Morphological Image Processing

Morphology

- Identification, analysis, and description of the structure of the smallest unit of words
- Theory and technique for the analysis and processing of geometric structures
 - Based on set theory, lattice theory, topology, and random functions
 - Extract image components useful in the representation and description of region shape such as boundaries, skeletons, and convex hull
 - Input in the form of images, output in the form of attributes extracted from those images
 - Attempt to extract the *meaning* of the images

Preliminaries

- Set theory in the context of image processing
 - Sets of pixels represent objects in the image
 - Set of all white pixels in a binary image is a complete morphological description of the image
- Sets in binary images
 - Members of the 2D integer space Z^2
 - Each element of the set is a 2-tuple whose coordinates are the (x, y) coordinates of a white pixel in the image
 - * Gray scale images can be represented as a set of 3-tuples in \mathbb{Z}^3
 - * Higher dimensions can be used to represent other attributes such as color
 - Morphological operations
 - * Defined in terms of sets: objects and structuring elements
 - * Objects defined as sets of foreground pixels
 - * SES specified in terms of both foreground and background pixels
 - · SES may contain "don't care" elements
 - * Sets are embedded in rectangular arrays due to rectangular nature of images
 - Figure 9.1
 - Set reflection \hat{B}

$$\hat{B} = \{w | w = -b, \text{ for } b \in B\}$$

- * In binary image, \hat{B} is the set of points in B whose (x,y) coordinates have been replaced by (-x,-y)
- * Figure 9.2
- Set translation
 - * Translation of a set B by point $z = (z_1, z_2)$ is denoted by $(B)_z$

$$(B)_z = \{c | c = b + z, \text{ for } b \in B\}$$

- * In binary image, $(B)_z$ is the set of points in B whose (x,y) coordinates have been replaced by $(x+z_1,y+z_2)$
- * Figure 9.1c
- Set reflection and set translation are used to formulate operations based on so-called *structuring elements*
 - * Small sets or subimages used to probe an image for properties of interest

- * Figure 9.2
- * Preference for SEs to be rectangular arrays
- * Some locations are such that it does not matter whether they are part of the SE
 - Such locations are flagged by \times in the SE
- * The origin of the SE must also be specified
 - Indicated by in Figure 9.2
 - · If SE is symmetric and no is shown, the origin is assumed to be at the center of SE
- Using ses in morphology
 - * Figure 9.3 A simple set A and an SE B
 - * Convert A to a rectangular array by adding background elements
 - * Make background border large enough to accommodate the entire SE when the origin is on the border of original A
 - * Fill in the SE with the smallest number of background elements to make it a rectangular array
 - * Operation of set A using SE B
 - · Create a new set by running B over A
 - · Origin of B visits every element of A
 - · If B is completely contained in A, mark that location as a member of the new set; else it is not a member of the new set
 - Results in *eroding* the boundary of A

Erosion and dilation

- Erosion
 - With A and B as sets in \mathbb{Z}^2 , erosion of A by B, denoted by $A \ominus B$ is defined as

$$A \ominus B = \{z \mid (B)_z \subseteq A\}$$

- Set of all points z such that B, translated by z, is contained in A
- B does not share any common elements with the background

$$A \ominus B = \{z \mid (B)_z \cap A^c = \emptyset$$

- Figure 9.4
- Example: Figure 9.5
 - * Erosion shrinks or thins objects in a binary image
 - * Morphological filter in which image details smaller than the SE are filtered/removed from the image
- Dilation
 - With A and B as sets in \mathbb{Z}^2 , dilation of A by B, denoted by $A \oplus B$ is defined as

$$A \oplus B = \{ z \mid (\hat{B})_z \cap A \neq \emptyset \}$$

- Reflect B about the origin, and shift the reflection by z
- Dilation is the set of all displacements z such that B and A overlap by at least one element
- An equivalent formulation is

$$A \oplus B = \{ z \mid [(\hat{B})_z \cap A] \subseteq A \}$$

- Grows or thickens objects in a binary image
- Figure 9.6

- Example: Figure 9.7
 - * Bridging gaps in broken characters
 - * Lowpass filtering produces a grayscale image; morphological operation produces a binary image
- Erosion and dilation are based on set operations and therefore, are nonlinear
- Duality
 - Erosion and dilation are duals of each other with respect to set complementation and reflection

$$(A \ominus B)^c = A^c \oplus \hat{B}$$
$$(A \oplus B)^c = A^c \ominus \hat{B}$$

