Introduction

- A brief history of Unix
 - AT&T
 - BSD
 - Linux (and why Linux is not Unix)

• Mach

- Started work in mid 80s at Carnegie Mellon University
- Supports the Unix programming interface
- Based on a microkernel approach
- Provides a small set of essential services and a framework for other OS functions at user level
- Resulted in commercial systems such as OSF/1 and NextStep (Mach 2.5)
- Mach 3.0 was the first microkernel implementation

• Standards

- Deal with interface between programmer and OS and not how the interface is implemented
- Defines a set of functions and their semantics
- Functions can be implemented in the kernel or in user-level libraries
- System V Interface Definition (SVID)
 - * AT&T
 - * System V programming interface
 - * System confirmation to SVID can be verified by System V Verification Suite (SVVS)
- Portable Operating System Based on Unix (POSIX)
 - * IEEE, commissioned 1986, published in 1990
 - * Inspired by SVR3 and 4.3BSD
- X/Open Portability Guide (XPG)
 - * X/Open Consortium
 - * Based on a draft of POSIX.1, enhances it by adding internationalization, window interfaces, and data management

Recent Improvements/Changes

- Hardware changes
 - Parallelization
 - * Traditional Unix kernel is designed for a uniprocessor architecture and cannot protect global data structures from concurrent access by multiple processors
 - * Some vendors have added locks to protect these structures, and called the phenomenon parallelization
 - Memory vs I/O
 - * Earlier Unixen were limited in performance by memory size and processor speed, and hence, kernel used swapping/paging to accommodate a larger number of processes in small memory
 - * As memory became cheaper and CPU speed increased, systems became I/O bound, in the sense of spending more time swapping
 - * Recent research has concentrated on reducing the disk bottleneck, leading to Redundant Arrays of Inexpensive Disks (RAID) and log-structured file systems

Introduction 2

• Paradigm shifts

- 1970s: Centralized computer with dumb terminals
- 1980s: Rise of the workstation
 - * High speed bitmapped display
 - * Multiple windows
 - * Interactive use, one user per workstation even though it could support multiple users simultaneously
 - * High speed networks for communications between workstations
- Client-server computing
 - * One or more powerful machines as server
 - * Individual workstations as clients
 - * Specialized servers as file servers, print servers, mail servers, web servers, and database servers
- Distributed computing
 - * Number of machines collaborate to provide network-based services
 - * Avoids network congestion and single point of failure
 - * Dot.coms, AOL

• Small is beautiful

- Unix philosophy was to provide a number of tools such that each tool will do only one job but do it
 efficiently
- Complex tasks could be performed by combining a number of these tools
 - * Easy to see this by looking at filters and pipelines in Unix
- The philosophy did not permeate to kernel; kernel is monolithic and not easily extensible
- A new kernel based on microkernel architecture was created as Mach
 - * A small kernel provides the framework for process management
 - * User-level server tasks provide other functions
- Microkernels are not well matched with traditional monolithic kernels in terms of performance optimization
 - * Microkernels have the extra overhead of message passing
 - * Linus Torvalds has criticized the microkernel architecture in his essay, and argued in favor of monolithic architecture for Linux kernel¹²

Flexibility

- Earlier versions of Unix kernels were not flexible in terms of file system, process scheduling, and executable file formats
- Newer systems have had to support local and remote file systems, new executable formats, such as the older a.out (assembler output) and newer elf (executable and linking format)
- Real-time and multimedia applications require scheduler support for different classes of applications

Pros and cons of Unix

- Pros
 - Truly multitasking and multiuser
 - Robust

¹Chris DiBona, Sam Ockman, and Mark Stone. Open Sources: Voices from the Open Source Revolution, O'Reilly, January 1999.

 $^{^2}$ The article by Torvalds is available online at http://www.oreilly.com/catalog/opensources/book/linus.html

Introduction 3

- $\ast\,$ It is rare to see system crashes caused by a user program
- * Memory and file security
- Excellent programming environment
 - * Designed by the hackers, for the hackers
 - $\ast\,$ Based on "small is beautiful" approach and the KISS principle
 - \cdot Files as streams of bytes instead of ISAM (Indexed Sequential Access Method) and HSAM (Hierarchical Sequential Access Method)
- Simple interface to I/O devices (devices as files)
- Portability

• Cons

- Designed by the hackers, for the hackers
- Cryptic commands
- Too much material to learn
- Too many different versions