
Pointers

What are pointers?

• A mechanism to keep the address

• Pointer type variables hold nothing but an address in memory where the actual contents of the variable are to
be found

• One of the most complex and most powerful paradigms in a programming language

Pointer variable declarations and initialization

• Indirection

– Indirect reference to a value contained in a variable

• Pointer variables must be declared before use

• Definition syntax

int *count_ptr, count;

– The above definition defines two variables – count_ptr which is a pointer to a variable of type int, and
count which can hold an integer value

– If more than one variable is to be defined as a pointer, each such variable should be prefixed with a * in
the definition

– It is a good idea to use _ptr as a suffix to indicate that a variable is a pointer type

• Pointers can be initialized when they are defined or in an assignment statement

– The only initialization values permissible for pointers are 0, NULL, or an address

– NULL is a symbolic constant defined to be 0 in stdio.h

– Assigning an arbitrary integer to a pointer is not permissible (leads to a run-time error)

Pointer operators

• The address operator (&)

– Has been used in the scanf statement

– Using the above definition of count and count_ptr, the following assigns the address of count to
count_ptr

count_ptr = &count;

– This operator cannot be applied to constants, expressions, variables defined with the storage class register

• The dereferencing operator (*)

– Also known as the indirection operator

– Returns the value contained in the storage location pointed to by its operand

– After executing the last assignment statement, both count and *count_ptr return the contents of count

– The operation itself is known as dereferencing a pointer

Pointers 2

– This operation is almost the biggest source of run-time errors in C

• Both * and & operators are complements of one another

*&x ≡ &*x

Calling functions by reference

• We have already noted that all parameters in C are passed to the functions using call by value

• Also functions are constrained by the fact that only one value can be returned to the caller

• Pointers and indirection operators provide a work around this limitation of C

• Let us write a function to exchange the value in two variables

/**/
/* xch.c : Exchange two integer variables */
/**/

void exchange (int * x, int * y)
{

int tmp; /* Temporary variable */

tmp = *x;
*x = *y;
*y = tmp;

}

• The funtion is called by a statement

exchange (&x, &y);

• If you are passing arrays, you do not need to prefix & to the name of the array because the name itself is a pointer

• Also look at the examples in the book (Figs. 7.6 and 7.7; p. 265)

• The prototype for variables passed by reference should contain an asterix after the type of variable; The prototype
for exchange function is

void exchange (int *, int *);

Using the const qualifier with pointers

• Use of pointers forces the parameters to be passed by reference

• May cause problems if the function accidently modifies a variable that was not intended to be modified

• Such behavior could be avoided by the use of the const qualifier

• As an example, consider a function

void print_array (int a[], int n)

Pointers 3

• Since this function does not need to modify the elements in the array, you are better off passing both the
parameters as const

– It may not really be necessary to qualify n with const because it is automatically passed by value

• You should also check the function prototype to see if the values passed to the function get modified

• const provides the efficiency of call-by-reference (no overhead in copying the parameters) and the protection of
call-by-value (no modification of data allowed)

• Non-constant pointer to constant data

– A pointer that can be modified to point to any data item of appropriate type

– Does not allow the modification of elements pointed to by the pointer

– Exemplified by the function print_array which should be declared as

void print_array (const int * a, int n)

– The declaration using asterix is the same as the one using square brackets because of equivalence between
pointers and arrays

– The function itself could be written as

void print_array (const int * a, int n)
{

int counter = 0;
do

printf ("%10d\n", *a++);
while (++counter < n);

}

– Notice how each element is accessed in the array by using the pointer notation; also, that the pointer
variable itself is incremented to point to the next address in the array

• Constant pointer to non-constant data

– Pointer itself always points to the same location and cannot be modified

– However, the data itself can be modified (even when accessed through the pointer)

– The declaration will be given by

void foo (int * const x)

• Constant pointer to constant data

– The most restrictive form of parameter passing

– Cannot modify pointer or data

– The declaration will be given by

void foo (const int * const x)

Bubble sort using call by reference

• Reading assignment

Pointer expressions and pointer arithmetic

Pointers 4

• The sizeof() operator

– Can be used to determine the number of bytes in any data type

– The data type can be simple (such as int) or complex (such as int[100])

• Pointers allow limited arithmetic operations

– You can use ++ or -- operators to increment or decrment a pointer

– You can use += or -= to add or subtract an integer from a pointer

– Finally, you can use + or - to add or subtract one pointer from another

– For each of these operations, pointers add or subtract the number of bytes depending upon the size of the
data type

Relationship between pointers and arrays

• C implements arrays using pointers and the fact can be exploited in the programs

