
Wavelets and Multiresolution Processing

Wavelets

• Fourier transform has it basis functions in sinusoids

• Wavelets based on small waves of varying frequency and limited duration

• In addition to frequency, wavelets capture temporal information

– Bound in both frequency and time domains

– Localized wave and decays to zero instead of oscillating forever

• Comparison with Fourier transform

– Fourier transform used to analyze signals by converting signals into a continuous series of sine and cosine
functions, each with a constant frequency and amplitude, and of infinite duration

– Real world signals (images) have a finite duration and exhibit abrupt changes in frequency

– Wavelet transform converts a signal into a series of wavelets

– In theory, signals processed by wavelets can be stored more efficiently compared to Fourier transform

– Wavelets can be constructed with rough edges, to better approximate real-world signals

– Wavelets do not remove information but move it around, separating out the noise and averaging the signal

– Noise (or detail) and average are expressed as sum and difference of signal, sampled at different points

∗ In a picture, the signal is given by pixels

∗ Average and detail are represented by sum and difference of pixels

∗ Implemented with a low-pass filter for average and high-pass filter for detail

• Provide foundation for a new approach to signal processing and analysis called multiresolution

– Concerned with the representation and analysis of images at more than one resolution

– May be able to detect features at different resolutions

– At the finest scale, average and detail are computed by sum and difference of neighboring pixels

– We move to a coarser level by taking sum and difference of the previous levels in a recursive/iterative
manner

Background

• Objects in images are connected regions of similar texture and intensity levels

• Use high resolution to look at small objects; coarse resolution to look at large objects

– If you have both large and small objects, use different resolutions to look at them

– Figure 7.1 – Local histogram can vary over different areas of images

• Wavelet properties

– Two important properties: admissibility and regularity

– Admissibility

∗ Stated as
∫ ∞

−∞

|Ψ(ω)|2

|ω|
dω <∞

where ψ(t) is a wave in the time domain, and Ψ(ω) is the Fourier transform of ψ(t)
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∗ In practice, Ψ(ω) will always have sufficient decay so that the admissibility criterion reduces to the
requirement that Ψ(0) = 0, or

∫ ∞

−∞

ψ(t)dt = Ψ(0) = 0.

∗ Each wavelet transform must meet the requirement that it should integrate to zero

· The transform waves above and below the x-axis and the average value of the wavelet in time
domain must be zero

· In addition, the transform is well localized in the time domain

∗ A wavelet is defined over time t, 0 ≤ t ≤ N

· Provides a set of basis functions ψjk(t) in continuous time

· ψjk(t) is a set of linearly independent functions that can be used to produce all admissible functions
f(t)

· The expression

f(t) =
∑

j,k

bjkψjk(t)

where ψjk = ψ(2j · t − k) indicates a wavelet that has been compressed j times and shifted k
times, and bjk is a coefficient

· The shifted wavelet ψ0k = ψ(t − k) is defined over k ≤ t ≤ k + N , implying that the signal is
shifted to the right (translated) by k

· The rescaled wavelets ψj0 = ψ(2j · t) are defined over 0 ≤ t ≤ N
2j implying that the signal is

compressed by a factor of 2j

– Regularity

∗ Imposed to ensure that the wavelet transform decreases quickly with decreasing scale

∗ This condition also states that the wavelet function should have some smoothness and concentration
in both time and frequency domains

– Taken together, admissibility and regularity form the components wave and let in wavelet, respectively

∗ let implies quick decay

• Image pyramids

– Structure to represent images at more than one resolution

– Collection of decreasing resolution images arranged in the shape of a pyramid

– Figure 7.2a

∗ Highest resolution image at the pyramid base

∗ As you move up the pyramid, both size and resolution decrease

∗ Base level of size 2J × 2J

∗ General level j of size 2j × 2j , 0 ≤ j ≤ J

∗ Pyramid may get truncated at level P , 0 ≤ P ≤ J

∗ Number of pixels in a pyramid with P + 1 levels (P > 0) is

N2

(

1 +
1

41
+

1

42
+ · · · +

1

4P

)

≤
4

3
N2

– Figure 7.2b

∗ Building image pyramids

∗ Level j − 1 approximation output provides the images needed to build an approximation pyramid

∗ Level j prediction residual output is used to build a complementary prediction residual pyramid

– Both approximation and prediction residual pyramids are computed in an iterative fashion

– Three step procedure
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1. Compute a reduced-resolution approximation of level j input image; done by filtering and down-
sampling the filtered result by a factor of 2; place the resulting approximation at level j − 1 of
approximation pyramid

