
Image Restoration and Reconstruction

Image restoration

• Objective process to improve an image, as opposed to the subjective process of image enhancement

– Enhancement uses heuristics to improve the image for human visual system, for example, by contrast stretching

– Restoration attempts to reverse engineer the image based on modeling the degradation process, exemplified by
removal of image blur

• Recover an image by using a priori knowledge of degradation phenomenon

• Operations may be done in spatial (localized) or frequency (global) domain

Model of image degradation/restoration process

• Degradation process modeled as a degradation operatorH

• Use additive noise η(x, y) and degradation function to operate on an input image f(x, y) to produce a degraded image
g(x, y)

• Figure 5.1

• Reverse engineering the process of degradation

– Given g(x, y), degradation functionH, and additive noise η(x, y)

– Estimate f̂(x, y) of original image

– Estimate should be as close to original image as possible

– The more we know aboutH and η, the closer f̂(x, y) to f(x, y)

• GivenH as a linear, position-invariant process, and h(x, y) as its spatial representation, degraded image in spatial domain
is given by

g(x, y) = h(x, y)8f(x, y) + η(x, y)

• The equivalent frequency domain representation is

G(u, v) = H(u, v)F (u, v) +N(u, v)

Noise models

• Noise from image acquisition and/or transmission

– Light level and sensor temperature

– Atmospheric disturbance during transmission

• Spatial and frequency properties of noise

– White noise

∗ Characterized by constant Fourier spectrum of noise
∗ Constant Fourier spectrum implies that all frequencies are present in the function in equal proportion
∗ Effectively, it must have its DC component as zero

– Assume that the noise is independent of spatial coordinates and is uncorrelated with respect to the image

• Important noise probability density functions
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– Statistical behavior of intensity values in the noise component

– Random variables characterized by a PDF

– Noise component of the model given as an image η(x, y) of the same size an input image

– Gaussian noise or Normal noise

∗ PDF of Gaussian noise is given by

p(z) =
1√
2πσ

e−(z−z)
2/2σ2

−∞ < z <∞ is the intensity, z is the average of z, and σ is its standard deviation
∗ Figure 5.2a
∗ Approximately 68% of noise is in the range [(z−σ), (z+σ)] and about 95% is in the range [(z−2σ), (z+2σ)]

∗ Typically arises due to electric circuit noise and sensor noise due to poor illumination and/or high temperature

– Rayleigh noise

∗ PDF of Rayleigh noise is given by

p(z) =

{
2
b (z − a)e

−(z−a)2/b for z ≥ a
0 for z < a

∗ Mean and variance of this density are given by

z = a+
√
πb/4

σ2 =
b(4− π)

4

∗ Figure 5.2b
∗ Useful for approximating skewed histograms
∗ Used to characterize noise in range imaging

– Erlang (gamma) noise

∗ PDF of Erlang noise is given by

p(z) =

{
abzb−1

(b−1)! e
−az for z ≥ 0

0 for z < 0

· a > b and b is a positive integer
∗ Mean and variance of this density are given by

z =
b

a

σ2 =
b

a2

∗ Figure 5.2c
∗ Observed in laser imaging

– Exponential noise

∗ PDF of exponential noise is given by

p(z) =

{
ae−az for z ≥ 0
0 for z < 0

· a > 0

∗ Mean and variance of this density are given by

z =
1

a

σ2 =
1

a2
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∗ Exponential noise is a special case of Erlang noise, with b = 1

∗ Figure 5.2d

– Uniform noise

∗ PDF of uniform noise is given by

p(z) =

{
1
b−a if a ≤ z ≤ b
0 otherwise

∗ Mean and variance of this density are given by

z =
a+ b

2

σ2 =
(b− a)2

12

∗ Figure 5.2e

– Impulse (salt-and-pepper) noise

∗ Number of bits/pixel in the image given by k
∗ Range of possible intensity values [0, 2k − 1]

∗ PDF of impulse (bipolar) noise is given by

p(z) =

 Ps for z = 2k − 1
Pp for z = 0
1− Ps − Pp otherwise

∗ If Ps = 0 or Pp = 0, the impulse noise is called unipolar
∗ If neither probability is zero, and Ps ≈ Pp, impulse noise will resemble randomly distributed salt and pepper

granules
∗ Figure 5.2f
∗ Let η(x, y) denote a salt-and-pepper noise image
∗ Corrupt an image f(x, y) of the same size as η(x, y) by changing all pixels in f(x, y) to 0 or 2k − 1 to match

similar valued pixels in η(x, y); pixels corresponding to other values in η(x, y) are left unchanged
∗ Probability of a pixel to be corrupted by salt or pepper noise is P = Ps + Pp
· P also known as noise density

