wide tasks like responding to interrupts or recomputing priority of the pro-

cesses
∗ Not performed on behalf of any process
∗ Kernel cannot access the address space, u area, or kernel stack of current process
∗ Kernel cannot block (as it is not associated with a process)

• How code runs?

– User code: user mode and process context in process space

– System calls and exceptions: kernel mode, process context, and both process and system space

– Interrupts: Kernel mode, system context, and system space

Process abstraction



Process and Kernel 4

• Instance of a running program

– One process but many programs over its lifetime

– Process has its place in hierarchy – parent and child

• Process state

– State of the process (initial/idle, ready to run, kernel running, user running, asleep, zombie)

– State transitions

– Two additional states in bsd versions of Unix – stopped and stopped+asleep; they were also incorporated
in svr4

– Kernel is central to the entire operation and manages the transitions

– Process can be stopped or suspended by a stop signal (SIGSTOP, SIGSTP, SIGTTIN, or SIGTTOU) each of
which change the system state immediately

– Stopped process can be resumed by a continue signal (SIGCONT)

• Process context

– User address space

∗ program text, data, user stack, shared memory

– Control information

∗ u area
∗ proc structure
∗ Kernel stack and address translation maps

– Credentials

∗ User and group id

– Environment variables

∗ Inherited from the parent, possibly defined in the shell
∗ Stored at the bottom of the user stack
∗ Manipulated using the standard library
∗ Upon exec, caller may request to retain the environment variables or provide a new set

– Hardware context

∗ Set of general-purpose and system registers
∗ Program counter
∗ Stack pointer
∗ Processor status word (psw)
· System state (current and previous execution modes)
· Current and previous interrupt priority levels
· Overflow and carry bits

∗ Memory management registers (address translation maps)
∗ Floating point unit registers
∗ Entire context gets saved in process control block (pcb) in the u area upon context switch

• User credentials

– uid and gid

– Affect file ownership and access, and ability to signal other processes

– Super user or root (uid 0, gid 1)

∗ Has unlimited access privileges for files



Process and Kernel 5

∗ Can execute privileged system calls, such as mknod

– Child inherits credentials from parent

– Real and effective ids

∗ Affect file creation and access
∗ suid and sgid installation modes
∗ svr3 maintains saved uid and saved gid as the effective values before exec

∗ bsd allows a user to belong to a set of supplemental groups
∗ svr4 combines (and supports) both the features

• u area and proc structure

– Maintained by kernel for each process to keep control information

– proc structure

∗ Also known as the process table, and may be a fixed size array
∗ Kept in system space of the process
∗ Visible to kernel at all times even when the process is not running
∗ Fixed size of process table puts a limit on the maximum number of processes
∗ svr4 allows for dynamic allocation of proc, but with a fixed size array of pointers
∗ Major fields are:
· Identification (pid)
· Location of kernel address map for the u area
· Current process state
· Forward and backward pointers in the scheduler queue or sleep queue
· Sleep channel for blocked processes
· Scheduling priority
· Signal handling information (signal masks)
· Memory management information
· Pointers for links on active, free, or zombie process lists
· Miscellaneous flags
· Pointers for hash queue based on pid

· Process hierarchy information

– u area

∗ Part of the process space
∗ Visible only when the process is running
∗ May be mapped at the same virtual address in each process, so that kernel can refer to it through

the variable u

∗ Context switch resets the mapping
∗ Kernel may be able to access the u area of a different process
∗ Major fields:
· Process control block
· Pointer to the proc structure
· Real and effective uid and gid

· Arguments to and return value for current system call
· Signal handler and related information
· Information from program header (text, dat, stack size, memory management information)
· Open file descriptor table
· Pointer to vnodes of current directory and controlling terminal



Process and Kernel 6

· cpu usage statistics, profiling information, disk quotas, resource limits

Executing in kernel mode

• System enter kernel mode through

– Device interrupt

– Exception

– Trap or software interrupt

• Kernel consults dispatch table to get the address of low-level routine to handle the event

• Kernel save the state of the interrupted process (pc + psw) on its kernel stack