2. Create an estimate of level j input image from the reduced resolution approximation generated in
step 1; done by upsampling and filtering the generated approximation; resulting prediction image will
have the same dimensions as the level j input image

3. Compute the difference between the prediction image of step 2 and input to step 1; place the result
in level j of prediction residual pyramid

– Variety of approximation and interpolation filters

∗ Neighborhood averaging producing mean pyramids

∗ Lowpass Gaussian filtering producing Gaussian pyramids

∗ No filtering producing subsampling pyramids

∗ Interpolation filter can be based on nearest neighbor, bilinear, and bicubic

– Upsampling

∗ Doubles the spatial dimensions of approximation images

∗ Given an integer n and 1D sequence of samples f(n), upsampled sequence is given by

f2↑(n) =

{

f(n/2) if n is even
0 otherwise

∗ Insert a 0 after every sample in the sequence

– Downsampling

∗ Halves the spatial dimensions of the prediction images

∗ Given by
f2↓(n) = f(2n)

∗ Discard every other sample

– Figure 7.3

∗ Approximation pyramid produced by low-pass Gaussian smoothing

∗ Lower-resolution levels can be used for the analysis of large structures; higher resolution images
appropriate for analyzing individual object characteristics

∗ Prediction residual levels produced by bilinear interpolation

∗ Residual pyramid can be used to generate the complementary approximation pyramid without error

· Begin with a level j × j image

· Predict the level (j + 1) × (j + 1) image by upsampling and filtering

· Add the level j + 1 prediction residual

· Prediction residual histogram in Figure 7.3b is highly peaked around zero; approximation his-
togram is not

· Prediction residuals are scaled to make small prediction erros more visible

• Subband coding

– Subbands

∗ A set of band-limited components as a result of decomposing an image

∗ Decomposition performed such that subbands can be reassembled to reconstruct the original image
without error

– Digital filter in Figure 7.4a

∗ Built from three basic components: unit delays, multipliers, and adders

∗ Unit delays are connected in series to createK−1 delayed (right shifted) versions of the input sequence
f(n)
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∗ Delayed sequence f(n− 2) is given by

f(n− 2) =























...
f(0) for n = 2
f(1) for n = 2 + 1 = 3

...

∗ Input sequence f(n) = f(n− 0)

∗ K − 1 delayed sequences at the outputs of unit delays

∗ Delayed sequences multiplied by constants h(0), h(1), . . . , h(K − 1) (filter coefficients) and summed
to produce the filtered sequence

f̂(n) =
∞
∑

k=−∞

h(k)f(n− k)

= f(n) ? h(n)

∗ Each coefficient defines a filter tap; filter is of order K

∗ If the input to the filter of Figure 7.4a is the unit discrete impulse of Figure 7.4b, we have

f̂(n) =

∞
∑

k=−∞

h(k)δ(n− k)

= h(n)

· Substitute δ(n) for f(n)

· Make use of sifting property of the unit discrete impulse

· Impulse response of the filter is the K-element sequence of filter coefficients

· Unit impulse is shifted from left to right across the top of the filter (delays)

· There are K coefficients; impulse response is of length K, and filter is called a finite impulse

response (fir) filter

∗ Figure 7.5

– Two components of wavelet as analysis and synthesis

∗ Two-band subband coding

∗ Figure 7.6a – two filter banks; each containing two fir filters

– Analyzing wavelet

∗ Analog bandpass filter with its properties of scaling and translation

∗ Facilitate implementation as a convolution operation

∗ Analysis filter bank (filters h0(n) and h1(n) used to break input sequence f(n) into two half-length
sequences flp(n) and fhp(n)

– Synthesizing wavelet

∗ Along with a scaling (smoothing) function, used to represent a signal from its lowpass features (back-
ground) and bandpass details (high frequency)

– Need to build a pair of analyzing and synthesizing wavelets, as well as a pair of scaling functions (lowpass
and smoothing) so that the input and reconstructed signals remain the same

– Orthogonality

∗ Property of wavelets such that their inner products are zero

∗ Mathematically,
∫ ∞

−∞

ψjk(t) · ψj′k′(t)dt = 0
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– Orthogonal basis

∗ Formed by wavelets for the space of admissible functions

∗ Leads to a simple formula for the coefficient bjk; defined earlier as

f(t) =
∑

j,k

bjkψjk(t)

∗ Multiplying above expression on both sides by ψj′k′(t) and integrating, we have

