Wavelets and Multiresolution Processing

Wavelets

e Fourier transform has its basis functions in sinusoids

e Wavelets based on small waves of varying frequency anddarduration
— Account for frequency and location of the frequency

¢ In addition to frequency, wavelets capture temporal infation

— Bound in both frequency and time domains
— Localized wave and decays to zero instead of oscillatingvier

Form the basis of an approach to signal processing and é&kh@vn asnultiresolution theory

— Concerned with the representation and analysis of imagdiffatent resolutions
— Features that may not be prominent at one level can be eatdgteéd at another level

Comparison with Fourier transform
— Fourier transform used to analyze signals by convertinggdfginto a continuous series of sine and cosine functions,
each with a constant frequency and amplitude, and of infchitation

x Real world signals (images) have a finite duration and ekhHriupt changes in frequency
* Wavelets are based omeother waveletdenoted by)(z)
- Wavelet transform converts a signal into a series of waselet
- Wavelet transform basis functions are obtained by scalmbshifting the mother wavelet

D)

whereb is the translation to determine the location of wavelet@and 0 is scaling to govern its frequency

— In theory, signals processed by wavelets can be stored rffmiertly compared to Fourier transform

— Wavelets can be constructed with rough edges, to betteoaippate real-world signals

— Wavelets do not remove information but move it around, s#jag out the noise and averaging the signal
— Noise (or detail) and average are expressed as sum ancediffeof signal, sampled at different points

x In a picture, the signal is given by pixels
x Average and detail are represented by sum and differendgelfp
* Implemented with a low-pass filter for average and high-fities for detail

e Provide foundation for a new approach to signal procesgidggaalysis called multiresolution

— Concerned with the representation and analysis of imagese than one resolution

— May be able to detect features at different resolutions

— At thefinest scaleaverage and detail are computed by sum and difference gifibeiing pixels

— We move to aoarser leveby taking sum and difference of the previous levels in a reigafiterative manner

Background

e Objects in images are connected regions of similar textudaraensity levels

e Use high resolution to look at small objects; coarse regmiub look at large objects
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— If you have both large and small objects, use different tggmis to look at them
— Images are 2D arrays of intensity values with locally vagystatistics
— Figure 7.1 — Local histogram can vary over different areamafes

x Difficult to model statistical variation over entire image

e Wavelet properties

— Two important properties: admissibility and regularity
— Admissibility
x Stated as

[

m——_—
wherey(t) is a wave in the time domain, andw) is the Fourier transform af(¢)
* In practice,¥ (w) will always have sufficient decay so that the admissibilit§ecion reduces to the requirement
that¥(0) = 0, or
/ Y(t)dt = ¥(0) = 0.

x Each wavelet transform must meet the requirement that itldhiotegrate to zero

- The transfornwavesabove and below the-axis and the average value of the wavelet in time domain must
be zero

- In addition, the transform is well localized in the time dama
x A wavelet is defined overtimg 0 <t < N
- Provides a set of basis functiotts;, () in continuous time
- ;i (t) is a set of linearly independent functions that can be useddaduce all admissible functionf§t)
- The expression

F8) =" bkt (t)
7,k

wherey;, = (27 - t — k) indicates a wavelet that has been compregdedes and shifted times, and
bj1, is a coefficient

- The shifted wavelet, = (¢ — k) is defined ovek < t < k + N, implying that the signal is shifted to
the right (translated) by

- The rescaled wavelets;y = (27 - t) are defined oved < ¢ < Zﬂ] implying that the signal is compressed
by a factor of2

— Regularity
x Imposed to ensure that the wavelet transform decreasddyjuiith decreasing scale

* This condition also states that the wavelet function shiwalde some smoothness and concentration in both
time and frequency domains

— Taken together, admissibility and regularity form the comgntsvaveandlet in wavelet, respectively
x letimplies quick decay

e Image pyramids

— Structure to represent images at more than one resolution
— Collection of decreasing resolution images arranged irsittape of a pyramid
— Figure 7.2a

x Highest resolution image at the pyramid base
x As you move up the pyramid, both size and resolution decrease
+ Base level of size”’ x 27



