Hardware for Multimedia

Input and Output Devices

• Most important components of a multimedia system
• Devices classified as per their use
• Key devices for multimedia output
 – Monitors for text and graphics (still and motion)
 – Speakers and MIDI interfaces for sound
 – Specialized helmets and immersive displays for virtual reality
• Key devices for multimedia input
 – Keyboard and OCR for text
 – Digital cameras, scanners, and CD-ROMs for graphics
 – MIDI keyboards, CD-ROMs and microphones for sound
 – Video cameras, CD-ROMs, and frame grabbers for video
 – Mice, trackballs, joy sticks, virtual reality gloves and wands, for spatial data
 – Modems and network interfaces for network data
• Monitors
 – Most important output device
 – Provides all the visual output to the user
 – Should be designed for the highest quality image, with least distortion
 – Large vacuum tube with electron gun at one end aimed at a large surface (viewing screen) on the other end
 – Viewing screen is coated with chemicals that glow with different colors; three different phosphors are used for color screens
 – Source of electron beam is electrically negative pole or cathode (hence the name Cathode Ray Tube, or CRT)
 – Two different sets of colors used in monitors – RGB and CMY, with either set capable of full color spectrum
 – Electron beam strikes the screen many times per second
 * Phosphors are re-excited at each electron strike for a brief instance
 * Refresh rate, measured in Hz
 * Preferred refresh rate is 75 Hz or more
 – Electron beam sweeps across the screen in a regular pattern
 * Required to refresh phosphors frequently and equally
 * Raster scan pattern
 * Always strikes when going from left to right (trace), and turned off to go from right to left (retrace)
 – Three separate electron beams for three colors, for better focus and higher refresh rates
 – Screen divided into individual picture elements, or pixels
 * Each pixel is made of its own phosphor elements to give the color
 * Memory chip contains a map of what colors to display on each pixel
 – Bit map
 * Mostly used in context of binary images (black or white)
* One bit per pixel to indicate whether pixel is black or white

 - Color maps, or pixmap
 * One byte for each color for every pixel (24-bit color)

 - Image changed in the memory map associated with screen
 * For realistic motion images and for flicker-free screen, bit-map must be modified faster than the eye can perceive (30 frames/sec)
 * For a 640 \times 480 screen, number of bits is: $640 \times 480 \times 24 = 7,372,800$
 * To refresh the screen at 30 times per second, the number of bits transferred in a second is: $640 \times 480 \times 24 \times 30 = 221,184,000$ or 221 Mb
 * Larger screen requires more data to be transferred
 * Transfer rate limitation can be overcome by using hardware accelerator board to perform certain graphic display functions in hardware
 * Full-screen 30 image per second performance may not be possible even with graphics accelerator board

 - Physical size of monitor
 * Important factor in the quality of multimedia presentation
 * Typically between 11 and 20 inches on diagonal
 * Another important factor is the number of pixels per inch
 - Too few pixels make the image look grainy
 - For best quality images, pixels should not be wider than 0.01 inches (28mm) in diameter
 - Latter quantity is used for marketing the monitors (25mm dot pitch)

 - Graphics display board
 * Used in addition to monitor to speed up graphics
 * Special hardware circuits for 2D and 3D graphics
 * Simple graphics boards just translate image data from RAM into one usable by monitor
 * Complex boards can even speed up the refresh rate of screen

 - Qualities of a good multimedia monitor
 * Size, refresh rate, dot pitch

 - Other concerns about monitor include weight and ambient light

 - Liquid crystal display monitors
 * Flat screen displays
 * Crystals allow more or less light to pass through them, depending upon the strength of an electric field
 * Not appropriate for multimedia presentation as the view angle is extremely important

 - 3D monitors in the future

 - Human factor concerns

* Speakers and MIDI interfaces

 - Production of sound
 1. Digitized representation of frequency and sound transmitted at appropriate time to the loudspeaker (.WAV files) – common method
 2. Commands for sound synthesis can be transmitted to a synthesizer at appropriate time (MIDI files) – used for the generation of music

