Process and Kernel

e OS provides execution environment to run user processes

— Basic framework for code execution

— Services like file management and I/O, and interface to the same
e Process

— Single sequence of instructions in user address space
— Control point or program counter

— Multiple control points or threads
e Virtual machine and multiprogramming

— Each process has its own registers and address space

— Process gets global services (I/O) from the OS

Kernel stores address space in different memory objects, including physical memory, disk, swap areas

Memory management subsystem shuffles pages between physical memory and other storage objects

Every process needs registers but there is only one set of hardware registers
x Kernel keeps process registers updated and loads and stores them into hardware registers for currently
running process

e Resources

— Processes contend for each resource, including CPU time, memory, peripherals
— OS acts as a resource manager, distributing the resources fairly as well as optimally
— Processes that do not get a resource (but need it) are blocked

* Processes can also get blocked on cpuU
*x Processes get CPU for short bursts of time, called a quantum, typically about 10 milliseconds
x Time slicing

e OS provides a number of facilities to application programmers, such as use of I/O devices

— Users do not have to write code to control these devices
— OS provides high-level abstract programming interface to access these devices (such as fopen(3))

— OS also provides access synchronization and error recovery with these devices

The application programming interface (API) defines the semantics of all interactions between user code
and OS

e We will look at the OS as something that provides us with resource management

— In this respect, the kernel is the OS

— Other utilities and programs in the OS environment (including shell and basic interface commands) will
not be considered as part of the OS

— Kernel without those utilities is not of much use

— Kernel is the only indispensable part of the OS

There is one, and only one, kernel in the system at any one time

* This is the reason why you cannot run more than one OS at one time on a machine, even though we
may have two OS residing on the system

x The second OS has to generally run in the emulation mode



Process and Kernel 2

e Kernel

— Special program that runs directly on hardware

— Implements the process model and other system services

Loaded at start up time during the bootstrapping phase

Initializes the system and sets up the environment to run processes

— Creates spontaneous processes (init, swapper or pagedaemon, and scheduler); other processes are created
by these processes

— Kernel remains in memory till the system is shut down
e Unix functionality

1. System call interface

— Explicit service request to kernel
— Central component of Unix API
— Executed by kernel on behalf of user processes

2. Hardware exceptions

— Synchronous errors in process (divide by zero, stack overflow)
— Handled by kernel on behalf of user process

3. Interrupt handling

— Asynchronous conditions
— Used by devices to inform the kernel of I/O completion and status change
— Interrupts are global events and are not related to any process

4. Special system processes

— Swapper and pagedaemon, to control the number of active processes and manage memory

Mode, Space, and Context

e Two different modes of execution — kernel mode and user mode

— User programs execute in user mode
— Kernel protects some parts of the address space from user-mode access

— Privileged machine instructions, such as the ones to manipulate memory management registers, can only
be executed in kernel mode

— Intel x86 architecture has four rings of execution for security, with innermost rings being more privileged;
Unix uses only two of those rings

— User processes cannot corrupt the state of the operating system, accidentally or maliciously
e Virtual memory

— Address translation from virtual to physical address, using address translation maps, or page tables

— Memory management unit (MMU) has a set of registers to identify the translation maps (page tables) of
the current process

— During context switch, the kernel loads these registers with the translation maps of the new process
— MMU registers are only accessible in kernel mode
* Process can only access its own space and cannot access/modify the space that belongs to a different

process

e Kernel space or system space



Process and Kernel 3

— A fixed part of virtual address space
— Only accessible in kernel mode
— Since there is a single kernel, all processes map to a single kernel address space

* Current process address space can be directly accessed because the information resides in the MMU
registers

x Information on other processes is indirectly accessed through temporary mappings

x Kernel is reentrant
— Used by kernel to maintain

x Global data structures
* Process-specific information
- Information to access the address space of any process

— Protected from user-mode access

* Processes must access the system space using system calls
e User area in memory (u area)

— Contains information about process for use by kernel
— Table of open files, process identification information, saved values of process registers

— Process cannot modify this information (but may be able to read it)
o Kernel stack