Wavelets and Multiresolution Processing 3

x General levelj of size2/ x 27,0 < j < J
* Pyramid may gettruncated atleve| 1 < P < J
* Number of pixels in a pyramid witl? + 1 levels(P > 0) is

1 1 1 4
2 4. )< ZN?
N <1+41+42+ +4P) 3N

— Figure 7.2b
x Building image pyramids
x Levelj — 1 approximatioroutput provides the images needed to build an approximaticamid
x Levelj prediction residuabutput is used to build a complementamgdiction residual pyramid

- Contain only one reduced-resolution approximation of tiput image at the top level

- All other levels contain prediction residuals where leiptediction residual is the difference between level
j approximation and an estimate of the leyel 1 approximation based on the level- 1 approximation

— Both approximation and prediction residual pyramids amagated in an iterative fashion
— Start by placing the original image in levélof the approximation pyramid
— Three step procedure
1. Compute a reduced-resolution approximation of lgvielput image; done by filtering and downsampling the
filtered result by a factor of 2; place the resulting appradion at levelj — 1 of approximation pyramid

2. Create an estimate of levglinput image from the reduced resolution approximation geted in step 1;
done by upsampling and filtering the generated approximatésulting prediction image will have the same
dimensions as the levglinput image

3. Compute the difference between the prediction imageepf 8tand input to step 1; place the result in leyel
of prediction residual pyramid

— After P iterations, the level — P approximation output is placed in the prediction residyabmid at level/ — P
— Variety of approximation and interpolation filters

Neighborhood averaging producing mean pyramids

Lowpass Gaussian filtering producing Gaussian pyramids

No filtering producing subsampling pyramids

Interpolation filter can be based on nearest neighbor dalirand bicubic

— Upsampling

EE R

x Doubles the spatial dimensions of approximation images
* Given an integen and 1D sequence of samplg&:), upsampled sequence is given by

0 otherwise

For(n) :{ f(n/2) if niseven

x Insert a O after every sample in the sequence
— Downsampling

x Halves the spatial dimensions of the prediction images
x Given by

far(n) = f(2n)
x Discard every other sample
— Figure 7.3
x Approximation pyramid produced by low-pass Gaussian shiogt

- Four level approximation pyramid in Figure 7.3a
- P = 3, with base a§12 x 512 image
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x Lower-resolution levels can be used for the analysis ofdatguctures; higher resolution images appropriate
for analyzing individual object characteristics

- Level 6 image64 x 64) suitable to locate the window stiles but not to findthe stefidants
- Coarse-to-fine analysis strategy useful for pattern reitiogn
x Prediction residual levels produced by bilinear interpota

x Residual pyramid can be used to generate the complememgargxamation pyramid without error (if there is
no quantization error)

- Begin with alevelj x j image

- Predictthe leve(j + 1) x (5 + 1) image by upsampling and filtering

- Add the levelj + 1 prediction residual

- Prediction residual histogram in Figure 7.3b is highly pehiround zero; approximation histogram is not
- Prediction residuals are scaled to make small predictimsenore visible

e Subband coding

— Subbands

* A set of band-limited components as a result of decomposirimage
x Decomposition performed such that subbands can be reakskiolreconstruct the original image without
error
— Digital filter in Figure 7.4a
x Built from three basic components: unit delays, multigjeand adders
+ Unit delays are connected in series to crddte 1 delayed (right shifted) versions of the input sequefice)
x Delayed sequencg(n — 2) is given by

) f(0) l;OI’n:2
Fn=2)=9 %1) forn=2+1=3

* Input sequencg(n) = f(n — 0)
x K — 1 delayed sequences at the outputs of unit delays

+ Delayed sequences multiplied by constants), 4(1),. .., h(K — 1) (filter coefficientsand summed to pro-
duce the filtered sequence

> hik)f(n—k)

k=—o0

= f(n)Xh(n)

f(n)

x Each coefficient definesfdter tap; filter is of orderk’
x If the input to the filter of Figure 7.4a is the unit discretepimse of Figure 7.4b, we have

o0

> h(k)d(n— k)

k=—o0

h(n)

f(n)

- Substituted(n) for f(n)