∫ ∞

−∞

f(t)ψj′k′(t)dt =

∫ ∞

−∞

∑

j,k

bjkψjk(t)ψj′k′ (t)dt

∗ Orthogonality property eliminates the integrals of the terms where j 6= j ′ and k 6= k′; we get
∫ ∞

−∞

f(t)ψj′k′(t)dt = bjk

∫ ∞

−∞

(ψj′k′(t))2dt

yielding the coefficient bjk as

bjk =

∫ ∞

−∞
f(t)ψj′k′(t)dt

∫ ∞

−∞
(ψj′k′(t))2dt

Multiresolution

• Scaling function φ(2j · t− k) provides the basis for a set of signals (or average) at level j

• Similarly, the wavelet function ψ(2j · t− k) provides the detail at level j

• Addition of φ and ψ at level j yields the signal at level j + 1 providing for multiresolution,

φ(2j · t− k) + ψ(2j · t− k) ⇒ φ(2j+1 · t− 2k)

• Applying the above approach to all the signals at level j, we have

Vj ⊕Wj = Vj+1

where Vj and Wj are the scaling space and wavelet space at level j

• Input signal is divided into different scales of resolution, rather than different frequencies

• Wavelets automatically match long time with low frequency and short time with high frequency

Haar Wavelet

• Consider a signal f in one dimension from −∞ to +∞

−∞ +∞

f
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• Haar scaling function is denoted by φ(t) and Haar wavelet function is denoted by ψ(t).

• Haar scaling function (averaging or lowpass filter) at level 0 (in the original signal) is given by

φ(x) =

{

1 0 ≤ x < 1
0 otherwise

• Translation by j is denoted by φj(x)
φj(x) = φ(x − j)

• Figure below shows both φ(x) and φj(x)

−∞ +∞

f

0 1 j j + 1

φ φj

• Coefficients of the signal f indexed by j are given by

cj(f) =

∫

f(x)φj(x)dx

= Average of f over the interval [j, j + 1]

• An approximate reconstruction of f from cj(f) is given by

f0(x) =
∑

j

cj(f)φj(x)

• Reconstruction of the signal

−∞ +∞

f

k k + 1

ck(f) →

f0(x)

↓

– Ideally, we’ll like to have a better resolution for sampling in Figure above and go to an appropriately finer
scale

– However, in images, the finest scale is given by the pixel, and we start at this level.

∗ Sums and differences of neighboring pixels are considered to be at finest scale.
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– Next, we go to a coarser level using the family {φ
(1)
j }j where

φ
(1)
j (x) = φ

(

1

2
x− j

)

.

– Note that

φ

(

1

2
x− j

)

=

{

1 2j ≤ x < 2(j + 1)
0 otherwise

– Signals at level 1 are given by

c1j (f) =
1

2

∫

f(x)φ
(1)
j (x)dx

= average of f over [2j, 2(j + 1)]

• Averaging over larger interval leads to a loss of information (detail)

– Lost detail is preserved in wavelet transform

– φ(0) refers to φ at level 0, the original level.

– Since φ
(1)
j = φ0

2j + φ0
2j+1, we see that

c
(1)
j =

c
(0)
2j + c

(0)
2j+1

2
.

– Detail is preserved by introducing a new coefficient (highpass filter)

d
(1)
j =

c
(0)
2j − c

(0)
2j+1

2

– It is apparent that

c
(1)
j + d

(1)
j = c

(0)
2j

c
(1)
j − d

(1)
j = c

(0)
2j+1

– The average (ψ) and detail (d) coefficients for Haar wavelet at level 1 are given by

ψ
(1)
j = 1

2

[

φ
(0)
2j − φ

(0)
2j+1

]

d
(1)
j =

∫

f(x)ψ
(1)
j (x)dx

– Notice from above equation that the wavelet transform of one-dimensional signal is two-dimensional.

Extension of Haar wavelet to a signal in two dimensions

• Consider a sample of the 2D image as a box as shown below

• •

••

•

(2i, 2j)

(2i, 2j + 1)

(2i + 1, 2j)

(2i + 1, 2j + 1)

Q
(0)
2i,2j

Q
(0)
2i,2j+1

Q
(0)
2i+1,2j+1

Q
(0)
2i+1,2j

(2(i + 1), 2(j + 1))
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– Sample is divided into four areas (squares)

