Morphological Image Processing

Morphology

- Identification, analysis, and description of the structure of the smallest unit of words
- Theory and technique for the analysis and processing of geometric structures
 - Based on set theory, lattice theory, topology, and random functions
 - Extract image components useful in the representation and description of region shape such as boundaries, skeletons, and convex hulls
 - Input in the form of images, output in the form of attributes extracted from those images
 - Attempt to extract the meaning of the images

Preliminaries

- Set theory in the context of image processing
 - Sets of pixels represent objects in the image
 - Set of all white pixels in a binary image is a complete morphological description of the image
- Sets in binary images
 - Members of the 2D integer space \mathbb{Z}^2
 - Each element of the set is a 2-tuple whose coordinates are the (x, y) coordinates of a white pixel in the image
 - Gray scale images can be represented as a set of 3-tuples in \mathbb{Z}^3
 - Set reflection \hat{B}
 $$\hat{B} = \{ w | w = -b, \text{ for } b \in B \}$$
 * In binary image, \hat{B} is the set of points in B whose (x, y) coordinates have been replaced by $(-x, -y)$
 * Figure 9.1a
 - Set translation
 * Translation of a set B by point $z = (z_1, z_2)$ is denoted by $(B)_z$
 $$(B)_z = \{ c | c = b + z, \text{ for } b \in B \}$$
 * In binary image, $(B)_z$ is the set of points in B whose (x, y) coordinates have been replaced by $(x + z_1, y + z_2)$
 * Figure 9.1c
 - Set reflection and set translation are used to formulate operations based on so-called structuring elements
 * Small sets or subimages used to probe an image for properties of interest
 * Figure 9.2
 * Preference for ses to be rectangular arrays
 * Some locations are such that it does not matter whether they are part of the SE
 - Such locations are flagged by \times in the SE
 * The origin of the SE must also be specified
 - Indicated by \bullet in Figure 9.2
 - If SE is symmetric and no \bullet is shown, the origin is assumed to be at the center of SE
 - Using ses in morphology
* Figure 9.3 – A simple set A and an SE B
* Convert A to a rectangular array by adding background elements
* Make background border large enough to accommodate the entire SE when the origin is on the border of original A
* Fill in the SE with the smallest number of background elements to make it a rectangular array
* Operation of set A using SE B
 * Create a new set by running B over A
 * Origin of B visits every element of A
 * If B is completely contained in A, mark that location as a member of the new set; else it is not a member of the new set
 * Results in eroding the boundary of A

Erosion and dilation

- Erosion
 * With A and B as sets in Z^2, erosion of A by B, denoted by $A \ominus B$ is defined as
 $$A \ominus B = \{ z \mid (B)_z \subseteq A \}$$
 * Set of all points z such that B, translated by z, is contained in A
 * B does not share any common elements with the background
 $$A \ominus B = \{ z \mid (B)_z \cap A^c = \emptyset \}$$
 * Figure 9.4
 * Example: Figure 9.5
 * Erosion shrinks or thins objects in a binary image
 * Morphological filter in which image details smaller than the SE are filtered/removed from the image

- Dilation
 * With A and B as sets in Z^2, dilation of A by B, denoted by $A \oplus B$ is defined as
 $$A \oplus B = \{ z \mid (\hat{B})_z \cap A \neq \emptyset \}$$
 * Reflect B about the origin, and shift the reflection by z
 * Dilation is the set of all displacements z such that B and A overlap by at least one element
 * An equivalent formulation is
 $$A \oplus B = \{ z \mid [(\hat{B})_z \cap A] \subseteq A \}$$
 * Grows or thickens objects in a binary image
 * Figure 9.6
 * Example: Figure 9.7
 * Bridging gaps in broken characters
 * Lowpass filtering produces a grayscale image; morphological operation produces a binary image

- Erosion and dilation are based on set operations and therefore, are nonlinear

- Duality
– Erosion and dilation are duals of each other with respect to set complementation and reflection

\[(A \ominus B)^c = A^c \oplus \hat{B} \]

\[(A \oplus B)^c = A^c \ominus \hat{B} \]

– Duality property is especially useful when \(SE\) is symmetric with respect to its origin so that \(\hat{B} = B\)

* Allows for erosion of an image by dilating its background \((A^c)\) using the same \(SE\) and complementing the results