- Make use of sifting property of the unit discrete impulse

- Impulse response of the filter is té-element sequence of filter coefficients
- Unit impulse is shifted from left to right across the top of fiiiter (delays)
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- There areK coefficients; impulse response is of lendth and filter is called dinite impulse response
(FIR) filter

x Figure 7.5

1. Reference response(n)
Sign-reversed filtelia (n) = —hi(n)
Order-reversed filter; reflection about the vertical @xi&) = h1(—n)
Order-reversed filter; reflection about the vertical axid translatiothy(n) = hi (K — 1 —n)
Modulationhs(n) = (—1)"hy(n)

6. Modulation with order-reverséd;(n) = (—1)"h1 (K — 1 —n)

— Two components of wavelet as analysis and synthesis

arwn

x Two-band subband coding and decoding
x Figure 7.6a — two filter banks; each containing twe filters
1. Analysis filter bank
- Uses filtershy(n) andh (n) to split input sequencg(n) into two downsampled sequencis(n) and
Jop(n)
- fio(n) and fnp(n) are two subbands to represent the input

- ho(n) andhq (n) are two half-band filters whose idealized transfer charaties H, and H; are shown
in Figure 7.6b

- ho(n) is a lowpass filter whose output subband is calledproximatiorof f(n)
- h1(n) is a highpass filter whose output subband is calledigtail part of f(n)
2. Synthesis filter bank
- Filtersgo(n) andg; (n) combine the output of analysis to produgie.)
« Goal of subband coding is to select the four filtéggn), h1(n), go(n), andg: (n) such thatf(n) = f(n)
(perfect reconstruction filters)
— Analyzing wavelet

x Analog bandpass filter with its properties of scaling andgtation
x Facilitate implementation as a convolution operation
+ Analysis filter bank (filtergio(n) andh, (n) used to break input sequengén) into two half-length sequences
f|p (n) andfhp(n)
— Synthesizing wavelet

x Along with a scaling (smoothing) function, used to represesignal from its lowpass features (background)
and bandpass details (high frequency)

— Need to build a pair of analyzing and synthesizing wavelesswell as a pair of scaling functions (lowpass and
smoothing) so that the input and reconstructed signalsiretina same
x Many two-band, real-coefficier#jr, perfect reconstruction filter banks

x Synthesis filters are modulated versions of the analyssdiltvith one and only one synthesis filter being sign
reversed as well

x They obey the following property

go(n) = (=1)"ha(n)

gi(n) = (=1)""ho(n)
or

go(n) = (=1)""hi(n)

g1(n) = (=1)"ho(n)

* Cross-modulated filters
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- Diagonally opposite filters are related by modulation (aigd seversal for odd exponent ef1)
- Satisfy the following biorthogonality condition

(hi(2n — k), g;(k)) = 6(i — 5)d(n), 4,5 = {0,1}

- (hi(2n — k), g;(k)) denotes the inner product bf2n — k) andg; (k)
- Fori # 4, the inner productis 0
- Fori == j, the inner product is(n) — the unit discrete impulse function

— Orthogonality
x Property of wavelets such that their inner products are zero
x Mathematically,

| w0 vt =o

— Orthogonal basis

x Formed by wavelets for the space of admissible functions
+ Leads to a simple formula for the coefficiént,; defined earlier as

F) = bti(t)
gk
* Multiplying above expression on both sidesdy;. (¢) and integrating, we have
/ F@)jp (H)dt = / Z bjiktjk () (¢)dt
—0o0 —00 5.k

+ Orthogonality property eliminates the integrals of thertemwherej #£ ;' andk # k'; we get

/:X’ F@)jn (t)dt = bjy, /OO (thjrwr ()2 dt

yielding the coefficiend;;, as
- 2 FO)w (t)dt

ik = T e ()2

— Orthonormality

x Used in subband coding to develop fast wavelet transform
x Defined by

(9i(n), gj(n +2m)) = 6(i — j)d(m), i,j ={0,1}
x Orthonormal filters satisfy the following two conditions

g1(n) = (=1)"go(Keven— 1 —n)
hi(n) = gi(Keven—1—n),i={0,1}

- K’s subscript indicates that the number of filter coefficientsst be even
- Synthesis filteg; is related tayy by order reversal and modulation
- Both hg andh; are order-reversed versions of synthesis filtgrandg; , respectively
x Orthonormal filter bank can be developed around the impelsganse of a single filter, callgdototype
— Going from 1D to 2D filters

x Figure 7.7
x Apply downsampling twice, resulting in four subbands
- Approximation, vertical detail, horizontal detail, diata detail
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— Application of the filter