– Q represents the signal coefficients

– Let (l, p) represent the center coordinates (2i+ 1, 2j + 1) in the sample

– The Haar coefficient is given by

Cl,p(f) =

∫ ∫

f(x, y)χ
Q

(0)

l,p

(x, y)dxdy

where the characteristic χ of Q at level 0 is given by

φ
(1)
i,j (x, y) = χQ(x, y) =

{

1 (x, y) ∈ Q
0 (x, y) 6∈ Q

Q
(1)
j =

⋃

l = 2i, 2i+ 1
p = 2j, 2j + 1

Q
(0)
lp

– Also, with

Q
(1)
(i,j) =

{

(x, y)

∣

∣

∣

∣

2i ≤ x < 2(i+ 1)
2j ≤ y < 2(j + 1)

}

the Haar coefficient at level 1 is given by

C
(1)
(i,j)(f) =

1

4

∫ ∫

Q
(1)

(i,j)

f(x, y)dxdy

=

∫ ∫

φ
(1)
i,j (x, y)f(x, y)dxdy

– The average and detail coefficients are now given by

C
(1)
(i,j)(f) = C

(0)
2i,2j(f) + C

(0)
2i+1,2j(f) + C

(0)
2i,2j+1(f) + C

(0)
2i+1,2j+1(f)

D
(1)(0,1)
(i,j) (f) = C

(0)
2i,2j(f) + C

(0)
2i+1,2j(f) − C

(0)
2i,2j+1(f) − C

(0)
2i+1,2j+1(f)

D
(1)(1,0)
(i,j) (f) = C

(0)
2i,2j(f) − C

(0)
2i+1,2j(f) + C

(0)
2i,2j+1(f) − C

(0)
2i+1,2j+1(f)

D
(1)(1,1)
(i,j) (f) = C

(0)
2i,2j(f) − C

(0)
2i+1,2j(f) − C

(0)
2i,2j+1(f) + C

(0)
2i+1,2j+1(f)

∗ Notice from the above equation that the wavelet transform of a two-dimensional signal is in four
dimensions

– Adding the four coefficients in the above equation, we get

C
(1)
(i,j)(f) +

∑

D
(1)(α,β)
(i,j) (f) = C

(0)
2i,2j

φ
(1)
ij (x, y) =

2i+1
∑

l=2i

2j+1
∑

p=2j

φ
(0)
l,p (x, y)

ψ
(
(i,j,k)1)(x, y) =

1

4

2i+1
∑

l=2i

2j+1
∑

p=2j

(ξl,p,k)φ
(0)
l,p (x, y)

ξl,p,k

k → 0 1 2 3
l 2i 1 1 1 1

2i+ 1 1 1 -1 -1
p 2j 1 -1 1 -1

2j + 1 1 -1 -1 1
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d
(1)
i,j,k =

∫

f(x, y)ψ
(1)
(i,j,k)(x, y)dxdy

– k = 0 corresponds to

φ
(1)
(2i,2j)(x, y) =

1

4
φ

(

1

2
x− i,

1

2
y − j

)

Discrete Wavelet Transform

• cwt is redundant as the transform is calculated by continuously shifting a continuously scalable function over
a signal and calculating the correlation between the two

• The discrete form is normally a [piecewise] continuous function obtained by sampling the time-scale space at
discrete intervals

• The process of transforming a continuous signal into a series of wavelet coefficients is known as wavelet series

decomposition.

• Scaling function can be expressed in wavelets from −∞ to j

• Adding a wavelet spectrum to the scaling function yields a new scaling function, with a spectrum twice as wide
as the first

– Addition allows us to express the first scaling function in terms of the second

– The formal expression of this phenomenon leads to multiresolution formulation or two-scale relation as

φ(2jt) =
∑

k

hj+1(k)φ(2j+1t− k)

– This equation states that the scaling function (average) at a given scale can be expressed in terms of
translated scaling functions at the next smaller scale, where the smaller scale implies more detail

– Similarly, the wavelets (detail) can also be expressed in terms of translated scaling functions at the next
smaller scale as

ψ(2jt) =
∑

k

gj+1(k)φ(2j+1t− k)

– The functions h(k) and g(k) are known as scaling filter and wavelet filter, respectively

∗ These filters allow us to implement the discrete wavelet transform (dwt) as an iterated digital filter
bank.

• Subsampling property

– Gives a step size of 2 in the variable k for scaling and wavelet filters

– Every iteration of filter banks reduces the number of samples by half so that in the

∗ In the last case, we are left with only one sample

Implementation of Haar Wavelets

• Any wavelet implemented by the iteration of filters with rescaling

– Set of filters form the filter bank

– Let k be an integer
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– Averaging and detail filters implemented using two 2k−1 × 2k filtering matrices H and G given by

H =











1
2

1
2 0 0 · · · 0 0

0 0 1
2

1
2 · · · 0 0

...
...