- Duality property is especially useful when SE is symmetric with respect to its origin so that $\hat{B} = B$
 - * Allows for erosion of an image by dilating its background (A^c) using the same SE and complementing the results
- Proving duality
 - * Definition for erosion can be written as

$$(A \ominus B)^c = \{z \mid (B)_z \subseteq A\}^c$$

- $* (B)_z \subseteq A \Rightarrow (B)_z \cap A^c = \emptyset$
- * So, the previous expression yields

$$(A \ominus B)^c = \{z \mid (B)_z \cap A^c = \emptyset\}^c$$

- * The complement of the set of z's that satisfy $(B)_z \cap A^c = \emptyset$ is the set of z's such that $(B)_z \cap A^c \neq \emptyset$
- * This leads to

$$(A \ominus B)^c = \{z \mid (B)_z \cap A^c \neq \emptyset\}$$

= $A^c \oplus \hat{B}$

Opening and closing

- Opening smoothes the contours of an object, breaks narrow isthmuses, and eliminates thin protrusions
- Closing smoothes sections of contours, fusing narrow breaks and long thin gulfs, eliminates small holes, and fills gaps in the contour
- Opening of a set A by SE B, denoted by $A \circ B$, is defined by

$$A \circ B = (A \ominus B) \oplus B$$

• Closing of a set A by SE B, denoted by $A \bullet B$, is defined by

$$A \bullet B = (A \oplus B) \ominus B$$

• Geometric interpretation of opening expressed as a fitting process such that

$$A \circ B = \bigcup \{ (B)_z \mid (B)_z \subseteq A \}$$

- Union of all translates of B that fit into A
- Figure 9.8
- Similar interpretation of closing in Figure 9.9

- Example Figure 9.10
- Duality property

$$(A \bullet B)^c = (A^c \circ \hat{B})$$
$$(A \circ B)^c = (A^c \bullet \hat{B})$$

- Opening operation satisfies the following properties
 - 1. $A \circ B \subseteq A$
 - $2. \ C \subseteq D \ \Rightarrow \ C \circ B \subseteq D \circ B$
 - 3. $(A \circ B) \circ B = A \circ B$
- Similarly, closing operation satisfies
 - 1. $A \subseteq A \bullet B$
 - 2. $C \subseteq D \Rightarrow C \bullet B \subseteq D \bullet B$
 - 3. $(A \bullet B) \bullet B = A \bullet B$
 - In both the above cases, multiple application of opening and closing has no effect after the first application
- Example: Removing noise from fingerprints
 - Figure 9.11
 - Noise as random light elements on a dark background

Hit-or-miss transformation

- Basic tool for shape detection in a binary image
 - Uses the morphological erosion operator and a pair of disjoint SES B_1 and B_2 ; $B_2 = B_1^c$
 - First SE fits in the foreground of input image I; second SE misses it completely
 - The pair of two SEs is called *composite structuring element*
 - The operator is defined as

$$I \circledast B_{1,2} = \{z | (B_1)_z \subseteq A \text{ and } (B_2)_z \subseteq A^c\}$$

= $(A \ominus B_1) \cap (A^c \ominus B_2)$

- Figure 9.12
 - Three disjoint shapes denoted C, D, and E
 - $* A = C \cup D \cup E$
 - Objective: To find the location of one of the shapes, say D
 - Origin/location of each shape given by its center of gravity
 - Let D be enclosed by a small window W
 - Local background of D defined by the set difference (W-D)
 - * Note that D and W-D provide us with the two disjoint SEs

$$D \cap (W - D) = \emptyset$$

- Compute A^c

- Compute $A \ominus D$
- Compute $A^c \ominus (W D)$
- Set of locations where D exactly fits inside A is $(A \ominus D) \cap (A^c \ominus (W D))$
 - * The exact location of D
- If B is the set composed of D and its background, the match of B in A is given by

$$A \circledast B = (A \ominus D) \cap [A^c \ominus (W - D)]$$

• The above can be generalized to the composite SE being defined by $B = (B_1, B_2)$ leading to

$$A \circledast B = (A \ominus B_1) \cap (A^c \ominus B_2)$$

- B_1 is the set formed from elements of B associated with the object; $B_1 = D$
- $-B_2 = (W D)$
- A point z in universe A belongs to the output if $(B_1)_z$ fits in A (hit) and $(B_2)_z$ misses A
- The object can be directly detected if we can process both foreground and background pixels simultaneously
 - Remake the SE to restate the transform as

