Managing Data in Cloud

File system

e Model to organize data into files and directories

e Accessed by attaching a virtual disk to a virtual machine
Blob Storage

e Binary Large Object

o Flat object model for data

e Extremely scalable

Databases

e Highly structured data collections
e Three types of databases

1. Relational databases — Based on relational algebra and accessed by SQL
2. Tables and NoSQL databases — easily distributed over multiple machines
3. Graph databases — data represented by graphs (nodes/edges)

Storage as a Service

Three motivating examples

e Cloud services as data services
— Run in cloud, host digital content in cloud, provide apps to access, store, and share that content
e Three use cases

1. Set of simulation output files in climate science lab

Network Common Data Form (NetCDF) format
20TB of data
Accessibility via interactive tools through web portal

Data to be partitioned to enable distributed analysis over multiple machines in parallel
2. Records of experimental observations in seismic observatory

— Time of observation, experimental parameters, and measurement in CSV format
— A million records of 100 TB
— Data stored for easy access by a large team and to permit tracking of data inventory and accesses

3. Team of scientists operating a collection of several thousand instruments

— Each instrument generates a small data record every few seconds
— Analysis across entire collection every few hours poses data management challenge
— Similar to analyzing large web traffic or social media stream

Storage models

e Support for many different storage models in cloud

— Highly scalable from MB to hundreds of TB

Managing Data in Cloud 2

e File systems

Tree of directories

Standard APT of Unix-derived version of file system is Portable Operating System Interface (POSIX)

x Read/write/delete files within directories

Allows for direct use of many existing programs without modification

Most people are familiar with it (navigation, code development, file sharing via email)

Straightforward mechanism to represent hierarchical relationship among data

Concurrent access by multiple readers

Disadvantages
* No support to enforce conventions concerning representation of data elements and their relationship
* No support to help user navigate complex data collections

* Problem with scalability: need to maintain consistency as multiple processes read/write a file system, leading
to bottlenecks in file system implementation

e Object stores

Stores unstructured binary objects

Blobs, or Binary Large Objects

Object stores eliminate hierarchy and forbids updates to objects once created

Two-level folder-file hierarchy, creating object containers
* Each object container can hold zero or more objects
* Each object identified by a unique id and can have various metadata associated with it
* Objects cannot be modified once uploaded; they can be deleted or replaced

Advantages
* Simplicity, performance, reliability
* Since objects cannot be modified, you can create highly scalable and reliable implementations
- Replicate an object across multiple storage devices to increase resilience and performance
- No need for synchronization logic for concurrent updates
* Objects can be moved manually or automatically among storage classes with different performance/cost pa-
rameters
— Limitations
* Little support to organize data
* No support for search: object can be accessed only by its id
* Need a separate index to map from object characteristics to its id
* No mechanism to work with structured data
* Object store cannot be mounted as a file system or accessed with existing tools in the ways file system can

e Relational databases

Database: an organized collection of data

Models real world objects in the form of entities and relationships

DBMS safely stores and efficiently manages databases, and allows discovery of relationships between entities

Three components: data model, query language, transactions/crash recovery

Advantages

* Simplified data management and manipulation
* Efficient querying and analysis

Managing Data in Cloud 3

Durable and reliable storage
Scaling to large data size
Validation of data formats

O B

Management of concurrent accesses

— Properties

Tabular data, rows represent entities and columns represent attributes
Uses SQL to specify a range of powerful operations on tables
Sophisticated indexing and query planning techniques

Based on relational algebra, giving efficient and correct implementations

EE

ACID semantics
- Atomiticity — Entire transaction succeeds or fails
- Consistency — Data collection never left in invalid or conflicting state
- Isolation — Concurrent transactions cannot interfere with each other
- Durability — After completion, system failures cannot invalidate the result

e NosSQL databases

— Suitable for data that may not be rigidly structured (text)
— Scale the quantities of data and number of users that can be supported
— Key-value store

* Organize large number of records
* Each record associates an arbitrary key with an arbitrary value

— Document store

* A variant of key-value store that permits text search on the stored values
— Limitations

* Do not support full relational algebra

* Do not support queries that join two tables
— “Not only sQL”

* May allow for rapid accumulation of unstructured data

* Arbitrary data can be stored without modification to a DB schema; new columns introduced over time as
data/understanding evolves

— May not satisfy ACID semantics

* Databases may be distributed over multiple servers and replicated over multiple data centers

x Consistency may be replaced by eventual consistency; DB state may be momentarily inconsistent across repli-
cas

— The CAP theorem

* Consistency: All computers see the same data at the same time
* Availability: Every request receives a response about whether it succeeded or failed

*

Partition tolerance: System continues to operate even if a network failure prevents computers from communi-
cating

Theorem 1 It is not possible to create a distributed system with all three properties.