...
...

...
...

0 0 0 0 · · · 1
2

1
2











G =











1
2 − 1

2 0 0 · · · 0 0
0 0 1

2 − 1
2 · · · 0 0

...
...

...
...

...
...

0 0 0 0 · · · 1
2 − 1

2











– Let Ht and Gt denote the transpose of H and G, respectively

– Let Ik denote a 2k × 2k identity matrix

– Then, the following facts about H and G are true:

Ht ×H +Gt ×G = 1
2Ik

H ×Ht = G×Gt = 1
2Ik−1

H ×Gt = G×Ht = 0

– For simplicity, consider the original signal to be sampled as a vector of length 2k

– The filtering process includes downsampling (↓ 2) and decomposes b into two vectors b1 (for block average)
and d1 (for detail) given by

b1 = H × b
d1 = G× b

– b1 and d1 can be combined to reconstruct the original signal b

b = 2 × (Ht × b1 +Gt × d1)

∗ A lossy compression can be achieved by discarding the detail vector d1, or setting it to be zero.

• Haar filter is applied to an image by the application of H and G filters in a tensorial way

– Let P be a picture image represented as an r × c matrix of pixels

– Applying the H filter to P , we get a new image P ′ as

P ′ = H × P ×Ht

– P ′ is an r′ × c′ matrix such that

r′ =
r

2

c′ =
c

2

– Application of H and G filters results into four matrices given by

P11 = H × P ×Ht

P12 = H × P ×Gt

P21 = G× P ×Ht

P22 = G× P ×Gt

∗ P11 is called the fully averaged picture

∗ P12 and P21 are called partially averaged and partially differenced pictures

∗ P22 is called the fully differenced picture

– The four components can be used to reconstruct the original image P as

P =
[

Ht Gt
]

×

[

P11 P12

P21 P22

]

×

[

H
G

]
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∗ Above equation is known as a synthesis filter bank

– The matrix [HG]t is orthogonal as its inverse is the transpose, or

[

H
G

]−1

=
[

HtGt
]

∗ Matrices in synthesis bank are also known as orthogonal filter bank

∗ Note that
[

HtGt
]

[

H
G

]

= HtH +GtG = I

∗ The synthesis bank is the inverse of the analysis bank

∗ Analysis bank contains the steps for filtering and downsampling

∗ Synthesis bank reverses the order and performs upsampling and filtering

– Analysis of a picture (for two levels) is shown below
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– Figure below shows an original texture, and its compression and reconstruction
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Original image Compression by one level

Compression by two levels Reconstructed image

∗ Top left shows the original 256× 256 pixel texture

∗ Application of Haar wavelet results into four 128× 128 pixel components which are combined into a
256× 256 pixel image shown on top right

· Top left quarter of this image shows the fully averaged part

· Top right quarter contains the partially averaged part

· Bottom left quarter contains the partially differenced part

· Bottom right quarter contains the fully differenced component

∗ Haar wavelet is applied to the fully averaged part again and the assembled components are shown in
the bottom left picture

∗ This picture is then used for reconstruction of the texture and the reconstructed texture is shown in
the bottom right picture.

• Lossy compression is achieved by discarding the differenced pictures (setting the matrices to zero) and retaining
only P11 during the reconstruction phase

– The process can be carried through several processing steps, thus removing a large amount of detail
information.

Other wavelets

• Haar wavelet transform, as described above, may not be able to take good advantage of the continuity of pixel
values within images
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• Other wavelets may perform better at this, and achieve higher compression of textures, specially if the textures
are smooth images.

JPEG 2000 Standard

• jpeg2000 standard is based on wavelets to achieve compression

• Divides an image into two-dimensional array of samples, known as components

– As an example, a color image may consist of several components representing base colors red, green, and
blue

• Image and its components are decomposed into rectangular tiles, which form the basic unit of original or
reconstructed image

• All the components (for example different color components) that form a tile are kept together so that each
tile can be independently extracted/decoded/reconstructed.

• Tiles are analyzed using wavelets to create multiple decomposition levels

– Yields a number of coefficients to describe the horizontal and vertical spatial frequency characteristics of
the original tiles, within a local area.

– Different decomposition levels are related by powers of 2

• Information content of a large number of small-magnitude coefficients is further reduced by quantization, giving
code-blocks

• Additional compression is achieved by entropy coding of bit-planes of the coefficients in code-blocks to reduce
the number of bits required to represent quantized coefficients

• jpeg2000 allows the formation of regions of interest (roi) by selective coding of some coefficients.