• Process state is restored after completing the requested task

• Interrupts are serviced in the system context and may not access process address space or u area; they must
not block

• Exception handler runs in process context and may access process address space or u area

• Software interrupts (traps) are handled synchronously in process context; they may be caused by process to
request services

• System call interface

– To make system call, process executes a sequence of instructions to put the system in kernel mode (mode
switch)

∗ This is performed by a wrapper from the standard C library
∗ Wrapper identifies the system call number and pushes it on user stack, and then, invokes the trap

– Trap transfer control to kernel

∗ Control goes to syscall()1 – the handler for system calls

– Operations performed in process context but kernel mode

∗ Has access to process address space and u area
∗ Uses kernel stack of the calling process
∗ syscall() copies arguments for system call from user stack to the u area and saves hardware context

on the kernel stack
∗ Uses the system call number to index into system call dispatch vector (sysent[])

– After completing system call, kernel returns the system to user mode and transfers control back to process

• Interrupt handling

– Interrupt handler or interrupt service routine

– Handler runs in kernel mode and system context

– No need to access the process context

– Cannot block

– Time used to service the interrupt is charged to process even though the activity is not related to the
process

∗ The time for process is to be updated and hence, its proc structure needs to be accessed
∗ Potential to corrupt part of the process address space

1syscall(3B) on Solaris



Process and Kernel 7

– Prioritizing the interrupts

∗ Interrupt priority levels (ipls) from 0-31
∗ Process suspended only if its ipl is higher than the current ipl

∗ A lower ipl is saved into a saved interrupt register, and handled when the ipl drops sufficiently

Synchronization

• Reentrant kernel may have several processes active in the kernel

– Only one process actually has the cpu while others are blocked on cpu or some other resource

– They all share the same copy of kernel data structures

– Possibility for the loss of integrity of some data structures

• Synchronization through nonpreemptive processing

– Do not preempt a kernel mode process by another process even if its time quantum has expired

– Process can voluntarily give up cpu

– Kernel can work with the data structures without having to lock the same

– Synchronization is still necessary in three case: blocking operations, interrupts, and multiprocessor syn-
chronization

• Blocking operations

– Blocks the process/puts it in sleep state

– Kernel is nonpreemptive and may manipulate most data structures and resources

– Some objects must be protected from blocking

∗ A read from file into disk block buffer memory in kernel
∗ Process blocks allowing others to run
∗ Kernel must ensure that other processes do not access this buffer since the buffer is in an inconsistent

state

– Kernel protects an object by associating a lock with it

∗ lock may be a single-bit flag
∗ A process checks the lock before using an object
∗ Kernel also associates a wanted flag with the object
∗ When a process releases an object, it checks the wanted flag to see if someone else is waiting for it

• Interrupts

– Kernel is safe from preemption by other processes but not interrupts

– Interrupt handler may find kernel data structures in an inconsistent state

– Block interrupts while accessing critical data structures by raising the ipl to access critical regions

– Interrupts require rapid servicing, so critical regions should be few and brief

– The only interrupts that must be blocked are the ones that manipulate data in the critical region (disk
interrupts)

– Two different interrupts can have the same priority level

• Multiprocessors

– Two processes may execute in kernel mode on two different processors

– Data structures must be locked



Process and Kernel 8

– Locking mechanism must be safe across multiple processors

Process scheduling

• cpu time allocated to processes by a scheduler

• Preemptive round-robin scheduling, with a fixed quantum time of 100ms

• A higher priority process preempts the current process, except in kernel mode, before the current process has
completed its quantum

– Process priority is based on nice value and usage factor

– Users can change the priority by changing the nice value using nice(2) system call

– Usage factor is a measure of recent cpu usage for the process

– While a process is not running, the kernel periodically increases its priority

– When a process receives some cpu time, the kernel decreases its priority

– This scheme prevents starvation of any process

• Kernel priorities are higher than user priorities

– Scheduling priorities are integers between 0 and 127, with 0 to 49 being kernel priorities

– Smaller integers imply higher priority

– Kernel priorities are not variable and depend on the reason for blocking (sleeping priorities)

Signals

• Used to inform processes of asynchronous events and to handle exceptions

• Explicitly sent using kill(2)

• Each signal has a default response, possibly to terminate the process

• With a user-specified signal handler, other actions are possible

• A process may also choose to ignore the signals, or block it temporarily

New processes and programs

• fork(2) and exec()

– fork creates a new process

– Child is almost an exact clone of the parent process

– Child begins user mode execution by returning from fork

– exec overlays a new program on existing process and does not return, unless it fails

∗ Child returns to user mode with its pc to the first executable instruction of new program

– Why not do both fork and exec in a single system call?