– Proving duality

* Definition for erosion can be written as

\[(A \ominus B)^c = \{z \mid (B)_z \subseteq A\}^c \]

* \((B)_z \subseteq A \Rightarrow (B)_z \cap A^c = \emptyset\)

* So, the previous expression yields

\[(A \ominus B)^c = \{z \mid (B)_z \cap A^c = \emptyset\}^c \]

* The complement of the set of \(z\)'s that satisfy \((B)_z \cap A^c = \emptyset\) is the set of \(z\)'s such that \((B)_z \cap A^c \neq \emptyset\)

* This leads to

\[(A \ominus B)^c = \{z \mid (B)_z \cap A^c \neq \emptyset\} \]

\[= A^c \oplus \hat{B} \]

Opening and closing

- Opening smoothes the contours of an object, breaks narrow isthmuses, and eliminates thin protrusions
- Closing smoothes sections of contours, fusing narrow breaks and long thin gulfs, eliminates small holes, and fills gaps in the contour
- Opening of a set \(A\) by \(SE\ \hat{B}\), denoted by \(A \circ B\), is defined by

\[A \circ B = (A \ominus B) \oplus B \]

- Closing of a set \(A\) by \(SE\ \hat{B}\), denoted by \(A \bullet B\), is defined by

\[A \bullet B = (A \oplus B) \ominus B \]

- Geometric interpretation of opening expressed as a fitting process such that

\[A \circ B = \bigcup \{(B)_z \mid (B)_z \subseteq A\} \]

– Union of all translates of \(B\) that fit into \(A\)
– Figure 9.8

- Similar interpretation of closing in Figure 9.9
- Example – Figure 9.10
- Duality property

\[(A \bullet B)^c = (A^c \circ \hat{B}) \]

\[(A \circ B)^c = (A^c \bullet \hat{B}) \]
• Opening operation satisfies the following properties
 1. $A \circ B \subseteq A$
 2. $C \subseteq D \Rightarrow C \circ B \subseteq D \circ B$
 3. $(A \circ B) \circ B = A \circ B$

• Similarly, closing operation satisfies
 1. $A \subseteq A \bullet B$
 2. $C \subseteq D \Rightarrow C \bullet B \subseteq D \bullet B$
 3. $(A \bullet B) \bullet B = A \bullet B$

 In both the above cases, multiple application of opening and closing has no effect after the first application

• Example: Removing noise from fingerprints
 – Figure 9.11
 – Noise as random light elements on a dark background

Hit-or-miss transformation

• Basic tool for shape detection in a binary image
 – Uses the morphological erosion operator and a pair of disjoint SES
 – First SES fits in the foreground of input image; second SES misses it completely
 – The pair of two SES is called composite structuring element

• Figure 9.12
 – Three disjoint shapes denoted C, D, and E
 * $A = C \cup D \cup E$
 – Objective: To find the location of one of the shapes, say D
 – Origin/location of each shape given by its center of gravity
 – Let D be enclosed by a small window W
 – *Local background* of D defined by the set difference $(W - D)$
 * Note that D and $W - D$ provide us with the two disjoint SES

 $$D \cap (W - D) = \emptyset$$

 – Compute A^c
 – Compute $A \ominus D$
 – Compute $A^c \ominus (W - D)$
 – Set of locations where D exactly fits inside A is $(A \ominus D) \cap (A^c \ominus (W - D))$
 * The exact location of D
 – If B is the set composed of D and its background, the match of B in A is given by

 $$A \ominus B = (A \ominus D) \cap [A^c \ominus (W - D)]$$

• The above can be generalized to the composite SES being defined by $B = (B_1, B_2)$ leading to

 $$A \ominus B = (A \ominus B_1) \cap (A^c \ominus B_2)$$
- B_1 is the set formed from elements of B associated with the object; $B_1 = D$
- $B_2 = (W - D)$

- A point z in universe A belongs to the output if $(B_1)_z$ fits in A (hit) and $(B_2)_z$ misses A

