Protocols and Architecture

Protocol Architecture.

- Layered structure of hardware and software to support exchange of data between systems/distributed applications
- Set of rules for transmission of data between systems
- One or more common protocols for every layer

Protocols

- Characteristics
 - Direct/indirect communication
 * Point-to-point link
 - Two entities share a link, allowing direct communication
 - Entities may also connect through a number of intermediate hosts, bringing in the issue of access control, making the protocol more complex
 * Switched communications network
 - Entities depend on other entities for data exchange
 - Entities may be connected over local network (Ethernet) or may belong to different networks (internet)
 - Monolithic/structured protocol
 * Monolithic protocol
 - All protocol logic (for every layer) is combined into one unit
 - Problem in changing any aspect of the protocol (such as virtual circuit request)
 * Structured protocol
 - Set of protocols with hierarchical/layered structure
 - Clearly shows the distinction between different layers of logic
 - Communications architecture
 - Hardware/software used to implement communications with structured protocol
 - Symmetric/asymmetric protocol
 * Symmetric protocol
 - Involves communication between peer entities
 * Asymmetric protocol
 - Involves client/server type of relationship
 - Standard/nonstandard protocol
 * Standard protocol
 - Commonly accepted protocols that have been agreed on by a standards body
 * Nonstandard protocol
 - Built for specific communications situation

- Functions
 - Basis for all protocols
 - Encapsulation
 * Data as well as control information in each PDU
Control information is divided into the following categories:

1. Address of the sender and receiver
2. Error detection code or frame check sequence
3. Protocol control for other protocol functions

- Segmentation and reassembly
 * Segment the data stream into small bounded size blocks or PDUs
 * Reasons for segmentation
 - Communications network may accept data blocks only up to a certain size (53 octets for ATM, 1526 octets for Ethernet)
 - Efficient error control with smaller PDU size; fewer bits retransmitted in the event of failure
 - Better access to shared transmission facilities, with shorter delay; nobody can monopolize the network
 - Smaller buffers at receiver stations
 - Can pause transfer for checkpoint and recovery
 * Disadvantages with segmentation
 - Larger overhead with smaller PDU size
 - More interrupts as PDUs announce their arrival
 - More time spent to process smaller PDUs
 * Segmented data is reassembled into messages appropriate for application level

- Connection control
 * Connectionless data transfer
 - Each PDU is independent of other PDUs
 * Connection-oriented data transfer
 - Used if stations are to be connected for long time or protocol details are to be worked out dynamically
 - Also known as logical association, or virtual circuit, with three phases
 1. Establish connection
 2. Transfer data
 3. Terminate connection
 * Establish connection
 - One station issues a connection request to the other, with or without involving a central authority
 - Receiver may accept or reject the connection
 - Request may include negotiating syntax, semantics, and timing of protocol
 - Protocol may have some options to be negotiated at connection time, such as PDU size
 * Transfer data
 - Exchange data and control information (flow control, error control)
 - Data flows in one direction while acknowledgements flow in the other
 * Terminate connection
 - Either side may terminate connection by sending a request
 - Connection may be terminated by a central authority
 * Sequencing
 - PDUs are sequentially numbered as they are sent
 - Each side keeps track of outgoing numbers (generated locally), and incoming numbers (generated by other host)
 - Ordered delivery
 * PDUs may not arrive in order in which they are sent
 * Connection-oriented protocols require the PDU order to be maintained
* Number the PDU sequentially as they are generated
* Problem if sequence numbers repeat after overflow
* Preferable to have the maximum number PDU to be twice the maximum number of outstanding PDUs

- Flow control
 * Function of receiving entity to limit the amount of data sent by transmitter
 * Stop-and-wait
 - Each PDU must be acknowledged before next one can be sent
 * Efficiency requires the transmission of a fixed number of PDUs without acknowledgement
 * Implemented in several protocols

- Error control
 * Guard against loss or damage of data and control information
 * Implemented as error detection and retransmission
 * Detection of error by receiver makes him discard the PDU
 * No acknowledgement makes the sender retransmit the PDU
 * With error correction code, the receiver may be able to correct the error at destination
 * Implemented in several protocols