+ Table 7.1: Daubechies 8-tap orthonormal filter coefficiéotgo(n)

x Figure 7.8: Impulse response of four 8-tap Daubechies ndimal filters0 <n < 7
- Cross modulationof the analysis and synthesis filters

* Figure 7.9: Four band split &f12 x 512 pixel image of vase

Multiresolution

Scaling functionp(2’ - t — k) provides the basis for a set of signals (or average) at level

Similarly, the wavelet functiom (27 - t — k) provides the detail at level

Addition of ¢ andy at levelj yields the signal at level + 1 providing for multiresolution,

H(27 -t —k)+ (2 -t — k)= p(27T -t — 2k)

Applying the above approach to all the signals at leyele have
VieW; =V

whereV; andWW; are the scaling space and wavelet space at Jevel

Input signal is divided into different scales of resoluticather than different frequencies

Wavelets automatically match long time with low frequenng ahort time with high frequency

Haar Wavelet

e Oldest and simplest orthonormal wavelets

e Expressed in matrix form as
T = HFH”
— FisanN x N image matrix,N = 2"
— HisanN x N Haar transformation, and contains the basis functipfx) for the wavelet
+ Basis function defined over continuous closed inteeval |0, 1] for k = 0,1, ... N whereN = 2"
— TisresultingN x N transform
— Transform is required becaukkis not symmetric
— H generated by defining the integer= 2P + ¢ — 1where0 < p<n—1,¢g=0o0r1forp =0,andl < ¢ <2?
forp#0
* Haar basis functions are

ho(z) = hoo(z) = z €[0,1]

1
VN’
2P/ (¢—1)/2P < z < (¢ —0.5)/2P
hi(2) = hpg(2) = —=1{ =272 (q—05)/20 < 2 < q/2"
VN 0 otherwisez € [0, 1]

* Theith row of anN x N Haar transform matrix contains the elementa gt) for- = 0/N,1/N,2/N, ..., (N—
1)/N
- For N = 2, first row of a2 x 2 Haar matrix is computed usirigy(z) with z = 0/2,1/2
- From abovehy(z) = \/Li independent of
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- The second row is computed by(z) for z = 0/2,1/2
- k=2P4+qg—1,whenk=1,p=0,q=1

- hi(0) =2°/vV2=1/V2

Chi(1/2) = =2°/V2 = —1/V/2

- The2 x 2 Haar matrix is

- First row of Hs is

e Consider a signaf in one dimension from-oo to oo

—00 +00

Haar scaling function is denoted byt) and Haar wavelet function is denoted ¥yt).

Haar scaling function (averaging or lowpass filter) at |ééh the original signal) is given by

(b(a:)—{l 0<z<1

0 otherwise

Translation byj is denoted by, (x)
¢j(z) = oz — j)

Figure below shows both(z) andg; (z)

¢ b5

B

—00 01 jJg+1 400
e Coefficients of the signaf indexed byj are given by

50) = [ 1@
= Average off over the intervalj, j + 1]

¢ An approximate reconstruction gffrom c;( f) is given by

folz) = ¢;(£)oi(x)

J
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e Reconstruction of the signal

ol /{/{—l—l H H oo
— lIdeally, we'll like to have a better resolution for sampliimgrigure above and go to an appropriately finer scale
— However, in images, the finest scale is given by the pixel,vamgtart at this level.
x Sums and differences of neighboring pixels are considerbe tat finest scale.

— Next, we go to a coarser level using the fanﬁ%l)}j where

o) =6 (52-1).

¢<lx—j>_{ 1 2j<z<2(j+1)

2 0 otherwise

— Note that

— Signals at level 1 are given by

A = 5 [ 1)) @)
= average off over[2j,2(j + 1)]

e Averaging over larger interval leads to a loss of informaijdetail)

— Lost detail is preserved in wavelet transform
— ¢ refers tog at level 0, the original level.

