Wavelets and Multiresolution Processing

Wavelets

Fourier transform has it basis functions in sinusoids

Wavelets based on small waves of varying frequency and limited duration

In addition to frequency, wavelets capture temporal information

— Bound in both frequency and time domains

— Localized wave and decays to zero instead of oscillating forever

e Comparison with Fourier transform

Fourier transform used to analyze signals by converting signals into a continuous series of sine and cosine
functions, each with a constant frequency and amplitude, and of infinite duration

Real world signals (images) have a finite duration and exhibit abrupt changes in frequency

Wavelet transform converts a signal into a series of wavelets

— In theory, signals processed by wavelets can be stored more efficiently compared to Fourier transform

— Wavelets can be constructed with rough edges, to better approximate real-world signals

— Wavelets do not remove information but move it around, separating out the noise and averaging the signal
— Noise (or detail) and average are expressed as sum and difference of signal, sampled at different points

* In a picture, the signal is given by pixels

x Average and detail are represented by sum and difference of pixels

* Implemented with a low-pass filter for average and high-pass filter for detail

e Provide foundation for a new approach to signal processing and analysis called multiresolution

— Concerned with the representation and analysis of images at more than one resolution
— May be able to detect features at different resolutions
— At the finest scale, average and detail are computed by sum and difference of neighboring pixels

— We move to a coarser level by taking sum and difference of the previous levels in a recursive/iterative
manner

Background

e Objects in images are connected regions of similar texture and intensity levels
e Use high resolution to look at small objects; coarse resolution to look at large objects

— If you have both large and small objects, use different resolutions to look at them

— Figure 7.1 — Local histogram can vary over different areas of images
o Wavelet properties

— Two important properties: admissibility and regularity
— Admissibility
x Stated as
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where 1(t) is a wave in the time domain, and ¥(w) is the Fourier transform of ()



Wavelets and Multiresolution Processing 2

* In practice, ¥(w) will always have sufficient decay so that the admissibility criterion reduces to the
requirement that ¥(0) =0, or

/OO b(t)dt = T(0) = 0.

x Fach wavelet transform must meet the requirement that it should integrate to zero

- The transform waves above and below the z-axis and the average value of the wavelet in time
domain must be zero

- In addition, the transform is well localized in the time domain
x A wavelet is defined over time ¢, 0 <t < N
- Provides a set of basis functions ;% (¢) in continuous time
- ;i (t) is a set of linearly independent functions that can be used to produce all admissible functions
f(t)
- The expression

F8) =" byt (t)
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where ¥, = (27 -t — k) indicates a wavelet that has been compressed j times and shifted k
times, and bj;, is a coefficient

- The shifted wavelet 1o, = ¥(t — k) is defined over k < ¢t < k + N, implying that the signal is
shifted to the right (translated) by k

- The rescaled wavelets 1j0 = (27 - t) are defined over 0 < ¢ < Qﬁ] implying that the signal is
compressed by a factor of 27

— Regularity
x Imposed to ensure that the wavelet transform decreases quickly with decreasing scale

x This condition also states that the wavelet function should have some smoothness and concentration
in both time and frequency domains

— Taken together, admissibility and regularity form the components wave and let in wavelet, respectively

* let implies quick decay
e Image pyramids

— Structure to represent images at more than one resolution
— Collection of decreasing resolution images arranged in the shape of a pyramid
— Figure 7.2a

* Highest resolution image at the pyramid base

* As you move up the pyramid, both size and resolution decrease

* Base level of size 27 x 27

* General level j of size 2/ x 27, 0 < j < J

* Pyramid may get truncated at level P, 0 < P < J

* Number of pixels in a pyramid with P + 1 levels (P > 0) is
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— Figure 7.2b
* Building image pyramids
x Level j — 1 approzimation output provides the images needed to build an approximation pyramid
x Level j prediction residual output is used to build a complementary prediction residual pyramid

— Both approximation and prediction residual pyramids are computed in an iterative fashion

— Three step procedure
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1. Compute a reduced-resolution approximation of level j input image; done by filtering and down-
sampling the filtered result by a factor of 2; place the resulting approximation at level j — 1 of
approximation pyramid

2. Create an estimate of level j input image from the reduced resolution approximation generated in
step 1; done by upsampling and filtering the generated approximation; resulting prediction image will
have the same dimensions as the level j input image

3. Compute the difference between the prediction image of step 2 and input to step 1; place the result
in level j of prediction residual pyramid
— Variety of approximation and interpolation filters
Neighborhood averaging producing mean pyramids
Lowpass Gaussian filtering producing Gaussian pyramids
No filtering producing subsampling pyramids

EE N

Interpolation filter can be based on nearest neighbor, bilinear, and bicubic
— Upsampling
x Doubles the spatial dimensions of approximation images
* Given an integer n and 1D sequence of samples f(n), upsampled sequence is given by

