
Wavelets and Multiresolution Processing

Wavelets

• Fourier transform has its basis functions in sinusoids

• Wavelets based on small waves of varying frequency and limited duration

– Account for frequency and location of the frequency

• In addition to frequency, wavelets capture temporal information

– Bound in both frequency and time domains

– Localized wave and decays to zero instead of oscillating forever

• Form the basis of an approach to signal processing and analysis known asmultiresolution theory

– Concerned with the representation and analysis of images atdifferent resolutions

– Features that may not be prominent at one level can be easily detected at another level

• Comparison with Fourier transform

– Fourier transform used to analyze signals by converting signals into a continuous series of sine and cosine functions,
each with a constant frequency and amplitude, and of infiniteduration

∗ Real world signals (images) have a finite duration and exhibit abrupt changes in frequency
∗ Wavelets are based on amother wavelet, denoted byψ(x)

· Wavelet transform converts a signal into a series of wavelets
· Wavelet transform basis functions are obtained by scaling and shifting the mother wavelet

ψa,b(x) =
1√
a
ψ

(⌊

x− b

a

⌋)

whereb is the translation to determine the location of wavelet anda > 0 is scaling to govern its frequency

– In theory, signals processed by wavelets can be stored more efficiently compared to Fourier transform

– Wavelets can be constructed with rough edges, to better approximate real-world signals

– Wavelets do not remove information but move it around, separating out the noise and averaging the signal

– Noise (or detail) and average are expressed as sum and difference of signal, sampled at different points

∗ In a picture, the signal is given by pixels
∗ Average and detail are represented by sum and difference of pixels
∗ Implemented with a low-pass filter for average and high-passfilter for detail

• Provide foundation for a new approach to signal processing and analysis called multiresolution

– Concerned with the representation and analysis of images atmore than one resolution

– May be able to detect features at different resolutions

– At thefinest scale, average and detail are computed by sum and difference of neighboring pixels

– We move to acoarser levelby taking sum and difference of the previous levels in a recursive/iterative manner

Background

• Objects in images are connected regions of similar texture and intensity levels

• Use high resolution to look at small objects; coarse resolution to look at large objects
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– If you have both large and small objects, use different resolutions to look at them

– Images are 2D arrays of intensity values with locally varying statistics

– Figure 7.1 – Local histogram can vary over different areas ofimages

∗ Difficult to model statistical variation over entire image

• Wavelet properties

– Two important properties: admissibility and regularity

– Admissibility

∗ Stated as
∫ ∞

−∞

|Ψ(ω)|2
|ω| dω <∞

whereψ(t) is a wave in the time domain, andΨ(ω) is the Fourier transform ofψ(t)

∗ In practice,Ψ(ω) will always have sufficient decay so that the admissibility criterion reduces to the requirement
thatΨ(0) = 0, or

∫ ∞

−∞
ψ(t)dt = Ψ(0) = 0.

∗ Each wavelet transform must meet the requirement that it should integrate to zero

· The transformwavesabove and below thex-axis and the average value of the wavelet in time domain must
be zero

· In addition, the transform is well localized in the time domain

∗ A wavelet is defined over timet, 0 ≤ t ≤ N

· Provides a set of basis functionsψjk(t) in continuous time

· ψjk(t) is a set of linearly independent functions that can be used toproduce all admissible functionsf(t)

· The expression
f(t) =

∑

j,k

bjkψjk(t)

whereψjk = ψ(2j · t− k) indicates a wavelet that has been compressedj times and shiftedk times, and
bjk is a coefficient

· The shifted waveletψ0k = ψ(t− k) is defined overk ≤ t ≤ k +N , implying that the signal is shifted to
the right (translated) byk

· The rescaled waveletsψj0 = ψ(2j · t) are defined over0 ≤ t ≤ N
2j implying that the signal is compressed

by a factor of2j

– Regularity

∗ Imposed to ensure that the wavelet transform decreases quickly with decreasing scale

∗ This condition also states that the wavelet function shouldhave some smoothness and concentration in both
time and frequency domains

– Taken together, admissibility and regularity form the componentswaveandlet in wavelet, respectively