— Sinceg”) = ¢9; + ¢3;,, we see that

0 0
)
( .

2

— Detail is preserved by introducing a new coefficient (higdgpfiter)
0 0
a4 — C;j) - Céj)ﬂ
j 2

— Itis apparent that

cgl) + dg»l) = cg;-)
1 1 0

— The averagéy) and detail {) coefficients for Haar wavelet at level 1 are given by

ol = g0 - o]
&V = [l (@)de
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— Notice from above equation that the wavelet transform ofdingensional signal is two-dimensional.

Extension of Haar wavelet to a signal in two dimensions

e Consider a sample of the 2D image as a box as shown below

(21 +1),2(3 + 1))

(0) (0)
Q2i,2j+1 Q2i+1,2j+1

(20,2j +1 (2i + 1,25 + 1)
(0) 0
Q2i,2j Q(2i)+1,2j
(2i,25) @i+ 1.27)

— Sample is divided into four areas (squares)

— @ represents the signal coefficients

— Let (I, p) represent the center coordinafeés+ 1,25 + 1) in the sample
— The Haar coefficient is given by

Oz.,p(f)://f(x,y)ng?g(I,y)dxdy

where the characteristj¢ of () at level O is given by

ot (z,y) = xo(z,y) = { é (z.9) ;g

(z,y)
(1) _ (0)
Qj - U lp
1=2i,2i+1
p=25,25+1

— Also, with
a 2i<r<2i+1
Qij) = {(“’”’w ‘ 2 <y<2j+1

the Haar coefficient at level 1 is given by

chnn) = 3 [, sy

(% 7)

= [ [ st iz

— The average and detail coefficients are now given by

(i J)(f) = 21 2; (f) + sz+1 9 (f) + Oé?)2j+1 (f)+ Oé?-)i—l 2i4+1(f)
DYV = zj (f)+ CM 0 () = C8Da 1 () = Oy 51 (F)
DO = zj (f) - 21+1 2 (1) + O3y 1 (F) = OS5y 1 ()
pOED ™ (py 4O

( 7_]) (f) 21 2] (f) 21+1 27 (f) 24,25+1 (f) 2i+1, 2]+1(~f)
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x Notice from the above equation that the wavelet transformtefo-dimensional signal is in four dimensions
— Adding the four coefficients in the above equation, we get

1)(a, ﬁ) (0)
ZJ) + ZD (4,9) C2i72j

2i+125+1

o @y = SN 6 (x,y)
1=2i p=2j
21+12]+1

v DEy) = —Zzapk )
=21 p=275
gl,p,k
k— 0| 1| 2| 3
[ |27 1 1 1 1
21+1 | 1 1(-11(-1
p | 25 111 1]-1
2j4+1(1]-1|-1] 1

— k = 0 corresponds to

(1) 1 1 1 .
¢(21‘_’2j)(x7y) = ZQS (517 ) 51/ - ])

Discrete Wavelet Transform

e CWT is redundant as the transform is calculated by continualsf§ing a continuously scalable function over a signal
and calculating the correlation between the two

e The discrete form is normally a [piecewise] continuous fiorcobtained by sampling the time-scale space at discrete
intervals

e The process of transforming a continuous signal into a sefievavelet coefficients is known asavelet series decom-
position

e Scaling function can be expressed in wavelets from to j

e Adding a wavelet spectrum to the scaling function yields & sealing function, with a spectrum twice as wide as the
first
— Addition allows us to express the first scaling function imte of the second
— The formal expression of this phenomenon leads to multingiso formulation or two-scale relation as

B(27t) Z o (k)p(27F 1 — k)

— This equation states that the scaling function (average)given scale can be expressed in terms of translated
scaling functions at the next smaller scale, where the smsdlale implies more detail

— Similarly, the wavelets (detail) can also be expressedrimgeof translated scaling functions at the next smaller
scale as

$(27t) ng $(27Tt — k)
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— The functionshi(k) andg(k) are known ascaling filterandwavelet filter respectively
x These filters allow us to implement thiéscrete wavelet transforifpwT) as an iterated digital filter bank.

e Subsampling property

— Gives a step size of 2 in the varialBidor scaling and wavelet filters
— Every iteration of filter banks reduces the number of sampjdsalf so that in the
x In the last case, we are left with only one sample

Implementation of Haar Wavelets

e Any wavelet implemented by the iteration of filters with relscg

— Set of filters form thdilter bank
— Letk be an integer
— Averaging and detail filters implemented using t?fo ! x 2* filtering matricest andG given by

3200 0 0 3 -3 0 0 0 0

00 & 1 0 0 0 3 -3 0 0
H= , : G = .