0 otherwise

for(n) = { f(n/2) if n is even

* Insert a 0 after every sample in the sequence
— Downsampling
x Halves the spatial dimensions of the prediction images
x Given by
far(n) = f(2n)
* Discard every other sample
— Figure 7.3
* Approximation pyramid produced by low-pass Gaussian smoothing

x Lower-resolution levels can be used for the analysis of large structures; higher resolution images
appropriate for analyzing individual object characteristics

*

Prediction residual levels produced by bilinear interpolation

*

Residual pyramid can be used to generate the complementary approximation pyramid without error
- Begin with a level j x j image
- Predict the level (j + 1) x (j + 1) image by upsampling and filtering
- Add the level j + 1 prediction residual

- Prediction residual histogram in Figure 7.3b is highly peaked around zero; approximation his-
togram is not

- Prediction residuals are scaled to make small prediction erros more visible
e Subband coding
— Subbands

x A set of band-limited components as a result of decomposing an image
*x Decomposition performed such that subbands can be reassembled to reconstruct the original image
without error
— Digital filter in Figure 7.4a

* Built from three basic components: unit delays, multipliers, and adders
* Unit delays are connected in series to create K —1 delayed (right shifted) versions of the input sequence

f(n)
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* Delayed sequence f(n — 2) is given by

_J f(0) .forn:2
Fn=2)=9 %1) forn=2+1=3

*

Input sequence f(n) = f(n —0)

*

K — 1 delayed sequences at the outputs of unit delays

*

Delayed sequences multiplied by constants h(0), h(1),..., (K — 1) (filter coefficients) and summed
to produce the filtered sequence

> h(k)f(n—k)

k=—o0

= [f(n)xh(n)

Each coeflicient defines a filter tap; filter is of order K
If the input to the filter of Figure 7.4a is the unit discrete impulse of Figure 7.4b, we have

f(n)

*

*

fn)

> h(k)s(n — k)

k=—o0

h(n)

- Substitute §(n) for f(n)

- Make use of sifting property of the unit discrete impulse

- Impulse response of the filter is the K-element sequence of filter coefficients

- Unit impulse is shifted from left to right across the top of the filter (delays)

- There are K coefficients; impulse response is of length K, and filter is called a finite impulse
response (FIR) filter

* Figure 7.5

Two components of wavelet as analysis and synthesis

x Two-band subband coding
x Figure 7.6a — two filter banks; each containing two FIR filters

Analyzing wavelet
* Analog bandpass filter with its properties of scaling and translation
x Facilitate implementation as a convolution operation

* Analysis filter bank (filters ho(n) and hq(n) used to break input sequence f(n) into two half-length
sequences fip(n) and fup(n)

Synthesizing wavelet

* Along with a scaling (smoothing) function, used to represent a signal from its lowpass features (back-
ground) and bandpass details (high frequency)

Need to build a pair of analyzing and synthesizing wavelets, as well as a pair of scaling functions (lowpass
and smoothing) so that the input and reconstructed signals remain the same

— Orthogonality

x Property of wavelets such that their inner products are zero
* Mathematically,

/ T Uie(t) -y (0t = 0
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— Orthogonal basis

x Formed by wavelets for the space of admissible functions
* Leads to a simple formula for the coefficient b;; defined earlier as

F&) = btn()
gk
* Multiplying above expression on both sides by v,/ (t) and integrating, we have
| tovnd= [ S b
—00 —00 ik
* Orthogonality property eliminates the integrals of the terms where j # j’ and k # k’; we get
| tovnd =ty [ @o)ra
yielding the coefficient bj; as
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Multiresolution

e Scaling function ¢(27 - t — k) provides the basis for a set of signals (or average) at level j
e Similarly, the wavelet function (27 - t — k) provides the detail at level j
e Addition of ¢ and 9 at level j yields the signal at level j + 1 providing for multiresolution,
(27t —k)+ (27 -t —k) = p(27T! -t —2k)
e Applying the above approach to all the signals at level j, we have
Vi®Wj=Vin
where V; and W; are the scaling space and wavelet space at level j
e Input signal is divided into different scales of resolution, rather than different frequencies

e Wavelets automatically match long time with low frequency and short time with high frequency

Haar Wavelet

e Consider a signal f in one dimension from —oo to 4+00
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Haar scaling function is denoted by ¢(¢) and Haar wavelet function is denoted by (t).