∗ let implies quick decay

• Image pyramids

– Structure to represent images at more than one resolution

– Collection of decreasing resolution images arranged in theshape of a pyramid

– Figure 7.2a

∗ Highest resolution image at the pyramid base

∗ As you move up the pyramid, both size and resolution decrease

∗ Base level of size2J × 2J
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∗ General levelj of size2j × 2j , 0 ≤ j ≤ J

∗ Pyramid may get truncated at levelP , 1 ≤ P ≤ J

∗ Number of pixels in a pyramid withP + 1 levels(P > 0) is

N2

(

1 +
1

41
+

1

42
+ · · ·+ 1

4P

)

≤ 4

3
N2

– Figure 7.2b

∗ Building image pyramids

∗ Level j − 1 approximationoutput provides the images needed to build an approximationpyramid

∗ Level j prediction residualoutput is used to build a complementaryprediction residual pyramid

· Contain only one reduced-resolution approximation of the input image at the top level

· All other levels contain prediction residuals where levelj prediction residual is the difference between level
j approximation and an estimate of the levelj − 1 approximation based on the levelj − 1 approximation

– Both approximation and prediction residual pyramids are computed in an iterative fashion

– Start by placing the original image in levelJ of the approximation pyramid

– Three step procedure

1. Compute a reduced-resolution approximation of levelj input image; done by filtering and downsampling the
filtered result by a factor of 2; place the resulting approximation at levelj − 1 of approximation pyramid

2. Create an estimate of levelj input image from the reduced resolution approximation generated in step 1;
done by upsampling and filtering the generated approximation; resulting prediction image will have the same
dimensions as the levelj input image

3. Compute the difference between the prediction image of step 2 and input to step 1; place the result in levelj
of prediction residual pyramid

– After P iterations, the levelJ −P approximation output is placed in the prediction residual pyramid at levelJ −P

– Variety of approximation and interpolation filters

∗ Neighborhood averaging producing mean pyramids

∗ Lowpass Gaussian filtering producing Gaussian pyramids

∗ No filtering producing subsampling pyramids

∗ Interpolation filter can be based on nearest neighbor, bilinear, and bicubic

– Upsampling

∗ Doubles the spatial dimensions of approximation images

∗ Given an integern and 1D sequence of samplesf(n), upsampled sequence is given by

f2↑(n) =

{

f(n/2) if n is even
0 otherwise

∗ Insert a 0 after every sample in the sequence

– Downsampling

∗ Halves the spatial dimensions of the prediction images

∗ Given by
f2↓(n) = f(2n)

∗ Discard every other sample

– Figure 7.3

∗ Approximation pyramid produced by low-pass Gaussian smoothing

· Four level approximation pyramid in Figure 7.3a

· P = 3, with base as512× 512 image
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∗ Lower-resolution levels can be used for the analysis of large structures; higher resolution images appropriate
for analyzing individual object characteristics

· Level 6 image(64× 64) suitable to locate the window stiles but not to findthe stems of plants

· Coarse-to-fine analysis strategy useful for pattern recognition

∗ Prediction residual levels produced by bilinear interpolation

∗ Residual pyramid can be used to generate the complementary approximation pyramid without error (if there is
no quantization error)

· Begin with a levelj × j image

· Predict the level(j + 1)× (j + 1) image by upsampling and filtering

· Add the levelj + 1 prediction residual

· Prediction residual histogram in Figure 7.3b is highly peaked around zero; approximation histogram is not

· Prediction residuals are scaled to make small prediction erros more visible

• Subband coding

– Subbands

∗ A set of band-limited components as a result of decomposing an image

∗ Decomposition performed such that subbands can be reassembled to reconstruct the original image without
error

– Digital filter in Figure 7.4a

∗ Built from three basic components: unit delays, multipliers, and adders

∗ Unit delays are connected in series to createK − 1 delayed (right shifted) versions of the input sequencef(n)

∗ Delayed sequencef(n− 2) is given by

f(n− 2) =























...
f(0) for n = 2
f(1) for n = 2+ 1 = 3

...

