Power, Responsibility, Ethics

Superuser or root

- Privileged account with unrestricted access to all files and commands
- Powerful and dangerous
 - Unlimited powers to the capabilities of the system
 - * Can be dangerous in wrong or inexperienced hands
 - * Never do your routine work as root
 - Have to make decisions such as when to kill a process that is using too much CPU time
 - Responsible to make backups
 - Monitor system logs
 - Plan and make changes reversible; test changes in a nonproduction environment before release

Ownership of files and processes

- User owner (uid) and group owner (gid), with two ownerships decoupled
- Only owner can modify the permissions on the files
- Effective uid and gid for processes
 - Real uid/gid used for accounting
 - Effective uid/gid used for access privileges
 - * Identity of the process is promoted for a command using the suid and sgid bits
- User owner of a process can send it signals and reduce its scheduling priority (by increasing the nice value)

Superuser

- Defined by uid 0 on the account in the file /etc/passwd
- Additional usernames with uid 0 will act as superusers as well
 - Not recommended from system security viewpoint
- Operations restricted to superuser only
 - Changing root directory of a process with chroot(1M)
 - Creating device files
 - Setting system clock
 - Raising resource usage limits and process priorities
 - Setting system's hostname
 - Configuring network interfaces
 - Shutting down the system
- Any process being run as root can change its ownership
 - Example: login process

- Cannot recover to its former state after change

Choosing a root password

- Follow good password practices
- Shocking nonsense
- Change the password
 - Every three months or so
 - Any time someone with the knowledge of root password leaves site
 - Whenever security is compromised

Becoming root

- Logging in directly
 - Bad idea
 - No record of operations performed as root
 - No record of who did the work
 - Most systems disable root logins on terminals and across the network
 - * Only allow direct root login on system console
 - * File /etc/default/login on Solaris
 - * File /etc/securetty on RH Linux and HP-UX
- Using the command su(1M)
 - Better than direct login
 - Records who became root with the timestamp (/var/adm/sulog)
 - No record of work performed as root
 - Must belong to a group wheel to use su(1M)
 - su with and without -
 - * Without -, the shell created by su inherits the environment from the current shell
 - * With -, the new shell simulates the actual root login
 - Convenient to execute a single command with the -c option
 - * Command should be enclosed in quotes if it contains spaces
 - Some systems disable su by changing permissions on the command
- Using sudo(8)
 - Limited form of su(1M)
 - Allows a set of people (in file /etc/sudoers) to perform a limited set of commands as root
 - * User can check the command availability by issuing sudo -1
 - Records the user who issued the command as well as the command
 - * Possible through syslog(3), or to a file, or both
 - User has to supply his/her own password

- Repeated commands as sudo(8) do not require the password for up to a certain time period (configurable with a default 5 minutes)
 - * The time period can be extended by issuing the command sudo -v
 - * The time period can be terminated by sudo -K
- Possible to configure sudo for multiple machine with a single sudoers file
- Make sure that you specify the commands allowed to be executed by users with absolute path
 - * Do not allow any commands that will provide shell escape to users
- sudoers file should be modified by the command visudo
- Advantages of sudo
 - * Improved accountability due to command logging
 - * People do not always have to log in as root
 - * Real root password is protected; known to only the real root
 - * Privileges can be revoked without changing root password
 - * Faster and convenient
 - * List of users with root privileges is maintained
 - * Less chance of root shell being left unattended
 - * A single file can be used to control access to entire network
- Disadvantages
 - * A compromised sudoer account can compromise security
 - * Command logging can be subverted by shell escapes from within a program
- Never leave a session logged in as root unattended

Other pseudo-users

- Identified with an asterisk in the password file to prevent logins
- daemon
 - Owns unprivileged system software
 - uid 1
 - Avoids security hazards with root ownership
- bin
 - Owns system commands
 - Most modern systems use root as owner
- sys
 - Owns kernel and memory images (/dev/kmem, /dev/mem, /dev/drum, /dev/swap)
- nobody
 - Generic NFS user
 - uid -1 or -2
 - NFS uses nobody to represent root users on other systems for file sharing
 - Prevents remote roots from using their rootly powers on local machine
 - Represents a generic and powerless user
 - Should not own any files because remote roots can exploit those

- Some daemons (fingerd) run as nobody

Communicating with users

- Sending a message to a user
 - The write(1) command
 - The recipient may disable messages by using the command mesg n
- Sending a message to all users
 - Use the wall(1M) (write all) command
 - rwall(1M) should be used for local subnet
- Message of the day
 - Specified in the file /etc/motd
 - Used to make announcements at login time, such as new software and scheduled downtime
 - Keep it short to enable users to read it
 - Can be suppressed by using an empty file .hushlogin in user's home directory
- Pre-login message
 - Specified in the file /etc/issue
 - Displays before the login prompt
- Email
 - Used to indicate non-urgent messages
 - Can be used to draw attention of a specified group of users to an issue