*

Creates a challenge with large transactional datasets

*

Distribution needed for high performance but large number of computers leads to likelihood of network dis-
ruption

*

Strict consistency cannot be achieved

*

DB designer must chooses between high consistency or high availability

Managing Data in Cloud 4

* Choose high availability for checkout in e-commerce setting; errors hidden from the user and handled later
when adding items to a shopping cart

* For final order submission, favor consistency because several services (credit card processing, shipping and
handling, reporting) need to access data simultaneously

e Graph databases
- G=({V}H{E})

— Search data based on relationships among data items

— Often built on top of existing NoSQL databases
e Data warehouses

— Data management systems optimized to support analytic queries that involve reading large datasets

Cloud storage landscape

e File systems

Also known as file shares

Virtual data drives that can be attached to virtual machines

Amazon’s Elastic Block Store (EBS)
* Device to be mounted onto a single EC2 compute server instance at a time
* Low-latency access to data from a single EC2 instance
* Working data that is read/written frequently by an application but too large to fit into memory
* Accessible only to EC2 instances (inside Amazon cloud)

Amazon’s Elastic File System (EFS)

* General-purpose file storage service

* Provides file system interface, file system access semantics (strong consistency, file locking), and concurrently-
acessible storage for many EC2 instances

* EFS can hold state that is to be read/written by many concurrent processes
* Accessible only to EC2 instances (inside Amazon cloud)

Google Compute Engine
* Offers three types of attached disks, and a way to attach an object store
1. Persistent disk — up to 64 TB in size, most inexpensive, accessible anywhere in a zone

2. Local SSD — Higher performance, more expensive, up to 3 TB, accessible only in the instance to which
attached

3. RAM disk — In-memory, up to 208 GB, expensive, accessible only in the instance to which attached

Azure File Storage

* Allows creation of file shares accessible by a special protocol SMB
* SMB lets Windows and Linux VMs to mount file shares natively
* The file shares can be mounted on a user’s Windows or Mac

e Object stores

— Amazon’s Simple Storage Service (S3)
x Uses containers called buckets to hold objects
* A related service — Glacier — provides long-term, secure, durable, and extremely low cost data archiving
* Glacier access time may be several hours making it unsuitable for applications needing rapid data access

Managing Data in Cloud 5

— Google’s Cloud Storage

* Basic object storage; durable, replicated, and highly available

* Supports three storage tiers, with different performance and pricing levels
1. Standard — Most expensive, multiregional; used for data that is accessed often
2. Regional — Mid-range; used for batch jobs with noncritical response time
3. Nearline — Inexpensive; cold storage and disaster recovery

* There is also Coldline similar to Amazon’s Glacier

— Azure Storage

* Azure Storage explorer tool storageexplorer.com to see and manage services on Windows, Mac, and
Linux

* Use Azure Blob storage service for highly reliable storage of unstructured objects

* Provides tiered storage and pricing given by hot and cool

e NoOSQL services

Amazon’s DynamoDB
* Based on extended key-value model
* The only required attribute is the primary key
* Any number of additional columns may be defined, indexed, and made searchable in multiple ways

Amazon Elastic MapReduce (EMR)
* Allows analysis of large quantities of data with Spark and other data analytics platforms
Google Cloud Bigtable

* Powers many Google services including search, analytics, maps, and gmail

*

Maps two arbitrary strings (row key and column key) and a timestamp to an associated arbitrary byte array
- Timestamp helps with versioning and garbage collection

*

Provides low latency and high bandwidth; efficient in terms of space and for massive workloads

*

Deployed on a Google-hosted dynamically-resizable cluster

Google Cloud Datastore
* Similar to Google Bigtable
* Implements ACID semantics
* Rich set of SQL-like operators

Azure Table Storage
* Simple NoSQL key-value store

* Supports highly reliable storage of large amounts of data
* Limited query capabilities with modest cost
Azure HDInsight

* Hadoop storage service

* Implements popular big data tools — Spark, HBase NoSQL database, Hive SQL database

DocumentDB

* Similar to Table
* Supports full text indexing and query, but at a higher cost

e Relational databases

— Mature technology with deployments that scale to especially large size

— Amazon Relational Database Service (RDS)

Managing Data in Cloud 6

* Allows to set up a conventional relational database (Postgres/MySQL) on Amazon computers to port existing
applications

— Amazon Aurora Service
* Compatible with MySQL
+ Higher availability, performance, and resilience than RDS
* Can scale to many TBs, replicate across data centers
* Can create many read replicas to support large number of concurrent reads

— Google’s Cloud sQL

* Has a Spanner system that is globally distributed providing ACID transactions and SQL semantics with high
scaling and availability

