Image Segmentation

- Transitioning to algorithms with input as images and output as attributes extracted from those images
- Partition images into regions that are similar based on some criteria
- Thresholding, region growing, and region splitting and merging

Segmentation

- Subdivide an image into regions or objects
 - Group pixels in an image based on their low-level, local properties such as color or texture
 * Characterized by unsupervised learning
 - Convert an image into a representation that is more meaningful and easier to analyze
 * Extract image attributes, based on discontinuity and similarity of pixels
 - Level of detail dependent on problem being solved
 * Segmentation achieved when the objects or ROIs are detected
 - Assign a label to every pixel such that pixels with the same label share certain visual characteristics
 - One of the most difficult tasks in image processing
 * May be simplified by use of sensors for specific applications
 * IR sensor to detect heat signatures of objects

- Applications include
 - Medical imaging (locating tumors, studying anatomical structures)
 - Region classification in satellite images
 - Detection of disease in crops
 - Machine vision for industrial inspection

- Algorithms based on basic properties of intensity values: discontinuity and similarity
 - Discontinuity
 * Partition an image based on abrupt changes in intensity values, such as edges
 * Boundaries of regions are sufficiently different from each other and from the background
 - Similarity
 * Partition an image into regions that are similar according to some predefined criteria

Fundamentals

- Let R be the spatial region occupied by an image
- Image segmentation is the process that partitions R into n subregions R_1, R_2, \ldots, R_n such that
 1. $\bigcup_{i=1}^{n} R_i = R$
 - Union must be complete; every pixel must be in a region
 2. R_i is a connected set, $i = 1, 2, \ldots, n$
 - Points in a region must be connected (8-connected)
3. \(R_i \cap R_j = \emptyset \forall i, j | i \neq j \)
 - Regions must be disjoint

4. \(Q(R_i) = \text{true} \) for \(i = 1, 2, \ldots, n \)
 - \(Q(R_k) \) is a logical predicate defined over the points in set \(R_k \)

5. \(Q(R_i \cup R_j) = \text{false} \) for any adjacent region \(R_i \) and \(R_j \)
 - Adjacent regions must be different

 - Two regions \(R_i \) and \(R_j \) are said to be adjacent if their union forms a connected set
 - Regions are disjoint if their union is not connected

- **Edge-based segmentation**
 - Used when boundaries of regions are sufficiently different from each other and from the background to allow detection based on discontinuities

- **Region-based segmentation**
 - Partition an image into regions based on similarity of pixels

- **Figure 10.1**

Thresholding

- Simplest method for image segmentation
- Based on a threshold value to turn a grayscale image into a binary image
 - Easy if the histogram is characterized by two peaks corresponding to foreground and background regions that are separated by a valley
- Highly dependent on selection of the threshold value
- May be better to preprocess the image before applying thresholding
 - Smooth the image by convolving with a Gaussian, to make the histogram peaks more distinctive
 - Compute the intensity edges and apply algorithms only to pixels near the edges to reduce the asymmetry in the size of histogram peaks when foreground objects are small with respect to background

Point, line, and edge detection

- Detection of sharp, local changes in intensity
 - Interested in isolated points, lines, and edges
 - Edge pixels
 - Pixels at which the intensity of an image function changes abruptly
 - Edges
 - Sets of connected edge pixels
 - Edge detectors
 - Local image processing methods designed to detect edge pixels
 - Line
* An edge segment in which intensity of the background on either side of the line is much higher or much lower than the intensity of line pixels
 - Isolated point
 * A line with length and width equal to one pixel