∗ Input sequencef(n) = f(n− 0)

∗ K − 1 delayed sequences at the outputs of unit delays

∗ Delayed sequences multiplied by constantsh(0), h(1), . . . , h(K − 1) (filter coefficients) and summed to pro-
duce the filtered sequence

f̂(n) =

∞
∑

k=−∞
h(k)f(n− k)

= f(n)8h(n)
∗ Each coefficient defines afilter tap; filter is of orderK

∗ If the input to the filter of Figure 7.4a is the unit discrete impulse of Figure 7.4b, we have

f̂(n) =
∞
∑

k=−∞
h(k)δ(n− k)

= h(n)

· Substituteδ(n) for f(n)

· Make use of sifting property of the unit discrete impulse

· Impulse response of the filter is theK-element sequence of filter coefficients

· Unit impulse is shifted from left to right across the top of the filter (delays)
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· There areK coefficients; impulse response is of lengthK, and filter is called afinite impulse response
(FIR) filter

∗ Figure 7.5

1. Reference responseh1(n)

2. Sign-reversed filterh2(n) = −h1(n)
3. Order-reversed filter; reflection about the vertical axish3(n) = h1(−n)
4. Order-reversed filter; reflection about the vertical axisand translationh4(n) = h1(K − 1− n)

5. Modulationh5(n) = (−1)nh1(n)

6. Modulation with order-reversedh6(n) = (−1)nh1(K − 1− n)

– Two components of wavelet as analysis and synthesis

∗ Two-band subband coding and decoding

∗ Figure 7.6a – two filter banks; each containing twoFIR filters

1. Analysis filter bank

· Uses filtersh0(n) andh1(n) to split input sequencef(n) into two downsampled sequencesflp(n) and
fhp(n)

· flp(n) andfhp(n) are two subbands to represent the input

· h0(n) andh1(n) are two half-band filters whose idealized transfer characteristicsH0 andH1 are shown
in Figure 7.6b

· h0(n) is a lowpass filter whose output subband is called anapproximationof f(n)

· h1(n) is a highpass filter whose output subband is called thedetailpart off(n)

2. Synthesis filter bank

· Filtersg0(n) andg1(n) combine the output of analysis to producef̂(n)

∗ Goal of subband coding is to select the four filtersh0(n), h1(n), g0(n), andg1(n) such thatf(n) = f̂(n)
(perfect reconstruction filters)

– Analyzing wavelet

∗ Analog bandpass filter with its properties of scaling and translation

∗ Facilitate implementation as a convolution operation

∗ Analysis filter bank (filtersh0(n) andh1(n) used to break input sequencef(n) into two half-length sequences
flp(n) andfhp(n)

– Synthesizing wavelet

∗ Along with a scaling (smoothing) function, used to represent a signal from its lowpass features (background)
and bandpass details (high frequency)

– Need to build a pair of analyzing and synthesizing wavelets,as well as a pair of scaling functions (lowpass and
smoothing) so that the input and reconstructed signals remain the same

∗ Many two-band, real-coefficient,FIR, perfect reconstruction filter banks

∗ Synthesis filters are modulated versions of the analysis filters, with one and only one synthesis filter being sign
reversed as well

∗ They obey the following property

g0(n) = (−1)nh1(n)

g1(n) = (−1)n+1h0(n)

or

g0(n) = (−1)n+1h1(n)

g1(n) = (−1)nh0(n)

∗ Cross-modulated filters
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· Diagonally opposite filters are related by modulation (and sign reversal for odd exponent of−1)

· Satisfy the following biorthogonality condition

〈hi(2n− k), gj(k)〉 = δ(i − j)δ(n), i, j = {0, 1}

· 〈hi(2n− k), gj(k)〉 denotes the inner product ofh(2n− k) andgj(k)

· For i 6= j, the inner product is 0

· For i == j, the inner product isδ(n) – the unit discrete impulse function

– Orthogonality

∗ Property of wavelets such that their inner products are zero

∗ Mathematically,
∫ ∞

−∞
ψjk(t) · ψj′k′(t)dt = 0

– Orthogonal basis

∗ Formed by wavelets for the space of admissible functions

∗ Leads to a simple formula for the coefficientbjk; defined earlier as

f(t) =
∑

j,k

bjkψjk(t)