— Provided to facilitate reentrant nature of kernel
— Owned by the kernel but present in process space, just like the u area

— Process cannot access it (no user mode access)
e Execution context

— Kernel functions can execute in process context or system context
— Process context
x Kernel acts on behalf of the current process
* System call
x Kernel can access and modify address space, u area, and kernel stack
x Kernel may block the process if process wants to wait for a resource
— System context
x Also called interrupt context

x Kernel performs system wide tasks like responding to interrupts or recomputing priority of the pro-
cesses

*

Not performed on behalf of any process
x Kernel cannot access the address space, u area, or kernel stack of current process
* Kernel cannot block (as it is not associated with a process)

e How code runs?

— User code: user mode and process context in process space
— System calls and exceptions: kernel mode, process context, and both process and system space

— Interrupts: Kernel mode, system context, and system space

Process abstraction



Process and Kernel 4

e Instance of a running program

— One process but many programs over its lifetime

— Process has its place in hierarchy — parent and child
e Process state

— State of the process (initial/idle, ready to run, kernel running, user running, asleep, zombie)

— State transitions

Two additional states in BSD versions of Unix — stopped and stopped+-asleep; they were also incorporated
in SVR4

— Kernel is central to the entire operation and manages the transitions

— Process can be stopped or suspended by a stop signal (SIGSTOP, SIGSTP, SIGTTIN, or SIGTTOU) each of
which change the system state immediately

— Stopped process can be resumed by a continue signal (SIGCONT)
e Process context

— User address space
* program text, data, user stack, shared memory
— Control information

* U area
* proc structure
x Kernel stack and address translation maps

— Credentials
x User and group id
— Environment variables

Inherited from the parent, possibly defined in the shell
Stored at the bottom of the user stack
Manipulated using the standard library

O R

Upon exec, caller may request to retain the environment variables or provide a new set
— Hardware context
* Set of general-purpose and system registers
* Program counter
x Stack pointer
* Processor status word (Psw)
- System state (current and previous execution modes)
- Current and previous interrupt priority levels
- Overflow and carry bits
* Memory management registers (address translation maps)
* Floating point unit registers
* Entire context gets saved in process control block (PCB) in the u area upon context switch

e User credentials

— UID and GID
— Affect file ownership and access, and ability to signal other processes
— Super user or root (uid 0, gid 1)

x Has unlimited access privileges for files



Process and Kernel 5

*x Can execute privileged system calls, such as mknod
— Child inherits credentials from parent
— Real and effective IDs

Affect file creation and access

sutd and sgid installation modes

SVR3 maintains saved uid and saved gid as the effective values before exec
BSD allows a user to belong to a set of supplemental groups

EE

SVR4 combines (and supports) both the features
e u area and proc structure

— Maintained by kernel for each process to keep control information

— proc structure

Also known as the process table, and may be a fixed size array

Kept in system space of the process

Visible to kernel at all times even when the process is not running

Fixed size of process table puts a limit on the maximum number of processes
SVR4 allows for dynamic allocation of proc, but with a fixed size array of pointers

O S S I N

Major fields are:
- Identification (PID)
- Location of kernel address map for the u area
- Current process state
- Forward and backward pointers in the scheduler queue or sleep queue
- Sleep channel for blocked processes
- Scheduling priority
- Signal handling information (signal masks)
- Memory management information
- Pointers for links on active, free, or zombie process lists
- Miscellaneous flags
- Pointers for hash queue based on PID
- Process hierarchy information

— u area

x Part of the process space
* Visible only when the process is running

x May be mapped at the same virtual address in each process, so that kernel can refer to it through
the variable u

x Context switch resets the mapping
x Kernel may be able to access the u area of a different process
+x Major fields:
- Process control block
- Pointer to the proc structure
- Real and effective UID and GID
- Arguments to and return value for current system call
- Signal handler and related information
- Information from program header (text, dat, stack size, memory management information)
- Open file descriptor table
- Pointer to vnodes of current directory and controlling terminal