- **Background**
 - Local averaging smooths an image
 * Since averaging is same as integration, abrupt changes can be detected by differentiation, using first- and second-order derivatives
 - **Derivatives of a digital function**
 * Computed in terms of differences in neighboring pixels
 * Approximation used for a first derivative
 1. Must be zero in areas of constant intensity
 2. Must be nonzero at the onset of an intensity step or ramp
 3. Must be nonzero at points along an intensity ramp
 * Approximation used for a second derivative
 1. Must be zero in areas of constant intensity
 2. Must be nonzero at the onset and end of an intensity step or ramp
 3. Must be zero along intensity ramps
 * The maximum possible intensity change for digital [finite] quantities is finite
 * Shortest distance over which a change can occur is adjacent pixels
 - **Approximation to the first-order derivative at point** x of a 1D function $f(x)$
 * Expand the function $f(x + \Delta x)$ into a Taylor series about x
 * Let $\Delta x = 1$
 * Keep only the digital terms, we get the *forward difference* as
 \[
 \frac{\partial f}{\partial x} = f'(x) = f(x + 1) - f(x)
 \]
 * *Backward difference* is computed as
 \[
 \frac{\partial f}{\partial x} = f'(x) = f(x) - f(x - 1)
 \]
 * *Central difference* is computed by
 \[
 \frac{\partial f}{\partial x} = f'(x) = \frac{f(x + 1) - f(x - 1)}{2}
 \]
 - Second derivative is computed by differentiating the first derivative
 \[
 \frac{\partial^2 f}{\partial x^2} = \frac{\partial f'(x)}{\partial x} = f''(x) = f(x + 1) - 2f(x+1) + f(x)
 \]
 * This expression is about point $x + 1$
 * Translate it to point x to get
 \[
 \frac{\partial^2 f}{\partial x^2} = f''(x) = f(x + 1) + f(x - 1) - 2f(x)
 \]
- Verify that the expressions for first- and second-order derivatives satisfy the conditions outlined
- Figure 10.2
 * Ramp edges, step edges, roof edges
 * First-order derivative is nonzero at the onset and along the entire intensity ramp, producing thick edges
 * Second-order derivative is nonzero only at the onset and end of ramp, producing finer edges
 * For isolated noise point, second-order derivative has a much stronger response compared to the first-order derivative
 - Second-order derivative is much more aggressive than first-order derivative in enhancing sharp changes
 - Second-order derivative enhances fine detail (including noise) much more than the first-order derivative
 * In both ramp and step edges, second-order derivative has opposite signs as it transitions into and out of an edge
 - The double-edge effect is used to locate edges

- Summary of observations
 1. First-order derivatives produce thicker edges in an image
 2. Second-order derivatives have a stronger response to fine detail, such as thin lines, isolated points, and noise
 3. Second-order derivatives produce a double-edged response at ramp and step transitions in intensity
 4. Sign of second derivative can be used to determine whether the transition into an edge is from light to dark or dark to light

- Use spatial filters [convolution kernels] to compute first and second derivatives at every pixel location
 * Response of filter at center point of a 3×3 region is
 \[
 R = w_1 z_1 + w_2 z_2 + \cdots + w_9 z_9 = \sum_{k=1}^{9} w_k z_k
 \]
 * Spatial filter mask given by
 \[
 \begin{array}{ccc}
 w_1 & w_2 & w_3 \\
 w_4 & w_5 & w_6 \\
 w_7 & w_8 & w_9 \\
 \end{array}
 \]
 * Detection of isolated points
 - Based on second derivative using the Laplacian
 \[
 \nabla^2 f(x, y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}
 \]
 - Partials are given by
 \[
 \frac{\partial^2 f(x, y)}{\partial x^2} = f(x + 1, y) + f(x - 1, y) - 2f(x, y)
 \]
 \[
 \frac{\partial^2 f(x, y)}{\partial y^2} = f(x, y + 1) + f(x, y - 1) - 2f(x, y)
 \]
 - Laplacian is given by
 \[
 \nabla^2 f(x, y) = f(x + 1, y) + f(x - 1, y) + f(x, y + 1) + f(x, y - 1) - 4f(x, y)
 \]
 - Implemented by a 4-neighborhood mask, or can be extended to an 8-neighborhood mask
 \[
 \begin{array}{ccc}
 1 & 1 & 1 \\
 1 & -8 & 1 \\
 1 & 1 & 1 \\
 \end{array}
 \]
Figure 10.4

* Select a point in the output image if its response to the mask exceeds a specified threshold; deselect others

\[g(x, y) = \begin{cases} 1 & \text{if } |R(x, y)| \geq T \\ 0 & \text{otherwise} \end{cases} \]

* \(T \) selected as 90% of highest absolute pixel value in Figure 10.4c

Note that in constant intensity areas, the mask response will be zero

** Line detection

* Second derivative results in a stronger response and produces thinner lines compared to first derivative

* Use Laplacian mask (Figure 10.4a) for line detection

* Handle double-line effect of the second derivative properly

Example – Figure 10.5

* Scale the image to handle negative values (Fig 10.5b)
 - Mid-gray represents zero
 - Darker shades represent negative values
 - Lighter shades represent positive values
 - Shows double line effect in the magnified region

* Using absolute values doubles the thickness of lines (Fig 10.5c)