Haar scaling function (averaging or lowpass filter) at level 0 (in the original signal) is given by

(b(ﬂ?):{l 0<z<1

0 otherwise

Translation by j is denoted by ¢;(x)
¢j(x) = p(x —j)

Figure below shows both ¢(x) and ¢;(z)

¢ ®;

—00 01 jjg+1 +00
e Coefficients of the signal f indexed by j are given by

ci(f)

[ t@s(a)ds

= Average of f over the interval [j,j + 1]

e An approximate reconstruction of f from c;(f) is given by

fo(x) = ¢;(f)os(x)

J

e Reconstruction of the signal

fo(x)

() H/ﬂ

ol E::!k/{—i—l I H I oo

— Ideally, we’ll like to have a better resolution for sampling in Figure above and go to an appropriately finer
scale

— However, in images, the finest scale is given by the pixel, and we start at this level.

* Sums and differences of neighboring pixels are considered to be at finest scale.
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— Next, we go to a coarser level using the family {gf)g-l)}j where

o) =0 (50-3).

¢<1x—j>={ 1 2j<z<2(j+1)

— Note that

0 otherwise

— Signals at level 1 are given by

1 1
A = 5 [ 1@ @
= average of f over [27,2(j + 1)]
e Averaging over larger interval leads to a loss of information (detail)

— Lost detail is preserved in wavelet transform

— ¢ refers to ¢ at level 0, the original level.

Since ¢§,1) = @9, + 9,1, we see that

0 0
L _ ng) +C§j)+1

¢’ = 5
— Detail is preserved by introducing a new coefficient (highpass filter)

0 0
a4 = ¢s) — b
(- 212l

2
— It is apparent that
(1) @y _ 0
¢+ dj = ¢y
1) w _ 0
¢ - dj = Oy

— The average (¢) and detail (d) coefficients for Haar wavelet at level 1 are given by

o = Lol - o]
&V = [l (@)de

— Notice from above equation that the wavelet transform of one-dimensional signal is two-dimensional.

Extension of Haar wavelet to a signal in two dimensions

e Consider a sample of the 2D image as a box as shown below

(2(i +1),2(7 + 1))

(0) (0)
Q2'i,2j+1 Q2H~1,2j+1

(21,25 + 1)

2i+1,2; + 1)

(0) (0)
in,zg in+1,2j

(21, 29) (2¢ +1,25)
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— Sample is divided into four areas (squares)
— (@ represents the signal coefficients
— Let (I, p) represent the center coordinates (2i 4+ 1,275 + 1) in the sample

— The Haar coefficient is given by

Cunlr) = [ [ Haw)xgp (@ ey

where the characteristic x of @ at level 0 is given by

o) =xate ={ o U

(z,y)

1 0

Q'Y = U QY
1=2i,2i+1
p=25,2j+1

— Also, with

1 2i<x<20i+1)
Q“V‘%%”’%<y<2u+n

the Haar coeflicient at level 1 is given by

C((il,;)(f) = //Q(l) (z,y)dzdy

(4,5)

- / / o1 (@) f (@, y)dudy

— The average and detail coefficients are now given by

COL) = () + O 0 (F) + O 1 (F) + CYY o1 ()
DY) = CRL () + 505 (F) = Oy 1 (F) = O3 1 ()
DS = CRL () = Ot oi (F) + Oy 1 (F) = O o ()
DISII(F) = O (F) = O oy () = Oy () + C84 21 ()

x Notice from the above equation that the wavelet transform of a two-dimensional signal is in four
dimensions

— Adding the four coefficients in the above equation, we get

ol () + 32 DD () = e,

%J) (4,4)
2i4+125+1
1
¢§j)(xay) = Z Z (blp ,y)
=27 p=2j
2z+123+1
d}gi,j,k)l)(xvy) = - Z Z (Eip,k ¢lp z,y)
l 21 p=2j
fl,p,k
k — 0 1 2 3
|20 1 1 1 1
20+1 | 1 1]-11-1
p| 2] 1] -1 1] -1
27+1|1]-1]-1 1
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— k = 0 corresponds to

M Y
¢(2i,2j)(wyy)—4¢(2x 5y —J

Discrete Wavelet Transform

e CWT is redundant as the transform is calculated by continuously shifting a continuously scalable function over
a signal and calculating the correlation between the two

e The discrete form is normally a [piecewise] continuous function obtained by sampling the time-scale space at
discrete intervals

e The process of transforming a continuous signal into a series of wavelet coeflicients is known as wavelet series
decomposition.

e Scaling function can be expressed in wavelets from —oo to j

e Adding a wavelet spectrum to the scaling function yields a new scaling function, with a spectrum twice as wide
as the first

— Addition allows us to express the first scaling function in terms of the second

The formal expression of this phenomenon leads to multiresolution formulation or two-scale relation as

$(27t) = > hjra(k)p(27 Tt — k)
k

This equation states that the scaling function (average) at a given scale can be expressed in terms of
translated scaling functions at the next smaller scale, where the smaller scale implies more detail

— Similarly, the wavelets (detail) can also be expressed in terms of translated scaling functions at the next
smaller scale as