∗ Multiplying above expression on both sides byψj′k′(t) and integrating, we have

∫ ∞

−∞
f(t)ψj′k′(t)dt =

∫ ∞

−∞

∑

j,k

bjkψjk(t)ψj′k′ (t)dt

∗ Orthogonality property eliminates the integrals of the terms wherej 6= j′ andk 6= k′; we get
∫ ∞

−∞
f(t)ψj′k′(t)dt = bjk

∫ ∞

−∞
(ψj′k′(t))2dt

yielding the coefficientbjk as

bjk =

∫∞
−∞ f(t)ψj′k′(t)dt
∫∞
−∞(ψj′k′(t))2dt

– Orthonormality

∗ Used in subband coding to develop fast wavelet transform

∗ Defined by
〈gi(n), gj(n+ 2m)〉 = δ(i− j)δ(m), i, j = {0, 1}

∗ Orthonormal filters satisfy the following two conditions

g1(n) = (−1)ng0(Keven− 1− n)

hi(n) = gi(Keven− 1− n), i = {0, 1}

· K ’s subscript indicates that the number of filter coefficientsmust be even
· Synthesis filterg1 is related tog0 by order reversal and modulation

· Bothh0 andh1 are order-reversed versions of synthesis filtersg0 andg1, respectively

∗ Orthonormal filter bank can be developed around the impulse response of a single filter, calledprototype

– Going from 1D to 2D filters

∗ Figure 7.7

∗ Apply downsampling twice, resulting in four subbands
· Approximation, vertical detail, horizontal detail, diagonal detail
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– Application of the filter

∗ Table 7.1: Daubechies 8-tap orthonormal filter coefficientsfor g0(n)
∗ Figure 7.8: Impulse response of four 8-tap Daubechies orthonormal filters,0 ≤ n ≤ 7

· Cross modulationof the analysis and synthesis filters
∗ Figure 7.9: Four band split of512× 512 pixel image of vase

Multiresolution

• Scaling functionφ(2j · t− k) provides the basis for a set of signals (or average) at levelj

• Similarly, the wavelet functionψ(2j · t− k) provides the detail at levelj

• Addition ofφ andψ at levelj yields the signal at levelj + 1 providing for multiresolution,

φ(2j · t− k) + ψ(2j · t− k) ⇒ φ(2j+1 · t− 2k)

• Applying the above approach to all the signals at levelj, we have

Vj ⊕Wj = Vj+1

whereVj andWj are the scaling space and wavelet space at levelj

• Input signal is divided into different scales of resolution, rather than different frequencies

• Wavelets automatically match long time with low frequency and short time with high frequency

Haar Wavelet

• Oldest and simplest orthonormal wavelets

• Expressed in matrix form as
T = HFH

T

– F is anN ×N image matrix,N = 2n

– H is anN ×N Haar transformation, and contains the basis functionhk(z) for the wavelet

∗ Basis function defined over continuous closed intervalz ∈ [0, 1] for k = 0, 1, . . .N whereN = 2n

– T is resultingN ×N transform

– Transform is required becauseH is not symmetric

– H generated by defining the integerk = 2p + q − 1 where0 ≤ p ≤ n− 1, q = 0 or 1 for p = 0, and1 ≤ q ≤ 2p

for p 6= 0

∗ Haar basis functions are

h0(z) = h00(z) =
1√
N
, z ∈ [0, 1]

hk(z) = hpq(z) =
1√
N







2p/2 (q − 1)/2p ≤ z < (q − 0.5)/2p

−2p/2 (q − 0.5)/2p ≤ z < q/2p

0 otherwise,z ∈ [0, 1]

∗ Theith row of anN×N Haar transform matrix contains the elements ofhi(z) for z = 0/N, 1/N, 2/N, . . . , (N−
1)/N

· ForN = 2, first row of a2× 2 Haar matrix is computed usingh0(z) with z = 0/2, 1/2

· From above,h0(z) = 1√
2

independent ofz
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· First row ofH2 is 1√
2
, 1√

2

· The second row is computed byh1(z) for z = 0/2, 1/2

· k = 2p + q − 1, whenk = 1, p = 0, q = 1

· h1(0) = 20/
√
2 = 1/

√
2

· h1(1/2) = −20/
√
2 = −1/

√
2

· The2× 2 Haar matrix is

H2 =
1√
2

[

1 1
1 −1

]

• Consider a signalf in one dimension from−∞ to +∞

−∞ +∞

f

• Haar scaling function is denoted byφ(t) and Haar wavelet function is denoted byψ(t).