* Use only positive values of Laplacian (Figure 10.5d)

* Thicker lines separated by a valley

Laplacian detector is isotropic; response independent of direction

Lines in specific directions can be detected by other masks (Fig 10.6)

* Different masks give different response depending on the direction of lines

Example – Figure 10.7

** Edge models

* Edge detection used to segment images based on abrupt (local) change in intensity

* Edge models – classified by their intensity profiles

** Step edge** Figure 10.8a

* Transition between two intensity levels occurring over a distance of single pixel

* Occur in computer-generated images for solid modeling and animation

* Used frequently as edge models in algorithm development (Canny edge detector)

** Ramp edge** Figure 10.8b

* Practical images have blurry and noisy edges
 - Blurring depends on optical focusing
 - Noise depends on electronic components

* Slope of ramp is inversely proportional to the degree of blur

* Edge point is not well defined but contained in any point in the ramp

** Roof edge** Figure 10.8c

* Models of lines through a region

* Base of roof edge determined by the thickness and sharpness of line

* Found in range images when thin objects (pipes) are closer to the sensor than their equidistant background (walls)

* Also found in digitization of line drawings and satellite imagery (roads)

Edge models allow us to write mathematical expressions for edges to develop image processing algorithms
- Figure 10.9 to show all three edge types
- Figure 10.10
 * Intensity profile and its first and second derivatives
 - First derivative positive at the onset of ramp and at points on the ramp; zero in the areas of constant intensity
 - Second derivative positive at the onset of ramp, negative at the end of ramp, and zero at points on ramp as well as constant intensity points
 * Zero crossing of the second derivative
 - Intersection between the intensity axis and a line extending between the extrema of the second derivative
 * Use magnitude of the first derivative to detect the presence of an edge
 * Sign of second derivative indicates whether an edge pixel lies on the dark or bright side of the edge
 * Additional properties of second derivative
 1. Produces two values for every edge in an image (undesirable feature)
 2. Zero crossing can be used to locate center of thick edges
- Example 10.4 – Effect of noise
 * Figure 10.11
 * Four ramp edges that transition from black region to white region
 - Top image – noise free
 - Next three images corrupted by additive Gaussian noise with zero mean and standard deviation of 0.1, 1.0, and 10.0 intensity levels
 - Graph below each image shows a horizontal intensity profile passing through the center of the image
 - Middle column shows the first derivative while the right column shows the second derivative
 - As you move own the center column, the derivatives become increasingly different from the noiseless case
 - Second derivative is even more sensitive to noise
 * This shows the importance of image smoothing prior to edge detection
- Three fundamental steps in edge detection
 1. Image smoothing for noise reduction
 2. Detection of edge points
 3. Edge localization
- Basic edge detection
- Image gradient and its properties
 * Find edge strength and direction at location \((x, y)\) in image \(f\)
 * Use the gradient \(\nabla f\), defined as a vector
 \[
 \nabla f = \text{grad}(f) = \begin{bmatrix} g_x \\ g_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}
 \]
 - Vector \(\nabla f\) points in the direction of greatest rate of change of \(f\) at \((x, y)\)
 * Magnitude of vector \(M(x, y)\) gives the rate of change in the direction of the gradient vector
 \[
 M(x, y) = \text{mag}(\nabla f) = \sqrt{g_x^2 + g_y^2}
 \]
 * \(g_x, g_y,\) and \(M(x, y)\) are images of the same size as original image
 - \(M(x, y)\) known as gradient image, or gradient
 * Direction of the gradient vector with respect to \(x\) axis is given by
 \[
 \alpha(x, y) = \tan^{-1} \left(\frac{g_y}{g_x} \right)
 \]
\[
\alpha(x, y) \text{ is also an image of the same size as original array}
\]

- * Figure 10.12
 - Compute partial derivatives over 3 × 3 neighborhood
 - Partial derivative along x axis is computed by subtracting pixels in left row from corresponding pixels in right row
 - Partial derivative along y axis is computed by subtracting pixels in upper row from corresponding pixels in lower row
 - Using the differences to implement partial derivatives, we get \(\partial f / \partial x = -2 \) and \(\partial f / \partial y = 2 \)

 \[
 \nabla f = \begin{bmatrix}
 g_x \\
 g_y
 \end{bmatrix} = \begin{bmatrix}
 \frac{\partial f}{\partial x} \\
 \frac{\partial f}{\partial y}
 \end{bmatrix} = \begin{bmatrix}
 -2 \\
 2
 \end{bmatrix}
 \]