Some basic morphological algorithms

- Useful in extracting image components for representation and description of shape
- **Boundary extraction**
 - Boundary of a set A
 * Denoted by $\beta(A)$
 * Extracted by eroding A by a suitable se B and computing set difference between A and its erosion
 \[\beta(A) = A - (A \ominus B)\]
 - Figure 9.13
 * Using a larger se will yield a thicker boundary
 - Figure 9.14
- **Hole filling**
 - Hole
 * Background region surrounded by a connected border of foreground pixels
 - Algorithm based on set dilation, complementation, and intersection
 - Let A be a set whose elements are 8-connected boundaries, each boundary enclosing a background (hole)
 - Given a point in each hole, we want to fill all holes
 - Start by forming an array X_0 of 0s of the same size as A
 * The locations in X_0 corresponding to the given point in each hole are set to 1
 - Let B be a symmetric se with 4-connected neighbors to the origin
 \[
 \begin{array}{ccc}
 0 & 1 & 0 \\
 1 & 1 & 1 \\
 0 & 1 & 0 \\
 \end{array}
 \]
 - Compute $X_k = (X_{k-1} \oplus B) \cap A^c$ $k = 1, 2, 3, \ldots$
 - Algorithm terminates at iteration step k if $X_k = X_{k-1}$
 - X_k contains all the filled holes
 - $X_k \cup A$ contains all the filled holes and their boundaries
 - The intersection with A^c at each step limits the result to inside the ROI
 * Also called *conditioned dilation*
 - Figure 9.15
 - Example: Figure 9.16
 * Thresholded image of polished spheres (ball bearings)
 * Eliminate reflection by hole filling
 * Points inside the background selected manually
- **Extraction of connected components**
 - Let A be a set containing one or more connected components
– Form an array X_0 of the same size as A
 * All elements of X_0 are 0 except for one point in each connected component set to 1
– Select a suitable SE B, possibly an 8-connected neighborhood as

\[
\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{array}
\]

– Start with X_0 and find all connected components using the iterative procedure

\[
X_k = (X_{k-1} \oplus B) \cap A \quad k = 1, 2, 3, \ldots
\]

– Procedure terminates when $X_k = X_{k-1}$; X_k contains all the connected components in the input image
– The only difference from the hole-filling algorithm is the intersection with A instead of A^c
 * This is because here, we are searching for foreground points while in hole filling, we looked for background points (holes)

– Figure 9.17
– Example: Figure 9.18
 * X-ray image of chicken breast with bone fragments
 * Objects of “significant size” can be selected by applying erosion to the thresholded image
 * We may apply labels to the extracted components (region labeling)

• Convex hull

 – Convex set A
 * Straight line segment joining any two points in A lies entirely within A
 – Convex hull H of an arbitrary set of points S is the smallest convex set containing S
 – Set difference $H - S$ is called the convex deficiency of S
 – Convex hull and convex deficiency are useful to describe objects
 – Algorithm to compute convex hull $C(A)$ of a set A
 * Figure 9.19
 * Let $B^i, i = 1, 2, 3, 4$ represent the four structuring elements in the figure
 * B^i is a clockwise rotation of B^{i-1} by 90°
 * Implement the equation

\[
X^i_k = (X_{k-1} \oplus B^i) \cup A \quad i = 1, 2, 3, 4 \text{ and } k = 1, 2, 3, \ldots
\]

 with $X^i_0 = A$
 * Apply hit-or-miss with B^1 till $X_k = X_{k-1}$, then, with B^2 over original A, B^3, and B_4
 * Procedure converges when $X^i_k = X^i_{k-1}$ and we let $D^i = X^i_k$
 * Convex hull of A is given by

\[
C(A) = \bigcup_{i=1}^{4} D^i
\]

– Shortcoming of the above procedure
 * Convex hull can grow beyond the minimum dimensions required to guarantee convexity
 * May be fixed by limiting growth to not extend past the bounding box for the original set of points
 * Figure 9.20