• Haar scaling function (averaging or lowpass filter) at level0 (in the original signal) is given by

φ(x) =

{

1 0 ≤ x < 1
0 otherwise

• Translation byj is denoted byφj(x)
φj(x) = φ(x − j)

• Figure below shows bothφ(x) andφj(x)

−∞ +∞

f

0 1 j j + 1

φ φj

• Coefficients of the signalf indexed byj are given by

cj(f) =

∫

f(x)φj(x)dx

= Average off over the interval[j, j + 1]

• An approximate reconstruction off from cj(f) is given by

f0(x) =
∑

j

cj(f)φj(x)



Wavelets and Multiresolution Processing 9

• Reconstruction of the signal

−∞ +∞

f

k k + 1

ck(f) →

f0(x)

↓

– Ideally, we’ll like to have a better resolution for samplingin Figure above and go to an appropriately finer scale

– However, in images, the finest scale is given by the pixel, andwe start at this level.

∗ Sums and differences of neighboring pixels are considered to be at finest scale.

– Next, we go to a coarser level using the family{φ(1)j }j where

φ
(1)
j (x) = φ

(

1

2
x− j

)

.

– Note that

φ

(

1

2
x− j

)

=

{

1 2j ≤ x < 2(j + 1)
0 otherwise

– Signals at level 1 are given by

c1j(f) =
1

2

∫

f(x)φ
(1)
j (x)dx

= average off over[2j, 2(j + 1)]

• Averaging over larger interval leads to a loss of information (detail)

– Lost detail is preserved in wavelet transform

– φ(0) refers toφ at level 0, the original level.

– Sinceφ(1)j = φ02j + φ02j+1, we see that

c
(1)
j =

c
(0)
2j + c

(0)
2j+1

2
.

– Detail is preserved by introducing a new coefficient (highpass filter)

d
(1)
j =

c
(0)
2j − c

(0)
2j+1

2

– It is apparent that

c
(1)
j + d

(1)
j = c

(0)
2j

c
(1)
j − d

(1)
j = c

(0)
2j+1

– The average(ψ) and detail (d) coefficients for Haar wavelet at level 1 are given by

ψ
(1)
j = 1

2

[

φ
(0)
2j − φ

(0)
2j+1

]

d
(1)
j =

∫

f(x)ψ
(1)
j (x)dx
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– Notice from above equation that the wavelet transform of one-dimensional signal is two-dimensional.

Extension of Haar wavelet to a signal in two dimensions

• Consider a sample of the 2D image as a box as shown below

• •

••

•

(2i, 2j)

(2i, 2j + 1)

(2i + 1, 2j)

(2i + 1, 2j + 1)

Q
(0)
2i,2j

Q
(0)

2i,2j+1
Q

(0)

2i+1,2j+1

Q
(0)
2i+1,2j

(2(i + 1), 2(j + 1))

– Sample is divided into four areas (squares)

– Q represents the signal coefficients

– Let (l, p) represent the center coordinates(2i+ 1, 2j + 1) in the sample

– The Haar coefficient is given by

Cl,p(f) =

∫ ∫

f(x, y)χ
Q

(0)

l,p

(x, y)dxdy

where the characteristicχ of Q at level 0 is given by

φ
(1)
i,j (x, y) = χQ(x, y) =

{

1 (x, y) ∈ Q
0 (x, y) 6∈ Q

Q
(1)
j =

⋃

l = 2i, 2i+ 1
p = 2j, 2j + 1

Q
(0)
lp

– Also, with

Q
(1)
(i,j) =

{

(x, y)

∣

∣

∣

∣

2i ≤ x < 2i+ 1
2j ≤ y < 2j + 1

}

the Haar coefficient at level 1 is given by

C
(1)
(i,j)(f) =

1

4

∫ ∫

Q
(1)