 - This gives \(M(x, y) = 2\sqrt{2} \)
 - Similarly, \(\alpha(x, y) = \tan^{-1}(g_y/g_x) = -45^\circ \), or 135\(^\circ\) in counterclockwise direction with respect to x-axis
 - Direction of the edge at a point is orthogonal to the gradient vector at that point
 - Therefore, direction of edge in the example is 135\(^\circ\) − 90\(^\circ\) = 45\(^\circ\)

- * Gradient vector may be called edge normal
- * If gradient vector is normalized to unit length, the resulting vector may be called edge unit normal

- **Gradient operators**
 - Computing gradient requires the computation of \(\partial f / \partial x \) and \(\partial f / \partial y \) at every pixel location
 - Digital approximation of partial derivatives over a neighborhood is given by

 \[
 g_x = \frac{\partial f(x, y)}{\partial x} = f(x + 1, y) - f(x, y)
 \]
 \[
 g_y = \frac{\partial f(x, y)}{\partial y} = f(x, y + 1) - f(x, y)
 \]

 - Implemented using 1D masks of Figure 10.13
 - Diagonal edge direction computed by 2D mask
 - * Robert cross-gradient operator in 3 × 3 neighborhood using Figure 10.14

 \[
 \begin{bmatrix}
 z_1 & z_2 & z_3 \\
 z_4 & z_5 & z_6 \\
 z_7 & z_8 & z_9
 \end{bmatrix}
 \]

 \[
 g_x = \frac{\partial f}{\partial x} = z_9 - z_5
 \]
 \[
 g_y = \frac{\partial f}{\partial y} = z_8 - z_6
 \]

 - Simplest digital approximations to the partial derivatives using 3 × 3 masks are given by Prewitt operators as

 \[
 g_x = \frac{\partial f}{\partial x} = (z_7 + z_8 + z_9) - (z_1 + z_2 + z_3)
 \]
 \[
 g_y = \frac{\partial f}{\partial y} = (z_3 + z_6 + z_9) - (z_1 + z_4 + z_7)
 \]

 - * Sobel’s operator uses a 2 in the center location to provide image smoothing (noise suppression)

 \[
 g_x = \frac{\partial f}{\partial x} = (z_7 + 2z_8 + z_9) - (z_1 + 2z_2 + z_3)
 \]
 \[
 g_y = \frac{\partial f}{\partial y} = (z_3 + 2z_6 + z_9) - (z_1 + 2z_4 + z_7)
 \]
* Coefficients of all masks in Figure 10.14 add to zero, giving zero response in areas of constant intensity
* Operator masks give the gradient components g_x and g_y at every pixel location in the image
 - Used to estimate edge strength and direction
 - Magnitude may be approximated by
 $$M(x, y) \approx |g_x| + |g_y|$$
 - Resulting filters may not be isotropic (invariant to rotation)
* Figure 10.15
 - Kirsch compass kernels
 - Modification of Prewitt and Sobel masks to get maximum response along the diagonal directions
 - Detect edge magnitude as the response of the kernel with the strongest response at that point, out of eight kernels
 - Assign direction based on the selected kernel
* Example: Figure 10.16
 - Directionality of horizontal and vertical component
* Figure 10.17: Gradient angle image
 - Not very useful, but plays a key role in Canny edge detector
* Figure 10.18: Smoothed using a 5×5 averaging filter prior to edge detection (Remove brick boundaries)
* Figure 10.19: Diagonal edge detection
 - Combining the gradient with thresholding
 - Edge detection can be made more selective by smoothing the image before computing gradient
 - Can also threshold the gradient image
 - Figure 10.20: Thresholded version of gradient image
* More advanced techniques for edge detection
 - Account for image noise and nature of edges
 - Marr-Hildreth edge detector
* Arguments
 1. Intensity changes are not independent of image scale and so, their detection requires the use of operators of different sizes
 2. A sudden intensity change will give rise to a peak or trough in the first derivative, or to a zero crossing in second derivative
* Desired features of edge operators
 1. It should be a differential operator capable of computing a digital approximation of the first or second derivative at every point in the image
 2. It should be capable of being tuned to act at any desired scale
 - Large operators can be used to detect any blurry edges
 - Small operators can detect sharply focused fine detail
* Most satisfactory operator for those conditions is $\nabla^2 G$, called Laplacian of a Gaussian or LoG