 - Musical Instruments Digital Interface (MIDI)
 * Standard to permit interface for both hardware and control logic between computers and music synthesizers
 * Adopted in 1982
* Consists of two parts
 1. Hardware standard
 · Specifies cables, circuits, connectors, and electrical signals to be used
 2. Message standard
 · Types and formats of messages to be transmitted to/from synthesizers, control units (keyboards), and computers
 · Messages consist of a device number, a control segment to tell the device the function to be performed (turn on/off a specified circuit), and a data segment to provide the information necessary for the action (volume of sound, or frequency of basic sound)
* An entire piece of music can be described by a sequence of MIDI messages
 - MIDI interface
 * Required in the computer to communicate with MIDI instruments
 * Circuit board to translate the signals

• Alphanumeric keyboards and optical character recognition
 - Used for textual input
 - Pressing a key on a keyboard closes a circuit corresponding to the key to send a unique code to the CPU
 - Printed text can be input using OCR software
 * OCR software analyzes an image to translate symbols into character codes
 * Systematically checks the entire page, searching for patterns of dark and light recognizable as alphabetic, numeric, or punctuation characters
 * Choose the best match from a set of known patterns
 - Quality of scanned page as well as output

• Digital cameras and scanners
 - Real image – something present in nature
 - Digital image – Representation of real image in terms of pixels
 - Still image – Snapshot of an instance
 - Motion image – Sequence of images giving the impression of continuous motion
 - Graininess in real images
 * Individual dots observed when a photograph taken by conventional camera is enlarged sufficiently
 - Digital image capture
 * Light is focused on photosensitive cells to produce electric current in response to intensity and wavelength of light
 * Electric current is scanned for each point on the image and translated to binary codes
 * Codes correspond to pixel values and can be used to rebuild the original picture
 - Scanners scan an image from one end to the other
 * Scanning mechanism shines bright light on the image and codes and records the reflected light for each point
 * Scanner does not store data but sends it to the computer, possibly after compression of the same
 - Quality of images
 * Depends on the quality of optics and sharpness of focus
 * Perceived by sharpness of resulting image
 * Accuracy of encoding for each pixel depends on the precision of photosensitive cells
 * Resolution of scanner/camera (number of dots/inch)
 * Amount of storage available
• Preferable to scan at the highest possible resolution under given hardware and storage space constraints to get the most detail in the original image

• Video camera and frame grabbers
 - Standard video camera contains photosensitive cells, scanning one frame after another
 - Output of the cells gets recorded as analog stream of colors, or sent to digitizing circuitry to generate a stream of digital codes
 - Video input card
 * Required for use of video camera to input video stream into computer
 * Digitizes the analog signal from camera
 * Output can be sent to a file for storage, CPU for processing, or monitor for display (or all of them)
 - Frame grabber
 * Allows the capture of a single frame of data from video stream
 * Not as good resolution as a still camera
 * Typical frame grabbers process 30 frames per second for real time performance

• Microphones and MIDI keyboards
 - Used to input original sounds (analog)
 - Microphone has a diaphragm that vibrates in response to sound waves
 - Vibrations modulate a continuous electric current analogous to sound waves
 - Modulated current can be digitized and stored as standardized format for audio data, such as .WAV file
 - Microphone plugs into a sound input board
 * Developer can control the sampling rate for digitizing
 * Higher sampling rate gives better fidelity but requires more space
 * Sampling rate for music – 20,000 Hz
 * Sampling rate for speech – 10,000 Hz
 - Editing digital audio files (cut and paste)

• Mice, trackballs, joy sticks, drawing tablets, ...
 - Used to enter positional information as 2D or 3D data from a standard reference point
 - Latitude, longitude, altitude
 - Common to define a point on the computer screen
 - Mouse defines the movement in terms of two numbers – left/right and up/down on the screen, with respect to one corner
 - Movement of mouse is tracked by software, which can also set the tracking speed
 - Trackball works the same way as the mouse
 - A joystick is a trackball with a handle
 - Pressing the button associated with the mouse/trackball/joystick sends a signal to the computer asking it to perform some function using the cursor for context
 - Multimedia software should be able to determine the positional information as well as the signal context (mouse press)