(i,j)

f(x, y)dxdy

=

∫ ∫

φ
(1)
i,j (x, y)f(x, y)dxdy

– The average and detail coefficients are now given by

C
(1)
(i,j)(f) = C

(0)
2i,2j(f) + C

(0)
2i+1,2j(f) + C

(0)
2i,2j+1(f) + C

(0)
2i+1,2j+1(f)

D
(1)(0,1)
(i,j) (f) = C

(0)
2i,2j(f) + C

(0)
2i+1,2j(f)− C

(0)
2i,2j+1(f)− C

(0)
2i+1,2j+1(f)

D
(1)(1,0)
(i,j) (f) = C

(0)
2i,2j(f)− C

(0)
2i+1,2j(f) + C

(0)
2i,2j+1(f)− C

(0)
2i+1,2j+1(f)

D
(1)(1,1)
(i,j) (f) = C

(0)
2i,2j(f)− C

(0)
2i+1,2j(f)− C

(0)
2i,2j+1(f) + C

(0)
2i+1,2j+1(f)
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∗ Notice from the above equation that the wavelet transform ofa two-dimensional signal is in four dimensions

– Adding the four coefficients in the above equation, we get

C
(1)
(i,j)(f) +

∑

D
(1)(α,β)
(i,j) (f) = C

(0)
2i,2j

φ
(1)
ij (x, y) =

2i+1
∑

l=2i

2j+1
∑

p=2j

φ
(0)
l,p (x, y)

ψ
(
(i,j,k)1)(x, y) =

1

4

2i+1
∑

l=2i

2j+1
∑

p=2j

(ξl,p,k)φ
(0)
l,p (x, y)

ξl,p,k
k → 0 1 2 3

l 2i 1 1 1 1
2i+ 1 1 1 -1 -1

p 2j 1 -1 1 -1
2j + 1 1 -1 -1 1

d
(1)
i,j,k =

∫

f(x, y)ψ
(1)
(i,j,k)(x, y)dxdy

– k = 0 corresponds to

φ
(1)
(2i,2j)(x, y) =

1

4
φ

(

1

2
x− i,

1

2
y − j

)

Discrete Wavelet Transform

• CWT is redundant as the transform is calculated by continuouslyshifting a continuously scalable function over a signal
and calculating the correlation between the two

• The discrete form is normally a [piecewise] continuous function obtained by sampling the time-scale space at discrete
intervals

• The process of transforming a continuous signal into a series of wavelet coefficients is known aswavelet series decom-
position.

• Scaling function can be expressed in wavelets from−∞ to j

• Adding a wavelet spectrum to the scaling function yields a new scaling function, with a spectrum twice as wide as the
first

– Addition allows us to express the first scaling function in terms of the second

– The formal expression of this phenomenon leads to multiresolution formulation or two-scale relation as

φ(2jt) =
∑

k

hj+1(k)φ(2
j+1t− k)

– This equation states that the scaling function (average) ata given scale can be expressed in terms of translated
scaling functions at the next smaller scale, where the smaller scale implies more detail

– Similarly, the wavelets (detail) can also be expressed in terms of translated scaling functions at the next smaller
scale as

ψ(2jt) =
∑

k

gj+1(k)φ(2
j+1t− k)
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– The functionsh(k) andg(k) are known asscaling filterandwavelet filter, respectively

∗ These filters allow us to implement thediscrete wavelet transform(DWT) as an iterated digital filter bank.

• Subsampling property

– Gives a step size of 2 in the variablek for scaling and wavelet filters

– Every iteration of filter banks reduces the number of samplesby half so that in the

∗ In the last case, we are left with only one sample

Implementation of Haar Wavelets

• Any wavelet implemented by the iteration of filters with rescaling

– Set of filters form thefilter bank

– Let k be an integer

– Averaging and detail filters implemented using two2k−1 × 2k filtering matricesH andG given by

H =











1
2

1
2 0 0 · · · 0 0

0 0 1
2

1
2 · · · 0 0

...
...

...
...

...
...

0 0 0 0 · · · 1
2

1
2











G =











1
2 − 1

2 0 0 · · · 0 0
0 0 1

2 − 1
2 · · · 0 0

...
...

...
...

...
...