• Thinning
– Transformation of a digital image into a simple topologically equivalent image
 * Remove selected foreground pixels from binary images
 * Used to tidy up the output of edge detectors by reducing all lines to single pixel thickness
– Thinning of a set A by se B is denoted by $A \otimes B$
– Defined in terms of hit-or-miss transform as

$$A \otimes B = A - (A \ast B) = A \cap (A \ast B)^c$$

– Only need to do pattern matching with se; no background operation required in hit-or-miss transform
– A more useful expression for thinning A symmetrically based on a sequence of ses

$$\{B\} = \{B^1, B^2, \ldots, B^n\}$$

where B^i is a rotated version of B^{i-1}
– Define thinning by a sequence of ses as

$$A \otimes \{B\} = ((\ldots((A \otimes B^1) \otimes B^2) \ldots) \otimes B^n)$$

– Figure 9.21
 * Iterate over the procedure till convergence

• Thickening
– Morphological dual of thinning defined by

$$A \circ B = A \cup (A \ast B)$$

– ses complements of those used for thinning
– Thickening can also be defined as a sequential operation

$$A \circ \{B\} = ((\ldots((A \circ B^1) \circ B^2) \ldots) \circ B^n)$$

– Figure 9.22
– Usual practice to thin the background and take the complement
 * May result in disconnected points
 * Post-process to remove the disconnected points

• Skeletons
– Figure 9.23
 * Skeleton $S(A)$ of a set A
 * Deductions
 1. If z is a point of $S(A)$ and $(D)_z$ is the largest disk centered at z and contained in A, one cannot find a larger disk (not necessarily centered at z) containing $(D)_z$ and included in A; $(D)_z$ is called a maximum disk
 2. Disk $(D)_z$ touches the boundary of A at two or more different places
– Skeleton can be expressed in terms of erosions and openings

$$S(A) = \bigcup_{k=0}^{K} S_k(A)$$

where

$$S_k(A) = (A \ominus kB) - (A \ominus kB) \circ B$$
\[(A \ominus kB) = (((A \ominus B) \ominus B) \ominus B) \ominus B \]

* \(K \) is the last iterative step before \(A \) erodes to an empty set

\[K = \max\{k \mid (A \ominus kB) \neq \emptyset\} \]

* \(S(A) \) can be obtained as the union of skeleton subsets \(S_k(A) \)

* \(A \) can be reconstructed from the subsets using the equation

\[\bigcup_{k=0}^{K} (S_k(A) \oplus kB) \]

where \((S_k(A) \oplus kB) \) denotes \(k \) successive dilations of \(S_k(A) \)

\[(S_k(A) \oplus kB) = (((S_k(A) \oplus B) \oplus B) \oplus \ldots) \oplus B \]

* Figure 9.24

Pruning

- Complement to thinning and skeletonizing algorithms to remove unwanted parasitic components
- Automatic recognition of hand-printed characters
 * Analyze the shape of the skeleton of each character
 * Skeletons characterized by “spurs” or parasitic components
 * Spurs caused during erosion by non-uniformities in the strokes
 * Assume that the length of a spur does not exceed a specific number of pixels
- Figure 9.25 – Skeleton of hand-printed “a”
 * Suppress a parasitic branch by successively eliminating its end point
 * Assumption: Any branch with \(\leq 3 \) pixels will be removed
 * Achieved with thinning of an input set \(A \) with a sequence of SEs designed to detect only end points

\[X_1 = A \otimes \{B\} \]

* Figure 9.25d – Result of applying the above thinning three times
* Restore the character to its original form with the parasitic branches removed
* Form a set \(X_2 \) containing all end points in \(X_1 \)

\[X_2 = \bigcup_{k=1}^{8} (X_1 \oplus B^k) \]

* Dilate end points three times using set \(A \) as delimiter

\[X_3 = (X_2 \oplus H) \cap A \]

where \(H \) is a \(3 \times 3 \) SE of 1s and intersection with \(A \) is applied after each step
* The final result comes from

\[X_4 = X_1 \cup X_3 \]

Morphological Reconstruction

- Works on two images and an SE
– One image is called the **marker** and contains the starting points for transformation
– Second image is called the **mask** and contains the transformation or constraint
– SE is used to define connectivity