Process and Kernel 6

- CPU usage statistics, profiling information, disk quotas, resource limits

Executing in kernel mode

e System enter kernel mode through

— Device interrupt
— Exception

— Trap or software interrupt

Kernel consults dispatch table to get the address of low-level routine to handle the event

Kernel save the state of the interrupted process (PC + PSW) on its kernel stack

Process state is restored after completing the requested task

Interrupts are serviced in the system context and may not access process address space or u area; they must
not block

Exception handler runs in process context and may access process address space or u area

Software interrupts (traps) are handled synchronously in process context; they may be caused by process to
request services

System call interface

— To make system call, process executes a sequence of instructions to put the system in kernel mode (mode
switch)

x This is performed by a wrapper from the standard C library
x Wrapper identifies the system call number and pushes it on user stack, and then, invokes the trap

Trap transfer control to kernel
* Control goes to syscall()! — the handler for system calls
— Operations performed in process context but kernel mode

x Has access to process address space and u area
x Uses kernel stack of the calling process

x syscall() copies arguments for system call from user stack to the u area and saves hardware context
on the kernel stack

* Uses the system call number to index into system call dispatch vector (sysent[])

— After completing system call, kernel returns the system to user mode and transfers control back to process
e Interrupt handling

— Interrupt handler or interrupt service routine

— Handler runs in kernel mode and system context

No need to access the process context
Cannot block

Time used to service the interrupt is charged to process even though the activity is not related to the
process

x The time for process is to be updated and hence, its proc structure needs to be accessed
x Potential to corrupt part of the process address space

lsyscall(3B) on Solaris



Process and Kernel 7

— Prioritizing the interrupts
* Interrupt priority levels (1pLs) from 0-31
x Process suspended only if its IPL is higher than the current 1PL
x A lower 1PL is saved into a saved interrupt register, and handled when the 1PL drops sufficiently

Synchronization

e Reentrant kernel may have several processes active in the kernel

— Only one process actually has the cpU while others are blocked on CPU or some other resource
— They all share the same copy of kernel data structures

— Possibility for the loss of integrity of some data structures
e Synchronization through nonpreemptive processing

— Do not preempt a kernel mode process by another process even if its time quantum has expired

— Process can voluntarily give up CpPU

— Kernel can work with the data structures without having to lock the same

— Synchronization is still necessary in three case: blocking operations, interrupts, and multiprocessor syn-
chronization

e Blocking operations

— Blocks the process/puts it in sleep state
— Kernel is nonpreemptive and may manipulate most data structures and resources
— Some objects must be protected from blocking

x A read from file into disk block buffer memory in kernel
* Process blocks allowing others to run

x Kernel must ensure that other processes do not access this buffer since the buffer is in an inconsistent
state

Kernel protects an object by associating a lock with it
* lock may be a single-bit flag
x A process checks the lock before using an object

*

Kernel also associates a wanted flag with the object

*

When a process releases an object, it checks the wanted flag to see if someone else is waiting for it
e Interrupts

— Kernel is safe from preemption by other processes but not interrupts

— Interrupt handler may find kernel data structures in an inconsistent state

— Block interrupts while accessing critical data structures by raising the IPL to access critical regions
— Interrupts require rapid servicing, so critical regions should be few and brief

— The only interrupts that must be blocked are the ones that manipulate data in the critical region (disk
interrupts)

— Two different interrupts can have the same priority level
e Multiprocessors

— Two processes may execute in kernel mode on two different processors

— Data structures must be locked



Process and Kernel 8

— Locking mechanism must be safe across multiple processors

Process scheduling

e CPU time allocated to processes by a scheduler
e Preemptive round-robin scheduling, with a fixed quantum time of 100ms

e A higher priority process preempts the current process, except in kernel mode, before the current process has
completed its quantum

— Process priority is based on nice value and usage factor

— Users can change the priority by changing the nice value using nice(2) system call

Usage factor is a measure of recent CPU usage for the process

While a process is not running, the kernel periodically increases its priority
— When a process receives some CPU time, the kernel decreases its priority

— This scheme prevents starvation of any process
e Kernel priorities are higher than user priorities