- Addressing
 * Addressing level
 - Level in the communications architecture at which an entity is named
 - Network-level address or IP address used to route a PDU through network (also called Network Service Access Point or NSAP in OSI terminology)
 - Upon arrival at destination, the PDU must be routed to port or Service Access Point (SAP) for the application
 * Addressing scope
 - Global address
 - **Global nonambiguity** One system to one address but possible to have more than one address for the system
 - **Global applicability** Any system can be identified from anywhere
 - A port may not be unique in the network unless attached to a system (think of SMTP port on every system in a network)
 * Connection identifiers
 - Useful for connection-oriented data transfer (virtual circuit) but meaningless for connectionless data transfer (datagram)
 - Identified by a connection name during the data transfer phase
 - Advantages
 - **Reduced overhead** Data packets can contain just the circuit number after a virtual circuit is established
 - **Routing** Allows the setting up of a fixed route
 - **Multiplexing** More than one connection between entities; incoming PDU can be identified by connection identifier
 - **Use of state information** State information related to the connection; enables flow control and error control using sequence numbers
 * Addressing mode
 - Individual or unicast address – reference to a single system or port
 - Multicast or broadcast address

- Multiplexing
 * Combining several signals for transmission on some shared medium
Possible to have multiple virtual circuits terminating into a single end system

Can also be accomplished via port names

Upward multiplexing

- Multiple higher-level connections are multiplexed on a single lower-level connection
- Connecting your PC to ISP for multiple applications, including web, email, telnet, ftp, ...

Downward multiplexing

- Split a single higher-level connection over a number of lower-level connections
- Useful for reliability, performance, or efficiency

Transmission services

- Additional services, such as priority, quality of service, and security

OSI

- The OSI model
 - Partitions the communications model into a hierarchical set of layers
 - Each layer is a logical unit to communicate with the corresponding unit at a different host
 - The layer provides a level of abstraction, hiding details of its functions in lower layers and providing service to layers above it
 - Layers should have a clean interface so that changes in one layer do not affect the other layers
 - The goal is to keep each layer small but still, not to have too many layers
 - Seven layers in the model
 - No direct communication between peer layers except at the physical layer level

- Standardization within the OSI framework
 - Functions of each layer are well defined
 - Standards can be developed independently and simultaneously for each layer
 - Speeds up standards making process
 - Well-defined boundaries (interface) between layers
 - Changes in standards in one layer need not affect existing software in another layer
 - Easier to introduce new standards
 - Modular design of layers
 1. Protocol specification
 - Protocol must be precisely specified in terms of PDUs exchanged, semantics of all fields, and allowable sequence of PDUs
 2. Service definition
 - Services provided to next higher layer
 - Functions description of what is provided, and not how it is provided
 - Interaction between two adjacent layers takes place within a single open system and is not a concern of any other open system; how pales in comparison to what
 - Adjacent layers are usually implemented on the same processor; special hardware features can be exploited to make implementation more efficient
 3. Addressing
 - Network service access point (NSAP) to indicate the transport entity that is user of network service
 - Addressing as SAP allows each layer to multiplex multiple users from the next higher layer

- Service primitives and parameters
Services between adjacent layers are expressed in terms of primitives and parameters

- **Primitives**
 - Specifies the function to be performed

- **Parameters**
 - Data and control information

- **Four types of primitives**
 1. **Request**
 - Issued by a service user to invoke some service and to pass the parameters needed to fully specify the service request
 2. **Indication**
 - Issued by the service provider to:
 1. Indicate the primitive has been invoked by the peer service user on the connection and provide associated parameters
 2. Notify the service user of a provider-initiated action
 3. **Response**
 - Issued by a service user to acknowledge or complete some primitive previously invoked by an indication to that user
 4. **Confirm**
 - Issued by service provider to acknowledge or complete some primitive previously invoked by a request by the service user

- The time line indicates the sequence as specified above

- **Confirmed service**
 - Initiator receives confirmation that the requested service has had the desired effect at the other end

- **Nonconfirmed service**
 - Initiator receives no confirmation that the requested service has been carried out

1. **OSI layers**
 - **Physical layer**
 - Covers the physical interface between devices
 - Identifies the rules to pass bits from source to destination (raw bit stream service)
 - Four important characteristics
 1. **Mechanical**
 - Physical properties of the interface to transmission medium
 2. **Electrical**
 - Representation of bits in terms of voltage levels
 - Data transmission rates
 3. **Functional**
 - Functions of individual circuits of physical interface between a system and transmission medium
 4. **Procedural**
 - Sequence of events by which bit streams are exchanged