$$I \circledast B = \{z | (B)_z \subseteq I\}$$

- B is made up of both foreground and background
- Figure 9.13

Some basic morphological algorithms

- Useful in extracting image components for representation and description of shape
- Boundary extraction
 - Boundary of a set A
 - * Denoted by $\beta(A)$
 - * Extracted by eroding A by a suitable SE B and computing set difference between A and its erosion

$$\beta(A) = A - (A \ominus B)$$

- Figure 9.15
 - * Using a larger SE will yield a thicker boundary
 - * The image needs to be padded suitably with background elements
- Example: Figure 9.16
 - * Results in a boundary that is 1 pixel thick
- Hole filling
 - Hole
 - * Background region surrounded by a connected border of foreground pixels
 - Algorithm based on set dilation, complementation, and intersection
 - Let A be a set whose elements are 8-connected boundaries, each boundary enclosing a background (hole)
 - Given a point in each hole, we want to fill all holes
 - Start by forming an array X_0 of 0s of the same size as A

- * The locations in X_0 corresponding to the given point in each hole are set to 1
- Let B be a symmetric SE with 4-connected neighbors to the origin

0	1	0
1	1	1
0	1	0

- Compute $X_k = (X_{k-1} \oplus B) \cap A^c$ k = 1, 2, 3, ...
- Algorithm terminates at iteration step k if $X_k = X_{k-1}$
- $-X_k$ contains all the filled holes
- $-X_k \cup A$ contains all the filled holes and their boundaries
- The intersection with A^c at each step limits the result to inside the ROI
 - * Also called conditioned dilation
- Figure 9.17
- Example: Figure 9.18
 - * Thresholded image of polished spheres (ball bearings)
 - * Eliminate reflection by hole filling
 - * Points inside the background selected manually
- Extraction of connected components
 - Let A be a set containing one or more connected components
 - Form an array X_0 of the same size as A
 - * All elements of X_0 are 0 except for one point in each connected component set to 1
 - Select a suitable SE B, possibly an 8-connected neighborhood as

1	1	1
1	1	1
1	1	1

- Start with X_0 and find all connected components using the iterative procedure

$$X_k = (X_{k-1} \oplus B) \cap A \quad k = 1, 2, 3, \dots$$

- Procedure terminates when $X_k = X_{k-1}$; X_k contains all the connected components in the input image
- The only difference from the hole-filling algorithm is the intersection with A instead of A^c
 - * This is because here, we are searching for foreground points while in hole filling, we looked for background points (holes)
- Figure 9.19
- Example: Figure 9.20
 - * X-ray image of chicken breast with bone fragments
 - * Objects of "significant size" can be selected by applying erosion to the thresholded image
 - * We may apply labels to the extracted components (region labeling)
- Convex hull
 - Convex set A
 - * Straight line segment joining any two points in A lies entirely within A
 - Convex hull H of an arbitrary set of points S is the smallest convex set containing S
 - Set difference H-S is called the *convex deficiency* of S
 - Convex hull and convex deficiency are useful to describe objects

- Digital sets
 - * Images contain poits at discrete coordinates
 - * We'll call a digital set A as convex iff its Euclidean convex hull only contains digital points belonging to A
- Algorithm to compute convex hull C(A) of a set A
 - * Figure 9.21
 - * Let B^i , i = 1, 2, 3, 4 represent the four structuring elements in the figure
 - · B^i is a clockwise rotation of B^{i-1} by 90°
 - * Implement the equation

$$X_k^i = (X_{k-1} \circledast B^i) \cup A \quad i = 1, 2, 3, 4 \text{ and } k = 1, 2, 3, \dots$$

with $X_0^i = A$

- * Apply hit-or-miss with B^1 till $X_k == X_{k-1}$, then, with B^2 over original A, B^3 , and B_4
- * Procedure converges when $X_k^i = X_{k-1}^i$ and we let $D^i = X_k^i$
- * Convex hull of A is given by

$$C(A) = \bigcup_{i=1}^{4} D^i$$

- Shortcoming of the above procedure
 - * Convex hull can grow beyond the minimum dimensions required to guarantee convexity
 - * May be fixed by limiting growth to not extend past the bounding box for the original set of points
 - * Figure 9.22

