Pointers

What are pointers?

e A mechanism to keep the address

e Pointer type variables hold nothing but an address in memory where the actual contents of the variable are to
be found

e One of the most complex and most powerful paradigms in a programming language

Pointer variable declarations and initialization

e Indirection
— Indirect reference to a value contained in a variable
e Pointer variables must be declared before use

e Definition syntax
int *count_ptr, count;

— The above definition defines two variables — count_ptr which is a pointer to a variable of type int, and
count which can hold an integer value

— If more than one variable is to be defined as a pointer, each such variable should be prefixed with a * in
the definition

— It is a good idea to use _ptr as a suffix to indicate that a variable is a pointer type

e Pointers can be initialized when they are defined or in an assignment statement

— The only initialization values permissible for pointers are 0, NULL, or an address
— NULL is a symbolic constant defined to be 0 in stdio.h

— Assigning an arbitrary integer to a pointer is not permissible (leads to a run-time error)

Pointer operators

e The address operator (&)

— Has been used in the scanf statement

— Using the above definition of count and count_ptr, the following assigns the address of count to
count_ptr

count_ptr = &count;

— This operator cannot be applied to constants, expressions, variables defined with the storage class register

e The dereferencing operator (*)

Also known as the indirection operator

Returns the value contained in the storage location pointed to by its operand

After executing the last assignment statement, both count and *count_ptr return the contents of count

— The operation itself is known as dereferencing a pointer

Pointers 2

— This operation is almost the biggest source of run-time errors in C

e Both * and & operators are complements of one another

*ExX = &*xX

Calling functions by reference

e We have already noted that all parameters in C are passed to the functions using call by value
e Also functions are constrained by the fact that only one value can be returned to the caller
e Pointers and indirection operators provide a work around this limitation of C

e Let us write a function to exchange the value in two variables
/**/

/* xch.c : Exchange two integer variables */
[KKK KKK A KK KK KK KKK oK KKK KoK Kok oK ook KoK KoK oK ok oK ok ok oK oK ook Kok ok ook oK ok Kok ok ook ok ok ok ok

void exchange (int * x, int * y)

{
int tmp; /* Temporary variable */
tmp = *Xx;
*X = ky;
*y = tmp;
}

e The funtion is called by a statement
exchange (&x, &y);

e If you are passing arrays, you do not need to prefix & to the name of the array because the name itself is a pointer
e Also look at the examples in the book (Figs. 7.6 and 7.7; p. 265)

e The prototype for variables passed by reference should contain an asterix after the type of variable; The prototype
for exchange function is

void exchange (int *, int *);

Using the const qualifier with pointers

e Use of pointers forces the parameters to be passed by reference
e May cause problems if the function accidently modifies a variable that was not intended to be modified
e Such behavior could be avoided by the use of the const qualifier

e As an example, consider a function

void print_array (int a[], int n)

Pointers 3

Since this function does not need to modify the elements in the array, you are better off passing both the
parameters as const

— It may not really be necessary to qualify n with const because it is automatically passed by value

You should also check the function prototype to see if the values passed to the function get modified

e const provides the efficiency of call-by-reference (no overhead in copying the parameters) and the protection of
call-by-value (no modification of data allowed)

e Non-constant pointer to constant data

A pointer that can be modified to point to any data item of appropriate type

Does not allow the modification of elements pointed to by the pointer

Exemplified by the function print_array which should be declared as

void print_array (const int * a, int n)

The declaration using asterix is the same as the one using square brackets because of equivalence between
pointers and arrays

— The function itself could be written as

void print_array (const int * a, int n)

{
int counter = 0;
do
printf ("%10d\n", *a++);
while (++counter < n);
}

— Notice how each element is accessed in the array by using the pointer notation; also, that the pointer
variable itself is incremented to point to the next address in the array

e Constant pointer to non-constant data

— Pointer itself always points to the same location and cannot be modified
— However, the data itself can be modified (even when accessed through the pointer)

— The declaration will be given by

void foo (int * const x)
e Constant pointer to constant data

— The most restrictive form of parameter passing
— Cannot modify pointer or data

— The declaration will be given by

void foo (const int * const x)

Bubble sort using call by reference

e Reading assignment

Pointer expressions and pointer arithmetic

Pointers 4

e The sizeof () operator

— Can be used to determine the number of bytes in any data type

— The data type can be simple (such as int) or complex (such as int [100])

e Pointers allow limited arithmetic operations

— You can use ++ or —— operators to increment or decrment a pointer

— You can use += or -= to add or subtract an integer from a pointer

Finally, you can use + or - to add or subtract one pointer from another

For each of these operations, pointers add or subtract the number of bytes depending upon the size of the
data type

Relationship between pointers and arrays

e C implements arrays using pointers and the fact can be exploited in the programs