2. **Data link layer**
 - Makes the physical link reliable, through error detection and control
 - Activates, maintains, and deactivates the link
 - Fully functional data link layer obviates the need for error control in higher layers
 - Communication through a number of data link layers may require the higher layers to perform some error control
3. Network layer
- Transfers information across communications network, performing switching and routing functions
- Hides underlying data transmission and switching technologies
- Highest layer in a network node
- System interacts with network
 * Specification of destination address
 * Request for network services like priority
- In direct point-to-point network, there is no need for network layer as data link layer manages the link
- Systems could be connected across a single network, using circuit switching or packet switching techniques
 * Packet level of X.25 standard

4. Transport layer
- Mechanism for exchange of data between end systems
- Ensures that data are delivered error-free, in sequence, and with no losses or duplication
- May optimize the use of network services
- Provides a requested quality of service to session entities, based on acceptable error rates, maximum delay, priority, and security
- Size and complexity depend on the reliability of underlying layers

5. Session layer
- Mechanism to control the dialogue between applications in end systems
- Key services include
 * Dialogue discipline
 - Full duplex or half duplex
 * Grouping
 - Mark data to define groups of data
 * Recovery
 - Checkpoint to allow retransmission of all data since last checkpoint due to failure

6. Presentation layer
- Format of data to be exchanged between applications
- Defines syntax used between application entities
- Provides for selection and modification of the representation used
- Data compression and encryption

7. Application layer
- Interface between application programs and OSI environment
- Management functions and other useful mechanisms for distributed applications support

TCP/IP protocol suite

- Reasons for TCP/IP’s success
 - Time; appeared on the scene before the OSI model
 - Support from the DOD
 - Internet foundation

- The TCP/IP approach
Modular and hierarchical like the OSI model
- Descriptive in nature compared to prescriptive nature of OSI
 - Allows multiple protocol functionality in a single layer
- Does not require strict use of all layers
 - Application level protocols may directly run on top of IP

- Operation of TCP and IP
 - Computer is connected to network using a network access protocol such as Ethernet
 - Enables host to send data across the network to another host or to a router to be transmitted to another network
 - Internet protocol
 - Implemented in all the end systems and routers
 - Acts as a relay to move data from one host to another, possibly through router(s)
 - Transmission control protocol
 - Implemented in the end systems only
 - Keeps track of data blocks to ensure reliable delivery to appropriate applications
 - Two levels of addressing
 - Unique host address over global internet, used by IP
 - Unique process (port) address within host, used by TCP
 - TCP header
 - Control information for data blocks generated by user application
 - Items in the header
 - **Destination port**
 - Address to whom data is to be delivered
 - **Sequence number**
 - Sequence number assigned to segment to keep track of segment order
 - Destination TCP entity may use it to reorder segments
 - **Checksum**
 - Code to check error during transmission
 - IP datagram
 - Created by adding IP header to each segment
 - Items in header include destination host address
 - Presented to network access layer for transmission
 - Packet or frame
 - Created by network access layer by adding its own header to the IP datagram
 - Packet header contains information for network to transfer data across the network
 - Items in packet header are
 - **Destination network address**
 - Device address for packet delivery
 - **Facilities request**
 - Request for use of network facilities, such as priority

- Applications
 - Simple mail transfer protocol (SMTP)
 - Basic email facility
- Mechanism to transfer messages across hosts
- Features include mailing lists, return receipts, and forwarding
- Does not specify message creation; just the transfer of message using TCP

- File transfer protocol (FTP)
 - Transfer files across systems under user commands
 - Can accommodate both text and binary files
 - Upon request, sets up a TCP connection to target system for exchange of control messages
 - Connection allows user to send authentication and files with desired file actions
 - Upon approval, a second TCP connection is opened for actual data transfer
 - Second connection avoids the overhead of control information at the application level
 - After file transfer is complete, control connection is used to signal completion and accept new commands

- Telnet
 - Remote logon capability
 - Designed to work with simple scroll-mode terminals
 - Implemented in two modules
 1. User telnet
 - Interacts with terminal I/O module to communicate with a local terminal
 - Converts characteristics of real terminals to network standards and vice versa
 2. Server telnet
 - Interacts with an application, acting as a surrogate terminal handler
 - Makes remote terminal appear as local to the application
 - Traffic between user and server telnet is carried on a TCP connection