Thinning

- Transformation of a digital image into a simple topologically equivalent image
 - * Remove selected foreground pixels from binary images
 - * Used to tidy up the output of edge detectors by reducing all lines to single pixel thickness
- Thinning of a set A by SE B is denoted by $A \otimes B$
- Defined in terms of hit-or-miss transform as

$$A \otimes B = A - (A \circledast B)$$
$$= A \cap (A \circledast B)^{c}$$

- Only need to do pattern matching with SE; no background operation required in hit-or-miss transform
- A more useful expression for thinning A symmetrically based on a sequence of SES

$${B} = {B^1, B^2, \dots, B^n}$$

where B^i is a rotated version of B^{i-1}

- Define thinning by a sequence of SEs as

$$A \otimes \{B\} = ((\dots ((A \otimes B^1) \otimes B^2) \dots) \otimes B^n)$$

- Figure 9.23
 - * Iterate over the procedure till convergence
- Thickening
 - Morphological dual of thinning defined by

$$A\odot B=A\cup (A\circledast B)$$

- ses complements of those used for thinning
- Thickening can also be defined as a sequential operation

$$A \odot \{B\} = ((\dots((A \odot B^1) \odot B^2) \dots) \odot B^n)$$

- Figure 9.24
- Usual practice to thin the background and take the complement
 - * May result in disconnected points
 - * Post-process to remove the disconnected points
- Skeletons
 - Figure 9.25
 - * Skeleton S(A) of a set A
 - * Deductions
 - 1. If z is a point of S(A) and $(D)_z$ is the largest disk centered at z and contained in A, one cannot find a larger disk (not necessarily centered at z) containing $(D)_z$ and included in A; $(D)_z$ is called a maximum disk
 - 2. Disk $(D)_z$ touches the boundary of A at two or more different places
 - Skeleton can be expressed in terms of erosions and openings

$$S(A) = \bigcup_{k=0}^{K} S_k(A)$$

where

$$S_k(A) = (A \ominus kB) - (A \ominus kB) \circ B$$

* $A \ominus kB$ indicates k successive erosions of A

$$(A \ominus kB) = ((\dots((A \ominus B) \ominus B) \ominus \dots) \ominus B)$$

* K is the last iterative step before A erodes to an empty set

$$K = \max\{k \mid (A \ominus kB) \neq \emptyset\}$$

- * S(A) can be obtained as the union of skeleton subsets $S_k(A)$
- * A can be reconstructed from the subsets using the equation

$$\bigcup_{k=0}^{K} (S_k(A) \oplus kB)$$

where $(S_k(A) \oplus kB)$ denotes k successive dilations of $S_k(A)$

$$(S_k(A) \oplus kB) = ((\dots((S_k(A) \oplus B) \oplus B) \oplus \dots) \oplus B)$$

- * Figure 9.26
- Pruning
 - Complement to thinning and sketonizing algorithms to remove unwanted parasitic components
 - Automatic recognition of hand-printed characters
 - * Analyze the shape of the skeleton of each character
 - * Skeletons characterized by "spurs" or parasitic components
 - * Spurs caused during erosion by non-uniformities in the strokes

- * Assume that the length of a spur does not exceed a specific number of pixels
- Figure 9.25 Skeleton of hand-printed "a"
 - * Suppress a parasitic branch by successively eliminating its end point
 - * Assumption: Any branch with ≤ 3 pixels will be removed
 - * Achieved with thinning of an input set A with a sequence of SEs designed to detect only end points

$$X_1 = A \otimes \{B\}$$

- * Figure 9.25d Result of applying the above thinning three times
- * Restore the character to its original form with the parasitic branches removed
- * Form a set X_2 containing all end points in X_1

$$X_2 = \bigcup_{k=1}^8 (X_1 \circledast B^k)$$

* Dilate end points three times using set A as delimiter

$$X_3 = (X_2 \oplus H) \cap A$$

where H is a 3×3 SE of 1s and intersection with A is applied after each step

* The final result comes from

$$X_4 = X_1 \cup X_3$$

Morphological Reconstruction

- Works on two images and an SE
 - One image is called the *marker* and contains the starting points for transformation
 - Second image is called the *mask* and contains the transformation or constraint
 - se is used to define connectivity
 - * Typical connectivity is 8-connectivity described by an SE of size 3×3 with all 1s.
- Geodesic dilation and erosion
 - Let F be the marker image and G be the mask image
 - -F and G are binary images and $F \subseteq G$
 - Geodesic dilation
 - * Geodesic dilation of size 1 of F with respect to G is defined as

$$D_G^{(1)}(F) = (F \oplus B) \cap G$$

* Geodesic dilation of size n of F with respect to G is defined as

$$D_G^{(n)}(F) = D_G^{(1)} \left[D_G^{(n-1)}(F) \right]$$

with
$$D_G^{(0)}(F) = F$$

- · Set intersection is performed at each step of recursion
- · Mask G limits the growth of marker F
- * Figure 9.28
- Geodesic erosion