∗ Mean and variance of sal-and-pepper noise are given by

z = (0)Pp +K(1− Ps − Pp) + (2k − 1)Ps

σ2 = (0− z)2Pp + (K − z)2(1− Ps − Pp) + (2k − 1)2Ps

∗ Found in situations with quick transitions, such as faulty switching during imaging

– Noisy images and their histograms

∗ Figure 5.3
· Test pattern to illustrate the characteristics of the noise PDFs
· Simple constant areas spanning the gray scale from black to white in three increments

∗ Figure 5.4
· Addition of six types of noise and the resulting histograms

• Periodic noise

– Result of electrical or electromechanical interference during image acquisition

– Spatially dependent

– Can be reduced significantly by frequency domain filtering

– Figure 5.5a
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∗ Corrupted by sinusoidal noise of various frequencies
∗ Fourier transform of a pure sinusoid is a pair of conjugate impulses located at the conjugate frequencies of the

sine wave

• Estimation of noise parameters

– Periodic noise parameters estimated by inspecting Fourier spectrum of the image

∗ Periodic noise tends to produce frequency spikes
∗ You can attempt to infer the periodicity of noise components directly from the image but that is only possible

in simplistic cases

– Parameters of noise PDFs may be known from sensor specifications

∗ Often need to estimate them for a particular imaging arrangement
∗ Capture a set of images of “flat” environments
· Uniformly illuminated solid gray board

∗ Use of test patterns

– Estimate PDF from small patches of reasonably constant background

∗ Figure 5.6: Vertical strips of 150× 20 pixels of gray scales (with noise) cropped from Figure 5.4
∗ Calculate the mean and variance of intensity levels
· Consider a strip denoted by S
· Let pS(zi), i = 0, 1, 2, . . . , L− 1 be the probability estimates of pixels in S
· The standard computation for mean and variance is

z =

L−1∑
i=0

zipS(zi)

σ2 =

L−1∑
i=0

(zi − z)2pS(zi)

∗ Mean and variance are enough to characterize the Gaussian distribution
∗ For other noise shapes, we solve for parameters a and b using mean and variance
∗ Impulse (salt and pepper) is characterized by the peaks for black and white pixels as Pp and Ps

Restoration in the presence of noise only – spatial filtering

• When the only degradation in images is noise, we have

g(x, y) = f(x, y) + η(x, y)

G(u, v) = F (u, v) +N(u, v)

– Noise term is unknown, and so, cannot be simply subtracted from g(x, y) or G(u, v) to restore the original image

– Periodic noise may be estimated from the spectrum of G(u, v)

∗ In this case, it is simple to subtract N(u, v) from G(u, v) to obtain the original image

– Use spatial filtering when only additive random noise is present

• Mean filters

– Arithmetic mean filter

∗ Simplest mean filter
∗ Let Sxy be the set of coordinates in a rectangular neighborhood of size m× n, centered at (x, y)
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∗ Compute the average value of the corrupted image g(x, y) in the area defined by Sxy

f̂(x, y) =
1

mn

∑
(r,c)∈Sxy

g(r, c)

∗ Use a spatial filter of size m× n in which all coefficients have the value 1/mn

∗ Smooths local variations in an image by blurring it and reducing the noise

– Geometric mean filter

∗ Given by the expression

f̂(x, y) =

 ∏
(r,c)∈Sxy

g(r, c)

 1
mn

∗ Achieves smoothing comparable to arithmetic mean filter while losing less image detail

– Figure 5.7: Arithmetic and geometric mean filters

– Harmonic mean filter

∗ Given by the expression
f̂(x, y) =

mn∑
(r,c)∈Sxy

1
g(r,c)

∗ Works well for salt noise but fails for pepper noise
∗ Performs well for Gaussian noise as well

– Contraharmonic mean filter

∗ Given by the expression

f̂(x, y) =

∑
(r,c)∈Sxy

g(r, c)Q+1∑
(r,c)∈Sxy

g(r, c)Q

where Q is the order of the filter
∗ Well suited for reducing salt and pepper noise
∗ Reduces pepper noise for positive values of Q and salt noise for negative values of Q but cannot do both

simultaneously
∗ Reduces to arithmetic mean filter for Q = 0 and to harmonic filter for Q = −1

– Figure 5.8: Contraharmonic filter; Q=1.5 and -1.5

– Figure 5.9: Selecting wrong sign in contraharmonic filtering

• Order-statistic filters

– Response based on ordering or ranking the pixel intensities in a neighborhood

– Median filter

∗ Replace the value of the pixel by the median of the intensity levels in the neighborhood of the pixel

f̂(x, y) = median(r,c)∈Sxy
{g(r, c)}

∗ Provide noise reduction with considerably less blurring
∗ Effective in the presence of bipolar and unipolar impulse noise
∗ Figure 5.10