∗ A process may fork many processes that do the same thing as the parent; think of daemons
∗ A process may want to exec a different program without forking

• Process creation – Number of tasks are performed by fork such as



Process and Kernel 9

– Reserve swap space for child’s data and stack

– New pid and proc for child

– Initialize child’s proc

– Allocate address translation maps

– Allocate child’s u area and allocate it from parent

– Update u area to refer to the new address maps and swap space

– Add the child to the set of processes sharing the text region of the program being executed by parent

– Duplicate parent’s data and stack regions and update child’s address maps to refer to these new pages

– Get references to shared resources (open files, current working directory)

– Initialize the child’s hardware context by copying from parent’s registers

– Make child runnable and put it on scheduler queue

– Arrange for the child to return from fork with a value of zero

– Return the pid of child to parent

• Fork optimization

– Wasteful to make a copy of parent’s address space

– Copy-on-write

∗ Data and stack pages of parent are temporarily made read-only and marked as copy-on-write
∗ Child gets its own copy of address translation maps but shares the actual pages
∗ Attempt on page modification (by parent or child) cause a page fault exception because of page being

read-only; page fault handler in kernel makes a writable copy of the page
∗ If child execs or exits, pages revert to original protection and copy-on-write flag is cleared

– vfork(2) – Virtual memory efficient fork

∗ Used in bsd

∗ Useful if the child is to call exec shortly after fork
∗ Parent loans the address space to child and blocks until the child returns space borrowed from parent
∗ Efficient because no copying takes place
∗ Dangerous because it permits the modification of a process’ address space by another process

• Invoking a new program

– exec gives the process a new address space and loads it with contents of the new program

– Process resumes at the entry point of the new program

– Process address space components

∗ Text – executable code
∗ Initialized data
∗ Uninitialized data, or block static storage (bss) section – Data variables declared but not initialized
∗ Shared memory
∗ Shared libraries – Dynamically linked libraries
∗ Heap – Dynamically allocated memory (brk(2), sbrk(2), malloc(3))
∗ User stack

– Executable file formats

∗ a.out

· Oldest executable format
· 32-bit header, followed by text and data sections, and symbol table



Process and Kernel 10

· Header contains size of text, initialized data, and uninitialized data sections, and program entry
point
· Header also contains a magic number

– exec system call

∗ Parse pathname and access the executable
∗ Verify execute permission
∗ Check that it is valid executable
∗ Account for suid and sgid bits if set
∗ Copy arguments and environment into kernel space
∗ Allocate swap space for data and stack
∗ Free odl address and swap space
∗ Allocate address maps for new text, data, and stack
∗ Set up new address space
∗ Copy arguments and environment variables back into user stack
∗ Reset all signal handlers to default actions
∗ Initialize the hardware context

• Process termination

– Performed by exit(2)

∗ Turn off all signals
∗ Close all open files
∗ Release text file and other resources (current directory)
∗ Write to accounting log
∗ Save resource usage statistics and exit status in proc

∗ Change state to SZOMB, and put proc on zombie process list
∗ Give the children of the process to init

∗ Release address space, u area, address translation maps, and swap space
∗ Notify the parent by sending a SIGCHLD signal
∗ Wake up the parent if it is sleeping
∗ Call swtch() to schedule a new process

– The proc structure is freed by parent after picking up the exit status

• Awaiting process termination

– Done by wait() system call

• Zombie processes

– Every process becomes a zombie before being cleaned up by parent

– Zombies cannot be killed by sending a signal