0 0 0 0 · · · 1
2 − 1

2











– LetHt andGt denote the transpose ofH andG, respectively

– Let Ik denote a2k × 2k identity matrix

– Then, the following facts aboutH andG are true:

Ht ×H +Gt ×G = 1
2Ik

H ×Ht = G×Gt = 1
2Ik−1

H ×Gt = G×Ht = 0

– For simplicity, consider the original signal to be sampled as a vector of length2k

– The filtering process includes downsampling (↓ 2) and decomposesb into two vectorsb1 (for block average) andd1
(for detail) given by

b1 = H × b
d1 = G× b

– b1 andd1 can be combined to reconstruct the original signalb

b = 2× (Ht × b1 +Gt × d1)

∗ A lossy compression can be achieved by discarding the detailvectord1, or setting it to be zero.

• Haar filter is applied to an image by the application ofH andG filters in a tensorial way

– Let P be a picture image represented as anr × c matrix of pixels

– Applying theH filter toP , we get a new imageP ′ as

P ′ = H × P ×Ht

– P ′ is anr′ × c′ matrix such that

r′ =
r

2

c′ =
c

2
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– Application ofH andG filters results into four matrices given by

P11 = H × P ×Ht

P12 = H × P ×Gt

P21 = G× P ×Ht

P22 = G× P ×Gt

∗ P11 is called thefully averaged picture

∗ P12 andP21 are calledpartially averagedandpartially differenced pictures

∗ P22 is called thefully differenced picture

– The four components can be used to reconstruct the original imageP as

P =
[

Ht Gt
]

×
[

P11 P12

P21 P22

]

×
[

H
G

]

∗ Above equation is known as asynthesis filter bank

– The matrix[HG]t is orthogonal as its inverse is the transpose, or

[

H
G

]−1

=
[

HtGt
]

∗ Matrices in synthesis bank are also known asorthogonal filter bank

∗ Note that
[

HtGt
]

[

H
G

]

= HtH +GtG = I

∗ The synthesis bank is the inverse of the analysis bank

∗ Analysis bank contains the steps for filtering and downsampling

∗ Synthesis bank reverses the order and performs upsampling and filtering

– Analysis of a picture (for two levels) is shown below



Wavelets and Multiresolution Processing 14

– Figure below shows an original texture, and its compressionand reconstruction
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Original image Compression by one level

Compression by two levels Reconstructed image

∗ Top left shows the original256× 256 pixel texture

∗ Application of Haar wavelet results into four128×128 pixel components which are combined into a256×256
pixel image shown on top right

· Top left quarter of this image shows the fully averaged part

· Top right quarter contains the partially averaged part

· Bottom left quarter contains the partially differenced part

· Bottom right quarter contains the fully differenced component

∗ Haar wavelet is applied to the fully averaged part again and the assembled components are shown in the bottom
left picture

∗ This picture is then used for reconstruction of the texture and the reconstructed texture is shown in the bottom
right picture.

• Lossy compression is achieved by discarding the differenced pictures (setting the matrices to zero) and retaining only
P11 during the reconstruction phase

– The process can be carried through several processing steps, thus removing a large amount of detail information.

Other wavelets

• Haar wavelet transform, as described above, may not be able to take good advantage of the continuity of pixel values
within images
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• Other wavelets may perform better at this, and achieve higher compression of textures, specially if the textures are smooth
images.

JPEG 2000 Standard1

• Based on wavelets to achieve compression

• Scalable in nature

– Can be decoded in a number of ways

– By truncating the codestream at any point, we can get the image representation at a lower resolution

– Encoders and decoders are computationally demanding

– StandardJPEGproduces ringing artifacts at lower resolutions, specially near image edges

∗ It also produces blocking artifacts due to its8× 8 blocks

• Comparison with standardJPEG

– Much better scalability and editability

∗ In standardJPEG, you have to reduce the resolution of the input image before encoding if you want to go below
a certain bit limit

∗ Comes for free inJPEG2000 because it does so automatically through multiresolution decomposition

– Superior compression

∗ Nearly imperceptible artifacts at higher bit rates

∗ At lower bit rates (< 0.25 bits/pixel for grayscale images),JPEG2000 has less visible artifacts than standard
JPEGand almost no blocking