• Geodesic dilation and erosion

– Let F be the marker image and G be the mask image
– F and G are binary images and $F \subseteq G$
– Geodesic dilation
 * Geodesic dilation of size 1 of F with respect to G is defined as
 $$D_G^{(1)}(F) = (F \oplus B) \cap G$$
 * Geodesic dilation of size n of F with respect to G is defined as
 $$D_G^{(n)}(F) = D_G^{(1)} \left[D_G^{(n-1)}(F) \right]$$
 with $D_G^{(0)}(F) = F$
 - Set intersection is performed at each step of recursion
 - Mask G limits the growth of marker F
 * Figure 9.26
– Geodesic erosion
 * Geodesic erosion of size 1 of F with respect to G is defined as
 $$E_G^{(1)}(F) = (F \ominus B) \cup G$$
 * Geodesic erosion of size n of F with respect to G is defined as
 $$E_G^{(n)}(F) = E_G^{(1)} \left[E_G^{(n-1)}(F) \right]$$
 with $E_G^{(0)}(F) = F$
 - Set union is performed at each step of recursion
 - Guarantees that geodesic erosion of an image remains greater than or equal to its mask
 * Figure 9.27
 - Bottom leftmost pixel of F should be white
– Geodesic dilation and erosion are duals with respect to set complementation
– Both operations converge after a finite number of iterative steps

• Morphological reconstruction by dilation and erosion

– Morphological reconstruction by dilation
 * Given mask image G and marker image F
 * Denoted by $R_G^D(F)$
 * Defined as the geodesic dilation of F with respect to G iterated till stability is achieved
 $$R_G^D(F) = D_G^{(k)}(F)$$
 with k such that $D_G^{(k)}(F) = D_G^{(k+1)}(F)$
 * Figure 9.28
– Morphological reconstruction by erosion
 * Given mask image G and marker image F
* Denoted by $R_E^G(F)$
* Defined as the geodesic erosion of F with respect to G iterated till stability is achieved

$$R_E^G(F) = E_G^{(k)}(F)$$

with k such that $E_G^{(k)}(F) = E_G^{(k+1)}(F)$

- Reconstruction by dilation and erosion are duals with respect to set complementation

- Sample applications
 - Opening by reconstruction
 * Morphological opening
 - Erosion removes small objects
 - Dilation attempts to restore the shape of objects that remain
 * Accuracy dependent on the shape of objects and SE
 * Opening by reconstruction restores exactly the shape of objects that remain
 * Opening by reconstruction of size n of an image F is defined as the reconstruction by dilation of F from the erosion of size n of F

$$O_R^{(n)}(F) = R_D^F[F \ominus nB]$$

F is used as a mask
* Figure 9.29
 - Extract characters containing long vertical strokes

- Filling holes
 * Earlier algorithm based on knowledge of a starting point for each hole
 * Now, we develop a fully automated procedure based on morphological reconstruction
 * Input binary image $I(x,y)$
 * Marker image

$$F(x,y) = \begin{cases}
1 - I(x,y) & \text{if } (x,y) \text{ is on the border of } I \\
0 & \text{otherwise}
\end{cases}$$

* The output binary image with all holes filled is given by

$$H = \left[R_D^I(F)\right]^c$$

* Figure 9.30
* Figure 9.31

- Border clearing
 * Remove objects that touch a border of image so that only the objects that are completely enclosed in the picture remain
 * Use original image $I(x,y)$ as the mask
 * Marker image

$$F(x,y) = \begin{cases}
I(x,y) & \text{if } (x,y) \text{ is on the border of } I \\
0 & \text{otherwise}
\end{cases}$$

* Compute the image X as

$$X = I - R_D^I(F)$$

X has no objects touching the border
* Figure 9.32

Gray-scale morphology
• Gray scale image $f(x, y)$, under the assumptions followed so far

• SE $b(x, y)$
 – The coefficients of SE may be in \mathbb{Z} or \mathbb{R}
 – SE performs the same basic functions as binary counterparts; used as probes to examine a given image for specific properties
 – Figure 9.34 – Nonflat and flat SE
 – Used infrequently in practice
 – Reflection of an SE in gray scale morphology is denoted by

$$\hat{b}(x, y) = b(-x, -y)$$

• Erosion and dilation
 – Erosion
 * Erosion of f by a flat SE b at any location (x, y) is defined as minimum value of the image coincident with b when the origin b is at (x, y)

$$[f \ominus b](x, y) = \min_{(s, t) \in b} \{ f(x + s, y + t) \}$$

 – Dilation
 * Dilation of f by a flat SE b at any location (x, y) is defined as maximum value of the image coincident with b when the origin \hat{b} is at (x, y)

$$[f \oplus b](x, y) = \max_{(s, t) \in \hat{b}} \{ f(x + s, y + t) \}$$

where $\hat{b} = b(-x, -y)$
 – Figure 9.35