* Geodesic erosion of size 1 of F with respect to G is defined as

$$E_G^{(1)}(F) = (F \ominus B) \cup G$$

* Geodesic erosion of size n of F with respect to G is defined as

$$E_G^{(n)}(F) = E_G^{(1)} \left[E_G^{(n-1)}(F) \right]$$

with
$$E_G^{(0)}(F) = F$$

- · Set union is performed at each step of recursion
- · Guarantees that geodesic erosion of an image remains greater than or equal to its mask
- * Figure 9.29
- Geodesic dilation and erosion are duals with respect to set complementation
- Both operations converge after a finite number of iterative steps
- Morphological reconstruction by dilation and erosion
 - Morphological reconstruction by dilation
 - * Given mask image G and marker image F
 - * Denoted by $R_G^D(F)$
 - * Defined as the geodesic dilation of F with respect to G iterated till stability is achieved

$$R_G^D(F) = D_G^{(k)}(F)$$

with k such that $D_G^{(k)}(F) = D_G^{(k+1)}(F)$

- * Figure 9.30
- Morphological reconstruction by erosion
 - * Given mask image G and marker image F
 - * Denoted by $R_G^E(F)$
 - * Defined as the geodesic erosion of F with respect to G iterated till stability is achieved

$$R_G^E(F) = E_G^{(k)}(F)$$

with k such that $E_G^{(k)}(F)=E_G^{(k+1)}(F)$

- Reconstruction by dilation and erosion are duals with respect to set complementation
- Sample applications
 - Opening by reconstruction
 - * Morphological opening
 - · Erosion removes small objects
 - Dilation attempts to restore the shape of objects that remain
 - · Accuracy dependent on the shape of objects and SE
 - * Opening by reconstruction restores exactly the shape of objects that remain
 - * Opening by reconstruction of size n of an image F is defined as the reconstruction by dilation of F from the erosion of size n of F

$$O_R^{(n)}(F) = R_F^D[F \ominus nB]$$

F is used as a mask

- * Figure 9.31
 - · Extract characters containing long vertical strokes
- Filling holes

- * Earlier algorithm based on knowledge of a starting point for each hole
- * Now, we develop a fully automated procedure based on morphological reconstruction
- * Input binary image I(x, y)
- * Marker image

$$F(x,y) = \begin{cases} 1 - I(x,y) & \text{if } (x,y) \text{ is on the border of } I \\ 0 & \text{otherwise} \end{cases}$$

* The output binary image with all holes filled is given by

$$H = [R_{I^c}^D(F)]^c$$

- * Figure 9.32
- * Figure 9.33
- Border clearing
 - * Remove objects that touch a border of image so that only the objects that are completely enclosed in the picture remain
 - * Use original image I(x,y) as the mask
 - * Marker image

$$F(x,y) = \left\{ \begin{array}{ll} I(x,y) & \text{if } (x,y) \text{ is on the border of } I \\ 0 & \text{otherwise} \end{array} \right.$$

* Compute the image X as

$$X = I - R_I^D(F)$$

X has no objects touching the border

- * Figure 9.34
- Summary
 - Figure 9.35 Types of SEs
 - Table 9.1 Binary morphology results

Gray-scale morphology

- Gray scale image f(x,y), under the assumptions followed so far
- SE b(x,y)
 - The coefficients of SE may be in $\mathcal Z$ or $\mathcal R$
 - SE performs the same basic functions as binary counterparts; used as probes to examine a given image for specific properties
 - Figure 9.36 Nonflat and flat se
 - Used infrequently in practice
 - Reflection of an SE in gray scale morphology is denoted by

$$\hat{b}(x,y) = b(-x, -y)$$

- Erosion and dilation
 - Erosion
 - * Erosion of f by a flat SE b at any location (x, y) is defined as minimum value of the image coincident with b when the origin b is at (x, y)

$$[f\ominus b](x,y) = \min_{(s,t)\in b} \{f(x+s,y+t)\}$$

- Dilation
 - * Dilation of f by a flat SE b at any location (x,y) is defined as maximum value of the image coincident with b when the origin \hat{b} is at (x,y)

$$[f \oplus b](x,y) = \max_{(s,t) \in \hat{b}} \{f(x+s,y+t)\}$$

where
$$\hat{b}(x,y) = b(-x,-y)$$

- Example 9.9
 - * Figure 9.37