\[
\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}
\]
\[
G(x, y) = e^{-\frac{x^2+y^2}{2\sigma^2}}
\]

with standard deviation σ

\[
\nabla^2 G(x, y) = \frac{\partial^2 G(x, y)}{\partial x^2} + \frac{\partial^2 G(x, y)}{\partial y^2}
\]
\[
= \frac{\partial}{\partial x} \left[-\frac{x}{\sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}} \right] + \frac{\partial}{\partial y} \left[-\frac{y}{\sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}} \right]
\]
\[
\begin{align*}
\frac{x^2}{\sigma^4} - \frac{1}{\sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}} + \frac{y^2}{\sigma^4} - \frac{1}{\sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}} \\
\frac{x^2+y^2}{\sigma^4} e^{-\frac{x^2+y^2}{2\sigma^2}}
\end{align*}
\]

* Figure 10.21
 - Zero crossing of the LoG occurs at \(x^2 + y^2 = 2\sigma^2\) which defines a circle of radius \(\sqrt{2}\sigma\) centered on the origin
 - LoG is also known as the Mexican hat operator
 - 5 × 5 mask

* Generate masks of arbitrary size by sampling and making sure that the coefficients sum to zero

* LoG operator
 1. Gaussian part blurs the image
 - Reduces the intensity of structures (including noise) at scales much smaller than \(\sigma\)
 - Smooth in both spatial and frequency domains; less likely to introduce artifacts (ringing)
 2. Laplacian (\(\nabla^2\))
 - First derivatives are directional operators
 - Laplacian is isotropic

* Algorithm convolves the LoG filter with an input image \(f(x, y)\)

\[
g(x, y) = [\nabla^2 G(x, y)] \star f(x, y)
\]

- Find zero crossings in \(g(x, y)\) to determine the edge locations
- Can also write the equation as (for linear processes)

\[
g(x, y) = \nabla^2 [G(x, y)] \star f(x, y)
\]

- Smooth the image first with a Gaussian and then, apply Laplacian

* Summary of algorithm
 1. Filter the input image with \(n \times n\) Gaussian lowpass filter
 2. Compute the Laplacian of the resulting image
 3. Find the zero crossings

* Size of the Gaussian kernel
 - Values of a Gaussian function at a distance larger than \(3\sigma\) from the mean are small enough so that they can be ignored
 - Use a kernel of size \([6\sigma \times 6\sigma]\)
 - Use the smallest odd integer > \(6\sigma\)

* Finding zero crossings
 - Use a 3 × 3 neighborhood centered on pixel
 - Zero crossing implies that signs of two of the opposing neighboring pixels must differ
 - Four cases: left/right, up/down, and two diagonals
 - If using a threshold, the absolute value of the difference should exceed the threshold

* Example: Figure 10.22

* Possible to approximate the LoG filter by a difference of Gaussians (DoG)

\[
\text{DoG}(x, y) = \frac{1}{2\pi \sigma_1^2} e^{-\frac{x^2+y^2}{2\sigma_1^2}} - \frac{1}{2\pi \sigma_2^2} e^{-\frac{x^2+y^2}{2\sigma_2^2}}
\]

with \(\sigma_1 > \sigma_2\)
To make meaningful comparisons between LoG and DoG, \(\sigma \) for LoG must be selected so that LoG and DoG have the same zero crossings

\[
\sigma^2 = \frac{\sigma_1^2 \sigma_2^2}{\sigma_1^2 - \sigma_2^2} \ln \left(\frac{\sigma_1^2}{\sigma_2^2} \right)
\]

Canny edge detector

Superior performance compared to other edge detectors

Three objectives

1. Low error rate
 - No spurious responses
 - All edges should be found

2. Edge points should be well localized
 - As close as possible to true edges
 - The distance between a point marked as edge and the center of true edge should be minimum

3. Single edge point response
 - Only a single point for each true edge point
 - Number of local maxima around the true edge should be minimum
 - Detector should not identify multiple edge pixels where only a single edge point exists

Good approximation to the above in 1D by first derivative of a Gaussian

\[
\frac{d}{dx} e^{-\frac{x^2}{2\sigma^2}} = -\frac{x}{\sigma^2} e^{-\frac{x^2}{2\sigma^2}}
\]