– Max and min filters

∗ Given by

f̂max(x, y) = max
(r,c)∈Sxy

{g(r, c)}

f̂min(x, y) = min
(r,c)∈Sxy

{g(r, c)}
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∗ Max filter finds the brightest points in the image; reduces pepper noise
∗ Min filter finds the darkest points in the image; reduces salt noise
∗ Figure 5.11

– Midpoint filter

∗ Computes the midpoint between the maximum and minimum values in the neighborhood

f̂(x, y) =
1

2

[
max

(r,c)∈Sxy

{g(r, c)}+ min
(r,c)∈Sxy

{g(r, c)}
]

∗ Combines order statistics and averaging
∗ Good for randomly distributed noise, like Gaussian noise and uniform noise

– Alpha-trimmed mean filter

∗ Delete d/2 lowest and d/2 highest values in the neighborhood
∗ Average the remaining mn− d pixels, denoted by gg(r, c)
∗ Given by

f̂(x, y) =
1

mn− d
∑

(r,c)∈Sxy

gg(r, c)

∗ d can range from 0 to mn− 1

∗ When d = 0, the filter is arithmetic mean filter
∗ When d = mn− 1, the filter is the median filter

– Figure 5.12

• Adaptive filters

– Change behavior based on statistical characteristics of neighborhood under the filter

– Better performance but increase in filter complexity

– Adaptive, local noise reduction filter

∗ Mean gives a measure of average intensity in the region while variance quantifies contrast
∗ Response of filter on local region Sxy based on four quantities

1. g(x, y) – value of noisy image at (x, y)
2. σ2

η – variance of corrupting noise
3. mL – local mean in the neighborhood
4. σ2

L – local variance in the neighborhood
∗ Behavior of the filter should be

1. No noise case: If σ2
η is zero, return the value of g(x, y)

2. Edges: If σ2
L � σ2

η , return a value close to g(x, y)
3. Neighborhood has the same properties as overall image: if σ2

L ≈ σ2
η , reduce local noise by averaging

∗ An adaptive expression capturing the above is:

f̂(x, y) = g(x, y)−
σ2
η

σ2
L

[g(x, y)−mL]

∗ Figure 5.13
∗ Need to know the variance of overall noise σ2

η

∗ We assume that σ2
η ≤ σ2

L

– Adaptive median filter

∗ Can handle impulse noise with larger spatial density than very little (Pp, Ps > 0.2)
∗ Preserves detail while smoothing nonimpulse noise; median filter unable to achieve that
∗ Works with an adaptive neighborhood, by changing the size of Sxy
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∗ Notation
zmin Minimum intensity value in Sxy
zmax Maximum intensity value in Sxy
zmed Median of intensity values in Sxy
zxy Intensity value at coordinates (x, y)
Smax Maximum allowed size of Sxy

∗ Works in two stages:
Stage A A1 = zmed − zmin

A2 = zmed − zmax

if A1 > 0 && A2 < 0
go to Stage B

else
increase the window size

if window size ≤ Smax

repeat stage A
else

output zmed
Stage B B1 = zxy − zmin

B2 = zxy − zmax

if B1 > 0 && B2 < 0
output zxy

else
output zmed

∗ Three goals of algorithm
1. Remove salt-and-pepper (impulse) noise
2. Provide smoothing of non-impulsive noise
3. Reduce distortion, such as excessive thickening or thinning of object boundaries

∗ zmin and zmax are considered to be impulse-like components
∗ Stage A checks whether the median filter output zmed is an impulse
∗ If zmin < zmed < zmax, zmed cannot be an impulse
· Stage B checks if the point at the center of window zxy itself is an impulse

∗ Adaptive median filter does not necessarily replace each point by the median, preserving detail in the process
∗ Effect of small value of Pp and Ps
· As density of impulses increases, we need a larger neighborhood to clean up the noise spikes

∗ Figure 5.14

Periodic noise reduction by frequency domain filtering

• Periodic noise

– Appears as concentrated bursts of energy in Fourier transform

– At locations corresponding to frequencies of periodic interference

– Use a selective filter to isolate the noise

• Bandreject filters

– Ideal, Butterworth, and Gaussian bandreject filters

– Figure 4.64

– Remove noise in applications where the general location of noise components in frequency domain is approximately
known
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∗ Images corrupted by additive periodic noise than can be approximated as 2D sinusoidal functions

• Bandpass filters

– Opposite of bandreject filter
HBP (u, v) = 1−HBR(u, v)

– May remove too much image detail

– Useful in isolating the effects on an image caused by selected frequency bands

• Notch filters

– Rejects (or passes) frequencies in predefined neighborhoods about a center frequency