∗ Compression gains are due toDWT and more sophisticated entropy coding

– Multiresolution representation

∗ Use ofDWT allows for decomposition of image at different resolutions

∗ Allows use for other purposes (such as presentation) in addition to compression

– Progressive transmission by pixel and resolution accuracy

∗ Efficient code stream organization

∗ Progressive by pixel accuracy (SNR scalability) and image resolution

∗ Quality can be gradually improved by downloading more data bits

∗ Designed with web applications in mind

– Choice of lossless or lossy compression in a single compression architecture

– Random code-stream access and processing

∗ Access to different regions of interest at varying degrees of granularity

∗ Possible to store different parts of same picture using different quality

– Error resilience

∗ Robust to bit errors from noisy communications channels

– Flexible file format, specially for color-space information and metadata

– High dynamic range support

∗ Supports any bit depth, including 16-bit and 32-bit floatingpoint images

– Side channel spatial information for transparency and alpha planes

• Color components transformation

1From Wikipedia
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– Images are transformed fromRGB to another color space to handle the components separately

– Two possible choices

1. Irreversible color transform
∗ UsesY CBCR color space
∗ Irreversible because it has to be implemented using floatingpoint or fixpoint and causes round-off errors

2. Reversible color transform

∗ Uses a modifiedYUV color space that does not introduce quantization errors
∗ Fully reversible
∗ Transformation given by

Forward Reverse
Y =

⌊

R+2G+B
4

⌋

G = Y −
⌊

CB+CR

4

⌋

CB = B −G R = CR +G
CR = R−G B = CB +G

∗ Chrominance components can be down-scaled in resolution

· Downsampling effectively handled by separating images into scales and dropping the finest wavelet
scale

– Divides an image into two-dimensional array of samples, known ascomponents

∗ As an example, a color image may consist of several components representing base colors red, green, and blue

• Tiling

– Image and its components are decomposed into rectangulartiles, which form the basic unit of original or recon-
structed image

– All the components (for example different color components) that form a tile are kept together so that each tile can
be independently extracted/decoded/reconstructed.

– Tiles can be any size, but all the tiles in the image are the same size

∗ Possible to have different sized tiles on right and bottom border

∗ Decoder needs less memory to decode the image
∗ You can also opt for partial decoding by decoding only a subset of tiles

– Quality of the image may decrease due to lower peakSNR

– Using many tiles may lead to blocking artifacts

• Wavelet transform

– Tiles are analyzed using wavelets to create multiple decomposition levels

∗ Yields a number of coefficients to describe the horizontal and vertical spatial frequency characteristics of the
original tiles, within a local area.

∗ Different decomposition levels are related by powers of 2

– Wavelet transformation to arbitrary depth

– Two different wavelet transforms used

1. Irreversible:CDF 9/7 wavelet transform

∗ CDF – Cohen Daubechies Feauveau
∗ Introduces quantization noise that depends on the precision of the decoder

2. Reversible: a rounded version of the biorthogonalCDF 5/3 wavelet
∗ Uses only integer coefficients; no rounding and hence, no quantization noise
∗ Used in lossless coding

– Wavelet transform implemented by the lifting scheme or convolution

• Quantization
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– Transformed coefficients are scalar-quantized to reduce the number of bits used in representation

– Information content of a large number of small-magnitude coefficients reduced by quantization, givingcode-blocks

– Leads to a loss of quality

– Code blocks are sets of integers that are encoded bit-by-bit

– Greater quantization step leads to greater compression andloss in quality

– Quantization step of 1 implies no quantization; used in lossless compression

• Coding

– At this point, we have a collection of sub-bands representing several approximation scales

∗ Each sub-band a set of coefficients

∗ Real numbers representing aspects of image associated withcertain frequency range as well as a spatial area
of the image

– Precincts

∗ Quantized sub-bands split into precincts, regular regionsin the wavelet domain

∗ Selected so that coefficients in a precinct across sub-band form approximate spatial block in the reconstructed
image

– Code blocks

∗ Precincts split into code blocks

∗ Code blocks located in a single sub-band

∗ All code blocks have the same size, except at the end of the image

– Additional compression is achieved by entropy coding of bit-planes of the coefficients in code-blocks to reduce the
number of bits required to represent quantized coefficients