In 2D, apply 1D approach in the direction of edge normal

- Direction of edge normal is unknown
- So, apply it in all possible directions
- Approximate by first smoothing with a circular 2D Gaussian function, compute the gradient of the result, and then use the gradient magnitude and direction to estimate edge strength and direction at every point
- For input image \(f(x, y) \), denote the Gaussian function by

\[
G(x, y) = e^{-\frac{x^2 + y^2}{2\sigma^2}}
\]

- Form smoothed image \(f_s(x, y) \) by convolving \(G \) and \(f \)

\[
f_s(x, y) = G(x, y) * f(x, y)
\]

- Compute the gradient magnitude and direction

\[
M(x, y) = \| \nabla f_s(x, y) \|
= \sqrt{g_x^2 + g_y^2}
\]

\[
\alpha(x, y) = \tan^{-1} \left[\frac{g_y}{g_x} \right]
\]

where \(g_x = \partial f_s/\partial x \) and \(g_y = \partial f_s/\partial y \)

\(M(x, y) \) typically contains wide ridges around local maxima

- Thin those ridges using nonmaxima suppression

Specify a number of discrete orientations of the edge normal (gradient vector)

- In a 3 \(\times \) 3 region, define four orientations as horizontal, vertical, and \(\pm 45^\circ \) (Figure 10.24a)
- Define a range of directions over which an edge is considered to be horizontal (Figure 10.24b)
- Figure 10.24c: Angle ranges corresponding to four directions under consideration

Denote four basic directions by: \(d_1 = \) horizontal, \(d_2 = -45^\circ \), \(d_3 = \) vertical, and \(d_4 = +45^\circ \)
Formulate the nonmaxima suppression scheme for a 3×3 region centered at every point (x, y) in $\alpha(x, y)$

1. Find the direction d_k that is closest to $\alpha(x, y)$
2. If the value of $M(x, y)$ is less than at least one of its two neighbors along d_k, $g_N(x, y) = 0$ (suppression); otherwise, $g_N(x, y) = M(x, y)$

- Threshold $g_N(x, y)$ to reduce false edge points
- With single thresholding
 1. Threshold too low implies false positives
 2. Threshold too high eliminates valid edge points (false negatives)
- Hysteresis thresholding using two thresholds – low threshold T_L and high threshold T_H; $T_H : T_L$ should be $3 : 1$ or $2 : 1$
- Thresholding creates two additional images

\[
g_{NH}(x, y) = g_N(x, y) \geq T_H\\
\]

\[
g_{NL}(x, y) = g_N(x, y) \geq T_L
\]

- All the nonzero pixels in g_{NH} are contained in g_{NL} as the latter image is created with a lower threshold
- Eliminate all the nonzero pixels contained in g_{NH} from g_{NL}

\[
g_{NL}(x, y) - = g_{NH}(x, y)
\]

- Now, the nonzero pixels in $g_{NH}(x, y)$ and $g_{NL}(x, y)$ are considered strong and weak edge pixels
- All strong edge pixels are marked as valid pixels
- Edges in $g_{NH}(x, y)$ may have gaps that are filled by
 1. Locate the next unvisited pixel p in $g_{NH}(x, y)$
 2. Mark as valid edge pixels all the weak pixels in $g_{NL}(x, y)$ that are connected to p using 8-connectivity
 3. If all nonzero pixels in $g_{NH}(x, y)$ have been visited, go to step 4, otherwise go to step 1
 4. Set to zero all pixels in $g_{NL}(x, y)$ that did not get marked as valid edge pixels
- Form the output by adding $g_{NH}(x, y)$ and $g_{NL}(x, y)$

* Summary of Canny edge detector
 1. Smooth the input image by a Gaussian filter
 2. Compute the gradient magnitude and angle images
 3. Apply nonmaxima suppression to gradient magnitude image
 4. Use double thresholding and connectivity analysis to detect and link edges
* Typically, follow the detector by an edge-thinning algorithm
* Figure 10.25
* Example 10.9: Figure 10.26

- Quality vs speed comparisons
 * Complex implementation
 * Real-time applications may require higher speed than possible with Canny
 * Good choice when the quality of edges is important

- Edge linking and boundary detection
 - Pixels may not characterize edges completely because of noise, breaks in edges due to nonuniform illumination, and other spurious discontinuities in intensity values
 - Follow edge detection by linking algorithms to assemble edge pixels into meaningful edges or region boundaries
 - Local processing