000 0 : 0 0 0 0 : -3

— Let H* andG" denote the transpose &f andG, respectively
— Let I, denote &* x 2% identity matrix
— Then, the following facts aboui andG are true:

H'xH+G'xG = %Ik
HxH'=GxG" = 5l
HxG'=GxH' = 0

— For simplicity, consider the original signal to be samplsgaector of length*

— The filtering process includes downsamplin@j and decomposeésinto two vectors; (for block average) and,
(for detail) given by
b1 = Hxb
d1 = Gxb

— by andd; can be combined to reconstruct the original signal
b=2x (H'x b +G" x dy)
x A lossy compression can be achieved by discarding the detetibrd;, or setting it to be zero.
e Haar filter is applied to an image by the applicationbindG filters in a tensorial way

— Let P be a picture image represented as-anc matrix of pixels
— Applying the H filter to P, we get a new imag®”’ as

PP=HxPxH!

— P’is anr’ x ¢’ matrix such that

NN 3
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— Application of H and( filters results into four matrices given by

Ph = HxPxH!
P, = HxPxG
Py = GxPxH!
Py = GxPxGt

x Py is called thefully averaged picture
x Pjo andP,; are calledpartially averagedandpartially differenced pictures
x Py is called theully differenced picture

— The four components can be used to reconstruct the origiregeP as

P P H
_ T—— 11 P2
P=|H G]X{le P22:|X|:G:|

x Above equation is known assynthesis filter bank
— The matrix[HG]! is orthogonal as its inverse is the transpose, or

2]

*

Matrices in synthesis bank are also knowroasogonal filter bank
Note that

*

H
G

The synthesis bank is the inverse of the analysis bank
Analysis bank contains the steps for filtering and downsargpl
x Synthesis bank reverses the order and performs upsampilihfijtering

[H'G'] [ ] =H'H+G'G=1

*

*

— Analysis of a picture (for two levels) is shown below

13
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— Figure below shows an original texture, and its compresai@hreconstruction

14
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Compression by two levels Reconstructed image
x Top left shows the origind@l56 x 256 pixel texture

x Application of Haar wavelet results into foli28 x 128 pixel components which are combined int®5 x 256
pixel image shown on top right

- Top left quarter of this image shows the fully averaged part
- Top right quarter contains the partially averaged part

- Bottom left quarter contains the partially differencedtpar

- Bottom right quarter contains the fully differenced compon

x Haar wavelet is applied to the fully averaged part again haéissembled components are shown in the bottom
left picture

* This picture is then used for reconstruction of the texture the reconstructed texture is shown in the bottom
right picture.

e Lossy compression is achieved by discarding the differémietures (setting the matrices to zero) and retaining only
Py during the reconstruction phase

— The process can be carried through several processing 8tapsemoving a large amount of detail information.

Other wavelets

e Haar wavelet transform, as described above, may not be aléké good advantage of the continuity of pixel values
within images
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e Other wavelets may perform better at this, and achieve higirapression of textures, specially if the textures areatmo
images.

JPEG 2000 Standard

e Based on wavelets to achieve compression
e Scalable in nature

— Can be decoded in a number of ways
— By truncating the codestream at any point, we can get theemeresentation at a lower resolution
— Encoders and decoders are computationally demanding
— StandardiPEGproduces ringing artifacts at lower resolutions, spegiadlar image edges
* |t also produces blocking artifacts due to8ts 8 blocks

e Comparison with standaPEG

— Much better scalability and editability

x In standardPEG you have to reduce the resolution of the inputimage befoceding if you want to go below
a certain bit limit

x Comes for free inPEG2000 because it does so automatically through multireisslatecomposition
— Superior compression

x Nearly imperceptible artifacts at higher bit rates

x At lower bit rates & 0.25 bits/pixel for grayscale images)pEG2000 has less visible artifacts than standard
JPEGand almost no blocking

x Compression gains are duedw T and more sophisticated entropy coding
— Multiresolution representation

x Use ofbwT allows for decomposition of image at different resolutions
x Allows use for other purposes (such as presentation) irtiaddd compression