P(2) = g (k)p(2Tt — k)
k

— The functions h(k) and g(k) are known as scaling filter and wavelet filter, respectively

* These filters allow us to implement the discrete wavelet transform (DWT) as an iterated digital filter
bank.

o Subsampling property

— Gives a step size of 2 in the variable k for scaling and wavelet filters
— Every iteration of filter banks reduces the number of samples by half so that in the

x In the last case, we are left with only one sample

Implementation of Haar Wavelets

e Any wavelet implemented by the iteration of filters with rescaling

— Set of filters form the filter bank
— Let k£ be an integer
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Let I, denote a 2F x 2k identity matrix

Hx H =G x Gt

o O

1
2
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Averaging and detail filters implemented using two 2¢~1 x 2F filtering matrices H and G given by

Let H and G denote the transpose of H and G, respectively

Then, the following facts about H and G are true:

i -3 0 0 0 0
o 0 i -3 0 0
0 0 0 0 i -3
HtXH—FGtXG = lIk
_ i
- 5tk—1
HxGt=GxH' = 0

b

For simplicity, consider the original signal to be sampled as a vector of length 2%

The filtering process includes downsampling (| 2) and decomposes b into two vectors by (for block average)
and d; (for detail) given by

bp = Hxb
d1 = Gxb

b1 and d; can be combined to reconstruct the original signal b

=2 x (H" x by +G" x dy)

x A lossy compression can be achieved by discarding the detail vector di, or setting it to be zero.

e Haar filter is applied to an image by the application of H and G filters in a tensorial way

— Let P be a picture image represented as an r X ¢ matrix of pixels

— Applying the H filter to P, we get a new image P’ as

— P’ is an r’ x ¢ matrix such that

PP=HxPxH!

NNl 3

— Application of H and G filters results into four matrices given by

x Py is called the fully averaged picture

= HxPxH!
= HxPxG
= GxPxH!

GxPxGt

x Py and Py are called partially averaged and partially differenced pictures

x Pyo is called the fully differenced picture

— The four components can be used to reconstruct the original image P as

P=[ H! Gt]x[P“ Pl?]x{H]

Py Py G
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x Above equation is known as a synthesis filter bank

— The matrix [HG]" is orthogonal as its inverse is the transpose, or

2] -

*

Matrices in synthesis bank are also known as orthogonal filter bank
Note that

*

H
G

The synthesis bank is the inverse of the analysis bank

[H'G'] [ ] =H'H+G'G=1

*

*

Analysis bank contains the steps for filtering and downsampling

*

Synthesis bank reverses the order and performs upsampling and filtering

— Analysis of a picture (for two levels) is shown below

11
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— Figure below shows an original texture, and its

compression and reconstruction

12
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Compression by two levels Reconstructed image

x Top left shows the original 256 x 256 pixel texture
x Application of Haar wavelet results into four 128 x 128 pixel components which are combined into a
256 x 256 pixel image shown on top right
- Top left quarter of this image shows the fully averaged part
- Top right quarter contains the partially averaged part
- Bottom left quarter contains the partially differenced part
- Bottom right quarter contains the fully differenced component
x Haar wavelet is applied to the fully averaged part again and the assembled components are shown in
the bottom left picture
x This picture is then used for reconstruction of the texture and the reconstructed texture is shown in
the bottom right picture.

e Lossy compression is achieved by discarding the differenced pictures (setting the matrices to zero) and retaining
only Pj; during the reconstruction phase

— The process can be carried through several processing steps, thus removing a large amount of detail
information.
Other wavelets

e Haar wavelet transform, as described above, may not be able to take good advantage of the continuity of pixel
values within images
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e Other wavelets may perform better at this, and achieve higher compression of textures, specially if the textures
are smooth images.

JPEG 2000 Standard

e JPEG2000 standard is based on wavelets to achieve compression
e Divides an image into two-dimensional array of samples, known as components

— As an example, a color image may consist of several components representing base colors red, green, and
blue

e Image and its components are decomposed into rectangular tiles, which form the basic unit of original or
reconstructed image

e All the components (for example different color components) that form a tile are kept together so that each
tile can be independently extracted/decoded/reconstructed.

e Tiles are analyzed using wavelets to create multiple decomposition levels

— Yields a number of coefficients to describe the horizontal and vertical spatial frequency characteristics of
the original tiles, within a local area.

— Different decomposition levels are related by powers of 2

e Information content of a large number of small-magnitude coefficients is further reduced by quantization, giving
code-blocks

e Additional compression is achieved by entropy coding of bit-planes of the coefficients in code-blocks to reduce
the number of bits required to represent quantized coeflicients

e JPEG2000 allows the formation of regions of interest (ROI) by selective coding of some coefficients.