Thresholding
• Central to image segmentation

• Foundation
 – Partition images directly into regions based on intensity values and/or properties of these values
 – Basics of intensity thresholding
 * Figure 10.35a: Intensity histogram
 * Light objects on a dark background
 * Intensity values grouped into two distinct modes
 * Select a threshold T that separates these modes
 * The segmented image $g(x, y)$ is given by
 $$
g(x, y) = \begin{cases}
1 & \text{if } f(x, y) > T \\
0 & \text{if } f(x, y) \leq T
\end{cases}
$$
 where the points labeled 1 are called object points and other points are called background points
 * If T is constant in the above expression, the thresholding is called global thresholding
 * When the value of T changes over an image, the thresholding is called variable thresholding
 – Local or regional thresholding
 * Variable thresholding in which the value of T at any point depends on its neighborhood
 * If T depends on the location itself, the thresholding is called dynamic or adaptive thresholding
 * Figure 10.35b
 * Histogram with three dominant modes
 * Possibly two types of light objects on a dark background
 * Use multiple thresholding to classify some points to the background and other points to two separate objects
 $$
g(x, y) = \begin{cases}
a & \text{if } f(x, y) > T_2 \\
b & \text{if } T_1 < f(x, y) \leq T_2 \\
c & \text{if } f(x, y) \leq T_1
\end{cases}
$$
 * Success of thresholding is directly related to the width and depth of valleys separating the histogram modes
 * Key factors affecting the valley properties
 1. Separation between peaks
 2. Noise content of the image
 3. Relative sizes of objects and background
 4. Uniformity of illumination source
 5. Uniformity of reflectance properties of the image

– Role of noise in image thresholding
 * Figure 10.36
 * No noise yields two spikes in the histogram; trivial to segment
 * Gaussian noise of zero mean and σ of 10; broader modes but good separation
 * Gaussian noise of zero mean and σ of 50; impossible to separate modes based on histogram

– Role of illumination and reflectance
 * Figure 10.37
 * Noisy image of Figure 10.36b
 * Multiply this image by a nonuniform intensity function, such as intensity ramp in the middle
 * Deep valley between peaks gets corrupted and modes cannot be easily separated
 * Nonuniform reflectance in the objects will have similar effect

– Noise and illumination may not be easily controllable
* Correct the shading pattern directly
 · Nonuniform (but fixed) illumination corrected by multiplying the image by the inverse of the pattern, obtained by imaging a flat surface of constant intensity
* Attempt to correct global shading pattern via processing
* Work around nonuniformities using variable thresholding

- Basic global thresholding
 - Automatic estimation of global threshold value
 1. Select an initial estimate for global threshold T
 2. Segment the image using T, giving G_1 as group of object pixels and G_2 as group of background pixels ($G_1 > T; G_2 \leq T$)
 3. Compute average intensity m_1 and m_2 corresponding to G_1 and G_2, respectively
 4. Compute a new threshold value
 \[T = \frac{1}{2}(m_1 + m_2) \]
 5. Repeat steps 2 to 4 until the difference between values of T in successive iterations is smaller than a predefined parameter ΔT
 - Works well when there is a reasonably clear valley between the modes of the histogram corresponding to objects and background
 - ΔT is used to control the number of iterations
 - Initial threshold value should be somewhere between the minimum and maximum intensity values in the image
 * Average intensity of the image is a good initial value
 - Figure 10.38

- Optimum global thresholding using Otsu’s method
 - Thresholding viewed as a statistical-decision theory problem whose objective is to minimize average error in assigning pixels to two or more classes
 - Closed form solution known as Bayes decision function
 - Solution based on two parameters
 1. Probability density function of intensity levels in each class
 2. Probability that each class occurs in a given application
 - Estimating PDFs not trivial; simplified by making workable assumptions
 - Otsu’s method
 * Maximizes the between-class variance
 * Basic idea: Properly thresholded classes should be distinct with respect to intensity values of their pixels
 · A threshold giving the best separation between classes would be the best optimum threshold
 * L integer intensity levels $\{0, 1, 2, \ldots, L - 1\}$
 * Image size $M \times N$ pixels
 * Number of pixels at intensity level i denoted by n_i
 \[MN = n_0 + n_1 + \cdots + n_{L - 1} \]
 * Normalized histogram has components $p_i = n_i / MN$
 \[\sum_{i=0}^{L-1} p_i = 1 \quad p_i \geq 0 \]
 - Select a threshold $T(k) = k, 0 < k < L - 1$ and threshold input image into two classes c_1 (intensity values in $[0, k]$) and c_2 (intensity values in $[k + 1, L - 1]$)
* Probability $P_1(k)$ that pixel is assigned to c_1 is given by