— Scheduling priorities are integers between 0 and 127, with 0 to 49 being kernel priorities
— Smaller integers imply higher priority
— Kernel priorities are not variable and depend on the reason for blocking (sleeping priorities)

Signals

e Used to inform processes of asynchronous events and to handle exceptions

Explicitly sent using kill(2)

Each signal has a default response, possibly to terminate the process

With a user-specified signal handler, other actions are possible

e A process may also choose to ignore the signals, or block it temporarily

New processes and programs

e fork(2) and exec()

fork creates a new process

Child is almost an exact clone of the parent process
— Child begins user mode execution by returning from fork
— exec overlays a new program on existing process and does not return, unless it fails

* Child returns to user mode with its PC to the first executable instruction of new program

Why not do both fork and exec in a single system call?

x A process may fork many processes that do the same thing as the parent; think of daemons
x A process may want to exec a different program without forking

e Process creation — Number of tasks are performed by fork such as



Process and Kernel 9

Reserve swap space for child’s data and stack

New PID and proc for child

Initialize child’s proc

Allocate address translation maps

Allocate child’s u area and allocate it from parent

Update u area to refer to the new address maps and swap space

Add the child to the set of processes sharing the text region of the program being executed by parent

Duplicate parent’s data and stack regions and update child’s address maps to refer to these new pages

Get references to shared resources (open files, current working directory)

Initialize the child’s hardware context by copying from parent’s registers

Make child runnable and put it on scheduler queue

Arrange for the child to return from fork with a value of zero

Return the PID of child to parent

e Fork optimization

— Wasteful to make a copy of parent’s address space

— Copy-on-write

*

*

*

*

Data and stack pages of parent are temporarily made read-only and marked as copy-on-write
Child gets its own copy of address translation maps but shares the actual pages

Attempt on page modification (by parent or child) cause a page fault exception because of page being
read-only; page fault handler in kernel makes a writable copy of the page

If child execs or exits, pages revert to original protection and copy-on-write flag is cleared

— vfork(2) — Virtual memory efficient fork

* Kk X X X

Used in BSD

Useful if the child is to call exec shortly after fork

Parent loans the address space to child and blocks until the child returns space borrowed from parent
Efficient because no copying takes place

Dangerous because it permits the modification of a process’ address space by another process

e Invoking a new program

— exec gives the process a new address space and loads it with contents of the new program

— Process resumes at the entry point of the new program

— Process address space components

*

*

* Kk X X X

Text — executable code
Initialized data

Uninitialized data, or block static storage (BSS) section — Data variables declared but not initialized
Shared memory

Shared libraries — Dynamically linked libraries

Heap — Dynamically allocated memory (brk(2), sbrk(2), malloc(3))

User stack

— Executable file formats

*

a.out
- Oldest executable format
- 32-bit header, followed by text and data sections, and symbol table



Process and Kernel

10

- Header contains size of text, initialized data, and uninitialized data sections, and program entry

point
- Header also contains a magic number

— exec system call

*

OO K K X X X X X X K

Parse pathname and access the executable

Verify execute permission

Check that it is valid executable

Account for sSUID and SGID bits if set

Copy arguments and environment into kernel space
Allocate swap space for data and stack

Free odl address and swap space

Allocate address maps for new text, data, and stack
Set up new address space

Copy arguments and environment variables back into user stack
Reset all signal handlers to default actions

Initialize the hardware context

e Process termination

— Performed by exit(2)

*

*

EE R R I

*

Turn off all signals

Close all open files

Release text file and other resources (current directory)
Write to accounting log

Save resource usage statistics and exit status in proc
Change state to SZOMB, and put proc on zombie process list
Give the children of the process to init

Release address space, u area, address translation maps, and swap space
Notify the parent by sending a SIGCHLD signal

Wake up the parent if it is sleeping

Call swtch() to schedule a new process

— The proc structure is freed by parent after picking up the exit status

e Awaiting process termination

— Done by wait() system call

e Zombie processes

— Every process becomes a zombie before being cleaned up by parent

— Zombies cannot be killed by sending a signal



