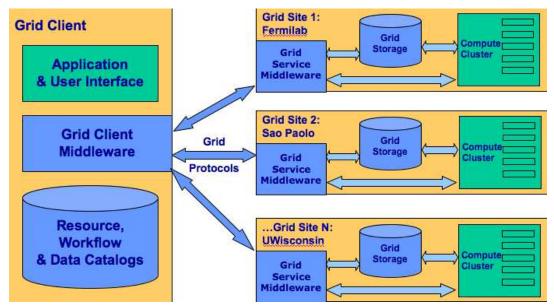

Motivation and History¹

Introduction

- Computing clusters
 - Current trend in supercomputing

- Cluster architecture


- Scaling up analysis
 - * Query and analysis of > 25 million citations

¹Most of the material in this set of notes is from the Educational division of Open Science Grid.

- * Work started on desktop workstations
- * Queries grew to month-long duration
- * Data distributed across U of Chicago TeraPort cluster
 - · 50 CPUs gave 100X speedup (30 days vs 1/3rd day)
 - · Many more methods and hypotheses can be tested
- * Higher throughput and capacity enables deeper analysis and broader community access

Grid

- Other names for grid computing: metacomputing, scalable global computing, internet computing
- Distributed clusters
 - Clusters provide a mechanism for distributed computing

- Grids are distributed sets of clusters
 - * Distributed computing within each cluster
 - * Distributed computing between clusters
- Grid computing extends scientific parallel computing on single machines to distributed systems
- Issues in grid computing
 - Security to control access and protect communication (GSI)
 - Directory to locate grid sites and services (VORS, MDS)
 - Uniform interface to computing sites (GRAM)
 - Facility to maintain and schedule queues of work (Condor-G)
 - Fast and secure data set mover (GridFTP, RFT)
 - Directory to track location for datasets (RLS)
- Processing vast datasets
 - Consider the example from astronomy and high energy physics
 - * Large datasets as inputs (find datasets)

- * Processing the input datasets
- * Output datasets (store and publish)
- Emphasis on sharing and distribution of these large datasets
- Workflows of independent program can be parallelized
- Typical good job for grid computing
 - Large varied distributed collection of data
 - Lots of CPU cycles and storage; teraflops and terabytes
 - Share results, code, parameter files
 - Advanced visualization and steering
- Ian Foster's grid checklist
 - Coordinate resources not subject to centralized control
 - Uses standard, open, general-purpose protocols and interfaces
 - Delivers non-trivial quality of service
 - * Data management
 - * Resource discovery and information
 - * Authentication and authorization
 - * Accounting and tracking
 - * Job management
 - * Response time, security, throughput
- Virtual organizations
 - Groups of organizations that use the grid to share resources for specific purposes
 - Support a single community
 - Deploy compatible technology and agree on working policies
 - * Security policies difficult
 - Deploy different network accessible services
 - * Grid information
 - * Grid resource brokering
 - * Grid monitoring
 - * Grid accounting
- Grid middleware stack

Grid Application		
(often includes a Portal)		
Workflow system (explicit or ad-hoc)		
Job management	Data management	Grid information services
Grid security Infrastructure		
Core Globus services		
Standard network protocols and web services		

- Job management
 - * Multiple layer in itself
 - * Client queuing system (Condor G)
 - · Facility to maintain and schedule queues of work
 - * GRAM Grid Resource Access and Management

- · Uniform interface to computing sites
- * Interface to schedulers
- Job-oriented models
 - * Run an application program; get a result
- Resources
 - * Grid sites are physical collections of resources
 - * Configuration and status
 - * Directory to locate grid sites and services VORS, MDS
- Core Globus services
 - * Globus used to deploy the most common core grid infrastructure
 - * API level services to write grid middleware applications
 - * Higher level services researched and built using Globus
- Quality of service
 - Data management
 - * Fast and secure data set movers GridFTP, RFT
 - * Directory to track dataset location RLS
 - Resource discovery and information
 - Authentication and authorization (access control) GSI
 - Accounting and tracking
 - Job management
 - Response time, security (communication protection), throughput

Globus and Condor

- Globus Toolkit base middleware
 - Client tools, usable from command line
 - APIs scripting languages, C, C++, java to build your own tools, or use direct from applications
 - Web service interfaces
 - Higher level tools built from basic components, for example, RFT (Reliable File Transfer)
- Condor for client and server scheduling
 - An agent to queue, schedule, and manage work submission

Open Science Grid

- US grid computing infrastructure
- Supports scientific computing via an open collaboration of science researchers, software developers, and computing, storage, and network providers

Grid Architecture

• Evolving into a service-oriented approach

- Users compose workflows
- Workflows invoke application services
- Application services provide provisioning of resources

• Two layers

- 1. Service-oriented applications
 - Wrap applications as services
 - Compose applications into workflows
- 2. Service-oriented grid infrastructure
 - Provision physical resources to support application workloads

• Provisioning

- Assemble and configure resources to meet user needs
- Make sure resource will do what is desired, with the right quality of service
- Tasks range from reservation to configuration to ...

• Virtualization

- Separation of concerns between provider and consumer of "content"
- Client and service
- Service/resource provider
- Need to sustain desired qualities of service despite dynamic environment (management)