• CD-ROMs and video disks
 - Popular media for storage and transport of data
 - Data written on disk by burning tiny holes, interpreted as binary 0 and 1 by software
Hardware for Multimedia

– Read-only devices; data can be written only once
– CD-ROMs can typically store about 600MB of information
– With time, the speed has improved (4X in 1995 to more than 50X now)
– DVD-ROMs allow a few gigabytes of data on a single disk
– Ideal media for distributing multimedia productions (low cost)

Virtual Reality Devices

• Provide artificial stimuli to the senses of the user
• Substitute for input from physical world surrounding the system
• Virtual reality output devices
 – Immersion of the VR system
 * Extent of user isolation from the world
 * Reception of artificially generated stimuli in lieu of the world
 * Greater immersion requires sophisticated output devices
 * Expensive in terms of hardware, programming, and computing power
 – Design requirements for a particular multimedia system and cost/benefit of using a particular piece of VR hardware
 – Primary stimuli are visual and aural
 – Motion may be possible using hydraulics that are programmed in conjunction with visual and audio data
 – Not much in terms of touch and smell
• Visual output
 – Presented on a screen or head-mounted projection device
 – Immersion environments
 * CAVE
 · CAVE Automatic Virtual Environment
 · Most immersive VR visual output environment
 · Developed at NCSA at UIUC
 · Room about 10 feet square formed by rear projection screens
 · Images controlled by a high-speed graphics computer
 · User needs to wear special headgear with 3D glasses and a head motion tracking device
 · 3D glasses make the image appear to be actual 3D objects within the room
 · Head tracking device is coupled to a controlling computer which varies the images so that they appear to move in response to head movements
 · Expensive to build and maintain
 * ImmersaDesk
 · An inexpensive version of CAVE for desktop systems
 · Has only one rear projection screen
 · Applications include versions of Quake and Doom
 – Head-mounted displays
 * Disables visual stimuli from outside world from reaching the user
 * A large helmet to go on top of user’s head
 * Small screen suspended in front of eyes
Hardware for Multimedia

- Could be two small screens, one in front of each eye
- Two screens can have two phases of the same image to give stereoscopic effect
- Screens should have excellent focus, extremely high resolution, and realistic colors
- HMD should be light in weight (human factors)
- Should provide at least 120° vertical view and about 160° horizontal view

- Limitations
 - Small flat screens are made using LCD
 - Problem with the resolution and brightness levels of LCD
 - The response time to change for LCD may not be acceptable

- Parallax
 - Change in position of stationary object when viewed from slightly different position
 - Each eye views the objects at slightly different position
 - Amount of apparent motion of object is a function of distance from the eye
 - As the distance to object approaches infinity, apparent motion goes to zero
 - Problem in capturing parallax information with motion of camera
 - Parallax information may not be due to motion of user’s head
 - Problem in capturing and storing views with 360° scope
 - Partially solved by panning camera

- Retinal images
 - Project the image directly on the retina of viewer’s eyes
 - Image projected by LEDs and reflected onto retina by a small mirror
 - Display limited to monochrome images with moderate resolution

- Aural output
 - Two primary factors related to perception of sound – localization and identification
 - Sound output must change subtly so that it appears to come from the same location no matter where the head is pointed
 - Current sound systems are not realistic with regard to controlling the precise location of the source