— Progressive transmission by pixel and resolution accuracy

x Efficient code stream organization

x Progressive by pixel accuracgNR scalability) and image resolution
x Quality can be gradually improved by downloading more détta b

x Designed with web applications in mind

— Choice of lossless or lossy compression in a single comipreaschitecture
— Random code-stream access and processing

* Access to different regions of interest at varying degrdeganularity
x Possible to store different parts of same picture usingfit quality

— Errorresilience
x Robust to bit errors from noisy communications channels
— Flexible file format, specially for color-space informatiand metadata
— High dynamic range support
x Supports any bit depth, including 16-bit and 32-bit floatroint images
— Side channel spatial information for transparency andajpanes

e Color components transformation

1From Wikipedia
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— Images are transformed frorRGB to another color space to handle the components separately
— Two possible choices
1. Irreversible color transform
x UsesY CpCp color space
x Irreversible because it has to be implemented using flogtirigt or fixpoint and causes round-off errors
2. Reversible color transform
x Uses a modifieduv color space that does not introduce quantization errors
x Fully reversible

x Transformation given by
Forward Reverse
Y: LR+2§+BJ G:Y— LCBICRJ
Cg=B-G R=Cr+G
Ckr=R-G B=Cp+G

x Chrominance components can be down-scaled in resolution

- Downsampling effectively handled by separating images stales and dropping the finest wavelet
scale

— Divides an image into two-dimensional array of samplesykmascomponents
* As an example, a color image may consist of several compsmeptesenting base colors red, green, and blue

e Tiling
— Image and its components are decomposed into rectantijamwhich form the basic unit of original or recon-

structed image

— All the components (for example different color compongtitat form a tile are kept together so that each tile can
be independently extracted/decoded/reconstructed.

— Tiles can be any size, but all the tiles in the image are theesine

x Possible to have different sized tiles on right and bottomten
x Decoder needs less memory to decode the image
* You can also opt for partial decoding by decoding only a subkgles

— Quality of the image may decrease due to lower peak
— Using many tiles may lead to blocking artifacts

o Wavelet transform

— Tiles are analyzed using wavelets to create multiple decsitipn levels
x Yields a number of coefficients to describe the horizontal aertical spatial frequency characteristics of the
original tiles, within a local area.
x Different decomposition levels are related by powers of 2
— Wavelet transformation to arbitrary depth
— Two different wavelet transforms used
1. Irreversible:cbF 9/7 wavelet transform
x CDF— Cohen Daubechies Feauveau
x Introduces quantization noise that depends on the pracidithe decoder
2. Reversible: a rounded version of the biorthogatz# 5/3 wavelet
x Uses only integer coefficients; no rounding and hence, natigaion noise
x Used in lossless coding
— Wavelet transform implemented by the lifting scheme or odutvon

e Quantization
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— Transformed coefficients are scalar-quantized to redweadimber of bits used in representation

— Information content of a large number of small-magnitudeficients reduced by quantization, givingde-blocks
— Leads to a loss of quality

— Code blocks are sets of integers that are encoded bit-by-bit

— Greater quantization step leads to greater compressioloasith quality

— Quantization step of 1 implies no quantization; used inl&ssscompression

e Coding

— At this point, we have a collection of sub-bands represgrgeveral approximation scales

* Each sub-band a set of coefficients
*x Real numbers representing aspects of image associatedavidin frequency range as well as a spatial area
of the image
— Precincts

x Quantized sub-bands split into precincts, regular regiotise wavelet domain
x Selected so that coefficients in a precinct across sub-tmanddpproximate spatial block in the reconstructed
image
— Code blocks

x Precincts split into code blocks
x Code blocks located in a single sub-band
x All code blocks have the same size, except at the end of thgama

— Additional compression is achieved by entropy coding ofdéines of the coefficients in code-blocks to reduce the
number of bits required to represent quantized coefficients