– General form of notch transfer function given by

HNR(u, v) =

Q∏
k=1

Hk(u, v)H−k(u, v)

– Appear in symmetric pairs about the origin due to symmetry of Fourier transform, unless located at the origin itself

∗ Hk(u, v) and H−k(u, v) are highpass filter transfer functions with centers at (u, v) and (−u,−v), respectively
∗ Centers are specified with respect to the center of frequency rectangle (bM/2c, bN/2c)

– Distance computations for the filter transfer functions given by

Dk(u, v) =
√
(u−M/2− uk)2 + (v −N/2− vk)2

D−k(u, v) =
√

(u−M/2 + uk)2 + (v −N/2 + vk)2

– Butterworth notch reject filter transfer function of order n with three notch pairs

HNR =

3∏
k=1

[
1

1 + [D0k/Dk(u, v)]n

] [
1

1 + [D0k/D−k(u, v)]n

]
∗ Since notches are symmetric pairs, the constantD0k is the same for each pair, but may be different for different

pairs

– The pass filters are the opposite of reject filters

HNP(u, v) = 1−HNR(u, v)

– Figure 5.15

∗ Transfer functions for the ideal, Gaussian, and Butterworth notch reject filters with one notch pair

– Example: Image denoising using notch filtering

∗ Figure 5.16
∗ Figure 5.17: Sinusoidal pattern of noise
∗ Figure 5.18: Narrow rectangular notch filter
∗ Figure 5.19

• Optimum notch filtering

– Figure 5.20

∗ Starlike components in Fourier spectrum due to interference
∗ Several pairs of components implying multiple sinusoidal components
· Methods like notch filter and other filters may remove too much image information
· Also, the interference components may not be single frequency bursts
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∗ Interference components may have broad skirts carrying information about the interference pattern
· Not easily detectable from the normal uniform background

– Optimality achieved by minimizing local variances of restored estimate f̂(x, y)

– Isolate the principle contributions of interference pattern and then, subtract a variable, weighted portion of the
pattern from the corrupted image

∗ Extract principal frequency components of interference pattern
· Use a notch pass filter HNP(u, v) at the location of each spike
· Fourier transform of interference pattern given by

N(u, v) = HNP(u, v)G(u, v)

∗ Notch pass filter built interactively by observing the spectrum of G(u, v) on a display
· Corresponding pattern in the spatial domain obtained from the expression

η(x, y) = F−1{HNP(u, v)G(u, v)}

∗ The original image can be restored if we completely know the interference η(x, y)
∗ The effect of unknown portions in the estimate of η(x, y) can be minimized by subtracting a weighted portion

of η(x, y) from the corrupted image g(x, y)

f̂(x, y) = g(x, y)− w(x, y)η(x, y)

· w(x, y) is called a weighting or modulation function

· Select w(x, y) so that the variance of f̂(x, y) is minimized over a specified neighborhood of every point
(x, y)

∗ Consider a neighborhood of size (2a+ 1)× (2b+ 1) about a point (x, y)

∗ Local variance of f̂(x, y) at (x, y) can be estimated by

σ2(x, y) =
1

(2a+ 1)(2b+ 1)

a∑
s=−a

b∑
t=−b

[
f̂(x+ s, y + t)− f̂(x, y)

]2
∗ The average value of f̂ in the neighborhood is given by

f̂(x, y) =
1

(2a+ 1)(2b+ 1)

a∑
s=−a

b∑
t=−b

f̂(x+ s, y + t)

∗ Substituting the estimate of restored image into variance gives

σ2(x, y) =
1

(2a+1)(2b+1)

∑a
s=−a

∑b
t=−b {[g(x+ s, y + t)− w(x+ s, y + t)η(x+ s, y + t)]−[

g(x, y)− w(x, y)η(x, y)
]}2

∗ Assuming that w(x, y) is essentially constant over the neighborhood gives the approximation

w(x+ s, y + t) = w(x, y)

for −a ≤ s ≤ a and −b ≤ t ≤ b
∗ This assumption also results in the expression

w(x, y)η(x, y) = w(x, y)η(x, y)
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∗ The variance expression becomes

σ2(x, y) =
1

(2a+1)(2b+1)

∑a
s=−a

∑b
t=−b {[g(x+ s, y + t)− w(x, y)η(x+ s, y + t)]−

[g(x, y)− w(x, y)η(x, y)]}2

∗ Minimize σ2(x, y) by solving
∂σ2(x, y)

∂w(x, y)
= 0

for w(x, y) yielding

w(x, y) =
g(x, y)η(x, y)− g(x, y)η(x, y)

η2(x, y)− η2(x, y)
∗ Since we assumed w(x, y) to be constant in a neighborhood, we can compute it for just one point in each

nonoverlapping neighborhood
∗ Figures 5.21–5.23