- Virtual reality input devices
 - Most input performed by using mechanical devices such as buttons of a joystick
 - Problem to employ unobtrusive virtual input devices that perform like the real devices
 - Position sensing
 - Accomplished by means of some form of radiated signal
 - Signal could be visible light, infrared, ultrasound, or laser
 - Signal emitted from a device mounted on subject, or reflected off the subject
 - Subject can be made to wear devices containing sensors/emitters to send signals
 - Wearable devices can transmit information about many points simultaneously
 - A glove can transmit information about all fingers
 - Position is given in terms of three mutually perpendicular axes
 - It may be required to get the orientation of the object as well
 - Orientation defined in terms of terminology used by pilots
 - \textit{Yaw} – Rotation along the \(Y\) (vertical) axis
 - \textit{Pitch} – Rotation along the \(Z\) (left-right) axis
 - \textit{Roll} – Rotation along the \(X\) (front-back) axis

- Motion
* Specified in terms of change in position and orientation
* Six degree of freedom corresponding to six parameters
* Sensor output can be a continuous stream of data or sent only upon request
* Polling reduces the amount of network traffic but may miss quick changes in position
* Lag of latency
 - Delay from actual time of motion and when it is interpreted
 - Should not exceed 50 msec to avoid being perceived by user
* Update rate
 - Rate at which measurements are made
 - Slow update rate makes the motion look jerky
* Precision and accuracy of measurements
 - Accuracy varies with particular application but should be as high as possible
 - Accuracy depends on analog to digital converters
* Range of sensors
 - Maximum range/distance over which motion can be sensed
 - Dimensions of a room, geocells in flight simulators, distance over which a hand can move
* Degree to which sensor screens out interference from ambient sources
 - Voice input
 * Speech or voice recognition
 * Form of pattern recognition
 * Spoken sound patterns are matched against previously recorded patterns
* Problems
 - Voice quality of different people – pitch, timbre, volume, rate of speech, accent
 - Computer can be trained by the subject by speaking certain words repeatedly
 - Limited vocabulary
* Natural language processing
 - People use different words for same thing (can i use your pen?)
 - Some sentences make sense but cannot be properly parsed
 - Accentuating a word may be important
 - Tone of speaker’s voice can alter the meaning of words
 - Cultural or language issues (In India, you always pass out from college)
 - Homonyms (see vs sea, know vs no)
 - Relative position of words (Only the son praised his sister.)
* Limited vocabulary can still be used for commands to substitute point-and-click

Modems and Network Interfaces

- Network interface
 - Translate the signals from computer to network and the other way round
- Serial and parallel
 - Each character represented by a set of bytes (typically from 7 to 16)
 - Bits may be transmitted in parallel (within computer) or serial (over the network)
 - Parallel transmission is faster but requires extra wires (more expensive)
 - Interface can convert from serial to parallel and vice versa
Character encoding
- ASCII and EBCDIC
- ASCII uses 7 bits per character, but extended ASCII uses 8 bits to represent special characters
- Unicode
 - Fixed-width, uniform text and character encoding scheme
 - Includes characters from world’s scripts, including technical symbols
 - Uses 16-bits
 - No escape sequences required for characters
- ISO/IEC 10646-1:1993 standard
 - 32-bit character encoding
 - Includes Unicode as one 16-bit portion of the standard

Start/Stop/Error-checking codes
- Used to inform the device of beginning and end of serial transmission
- Needed to identify a change of state on the transmission medium
 - Transmission medium with 0 shows no data being transmitted
 - Need to transmit data starting with 0
 - Achieved by sending a start bit that is opposite of idle state
 - Next eight bits contain data
- Serial data needs to be converted to parallel as eight bits are needed together to signal a character
- Stop bit ensures that the translation from serial to parallel has been achieved before more data is sent
- Some bits may be used for error detection/correction

Transmission rate
- Internal transmission rate is much faster than transmission rate across machines over the network
- Interface needs to account for the change in data transmission rate
- Signal from interface to computer (interrupt) informs about when it has received a byte and is ready to transmit it forward

Transmission form
- Signal can be transformed from two voltage levels (binary) to something suitable for transmission as voice over phone lines
- Translation achieved through a modem (modulator/demodulator)
- No special communication lines are required, except phone lines
- Limited in transmission speed
- A speed of 56K still may not be fast enough for image downloading
- Multimedia designer needs to be concerned about the number of images being transmitted, possibly over slow connections