$$P_1(k) = \sum_{i=0}^{k} p_i$$

- If $k = 0$, the probability of any pixel assigned to class c_1 is 0

* Probability of class c_2

$$P_2(k) = \sum_{i=k+1}^{L-1} p_i = 1 - P_1(k)$$

* Mean intensity of pixels in c_1

$$m_1(k) = \sum_{i=0}^{k} iP(i|c_1)$$

$$= \sum_{i=0}^{k} \frac{iP(c_1|i)P(i)}{P(c_1)}$$

$$= \frac{1}{P_1(k)} \sum_{i=0}^{k} ip_i \quad \text{Since } i \text{ comes from class } c_1$$

* Bayes’ formula

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

* Similarly, the mean intensity value of pixels assigned to class c_2 is

$$m_2(k) = \sum_{i=k+1}^{L-1} iP(i|c_2)$$

$$= \frac{1}{P_2(k)} \sum_{i=k+1}^{L-1} ip_i$$

* Cumulative mean or average intensity up to level k is

$$m(k) = \sum_{i=0}^{k} ip_i$$

* Global mean or average intensity of the entire image is

$$m_G = \sum_{i=0}^{L-1} ip_i$$

* Also note that

$$P_1 m_1 + P_2 (m_2) = m_G$$

$$P_1 + P_2 = 1$$

* Effectiveness of threshold at level k is evaluated by normalized, dimensionless measure

$$\eta = \frac{\sigma_B^2}{\sigma_G^2}$$

where σ_G^2 is global variance of all pixels in the image

$$\eta_G^2 = \sum_{i=0}^{L-1} (i - m_G)^2 p_i$$
and σ_B^2 is the between-class variance

$$\sigma_B^2 = P_1(m_1 - m_G)^2 + P_2(m_2 - m_G)^2$$

* Summary of Otsu’s method
1. Compute the normalized histogram of input image p_i, $i = 0, 1, \ldots, L - 1$
2. Compute cumulative sums $P_1(k)$, for $k = 0, 1, \ldots, L - 1$
3. Compute cumulative means m_k, for $k = 0, 1, \ldots, L - 1$
4. Compute global mean m_G
5. Compute between-class variance term $\sigma_B^2(k)$ for $k = 0, 1, \ldots, L - 1$
6. Obtain Otsu threshold k^* as the value of k for which $\sigma_B^2(k)$ is maximum
7. Compute global variance σ_G^2 and obtain the separability measure η^*

* Variable thresholding

 – Image partitioning
 * Subdivide the image into nonoverlapping rectangles
 - Compensates for non-uniformities in illumination and/or reflectance
 - Rectangles should be small enough so that illumination of each is approximately uniform
 - Figure 10.46
 - Figure 10.47 – Histogram of six subimages
 * Subdivision works as long as objects of interest and background are of reasonably comparable area/size
 - If size is not similar, the method fails because the subdivision may contain only the foreground or background

 – Variable thresholding based on local image properties
 * Based on specific properties computed in a neighborhood
 * Mean m_{xy} and standard deviation σ_{xy} of pixels in the neighborhood S_{xy} of every point (x, y) in the image
 - Descriptors of average intensity and local contrast
 * Common forms of variable, local thresholds
 $$T_{xy} = a\sigma_{xy} + bm_{xy}$$
 $$T_{xy} = a\sigma_{xy} + bm_G$$

 where a and b are nonnegative constants and m_G is the global image mean
 * Segmented image is computed as
 $$g(x, y) = \begin{cases}
 1 & \text{if } f(x, y) > T_{xy} \\
 0 & \text{if } f(x, y) \leq T_{xy}
 \end{cases}$$

 * Can also use a predicate based on parameters in the pixel neighborhood
 $$g(x, y) = \begin{cases}
 1 & \text{if } Q(\text{local parameters}) \text{ is true} \\
 0 & \text{if } Q(\text{local parameters}) \text{ is false}
 \end{cases}$$

 * Consider the following predicate $Q(\sigma_{xy}, m_{xy})$ based on local mean and standard deviation
 $$Q(\sigma_{xy}, m_{xy}) = \begin{cases}
 \text{true} & \text{if } f(x, y) > a\sigma_{xy} \& \& f(x, y) > bm_{xy} \\
 \text{false} & \text{otherwise}
 \end{cases}$$

 * Figure 10.48