— Azure’s SQL database
e Warehouse analytics

— Amazon Redshift

* Data warehouse system
* Supports high performance execution of analytic and reporting workloads against large datasets

— Google BigQuery
* Petascale data warehouse
* Fully distributed and replicated
* Supports SQL query semantics
— Azure Data Lake
* Full suite of data analytics tools
* Built on open source YARN and WebHDFS platforms

e Graphs and more

Messaging services
* Allow applications to send/receive messages using publish/subscribe semantics
* One application waits on a queue for a message to arrive
* Other applications prepare the message and send it to queue

Amazon’s Titan

* Extension to DynamoDB
* Supports graph databases

Google

* Supports open source database Cayley

Azure Graph Engine

* Distributed, in-memory, large graph processing system
e OpenStack storage services and Jetstream

— Supports only a few standard storage services: object storage, block storage, and file system storage
— OpenStack object storage service Swift

* Implements a REST API

* Allows users to store, delete, manage permissions of, and associate metadata with immutable unstructured data
objects located within containers

* Objects replicated across multiple storage servers for fault tolerance and performance reasons; may be accessed
from anywhere

Managing Data in Cloud 7

— OpenStack Shared File Systems service

*

*

*

Implements a file system model in cloud environment
Users interact with the service by mounting remote file systems, called shares on their virtual machine instances

Users can creates shares, configure the file system protocol system supported, manage access to shares, delete
shares, and configure rate limits and quotas

Shares may be mounted on any number of client machines using NFS, CIFS, GlusterFS, or HDFS drivers
Shares may be accessed only from VM instances running on the OpenStack cloud

— Jetstream

*

*

*

Operated as a part of the XSEDE supercomputer project xsede .org
Runs OpenStack object store, based on Ceph, implementing the Swift API
Primary user interaction through a system called Atmosphere
Atmosphere

- Designed to manage VMs, data, and visualization tools

- Provides a volume management system to mount external volumes on VMs
Operates Globus identity, group, and file management services

Using Cloud Storage Services

Two access methods: Portals and APIs

e Possible to accomplish most tasks by using a few mouse clicks

— Not good for repetitive tasks; managing hundreds of data objects

— REST APIs allow to access storage services programmatically

— Access APIs via SDKS

e REST APIs and SDKs from different providers are not identical

— Standardization efforts under progress

— CloudBridge and Apache Libcloud Libcloud. apache.org as Python SDK

— May not be able to cover all capabilities of individual platforms

e Build data sample collection in cloud

— Collection of data samples on PC to be accessed by collaborators

— Four items of metadata for each sample: item number, creation date, experiment ID, text string comment

— Upload to cloud storage and create a searchable table, also hosted in the cloud, containing metadata and cloud
storage URL for each object (Figure 3.1)

— Each data sample in binary format on PC

— Associated metadata in CSV file, with one line per item, also on PC

— csvV file format for each line

item ID, experiment ID, date, filename, comment string

Using Amazon cloud storage services

e Use S3 to store blobs and DynamoDB to store the table

e Need Amazon key pair (access key plus secret key) obtained from Amazon 1AM Management Console

Managing Data in Cloud 8

e Create a new user; select create access key button to create security credentials and download it (Figure 3.2)
e Create the required S3 bucket and upload blobs to that bucket from the Amazon web portal
e Use Amazon Python Boto3 SDK to upload multiple blobs

— Boto3 considers each service to be a resource
— Create an S3 resource object to use the S3 system
— Specify credentials obtained from the IAM Management Console

* Provide credentials to Python program
* As named parameters to resource instance creation function
import boto3
s3 = boto3.resource(’s3’,
aws_access_key_1id=’Your Access Key’,
aws_secret_access_key=’'Your Secret Key’)
* Problem with the approach
- Security credentials in clear text format
- May be fixed creating a directory $HOME/ . aws that contains two protected files
1. config - contains your default Amazon region
2. credentials — contains your access and secret keys
- With those two files, access and secret keys are not needed

— After creating S3 resource object, create the S3 bucket datacont to store data objects

import boto3
s3 = boto.resource (’'s3’)
s3.create_bucket (Bucket = ’"datacont’,
CreateBucketConfiguration = {’LocationConstraint’: 'us-west-2'1})
* Second argument to create_bucket is optional (and is also the default if no region is specified)
* At present, there are 17 regions operated by Amazon listed at

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html

— Load data objects into the new bucket

Upload a file, ’'test.]jpg’ into the newly created bucket
s3.0bject (datacont’, ’"test.jpg’) .put(
Body=open (’ /home/mydata/test.jpg’, 'rb’))

— Create the DynamoDB table to store metadata and references to S3 objects

* Create the table by defining a special key composed of a PartitionKey and a RowKey

* NoSQL systems such as DynamoDB are distributed over multiple storage devices to enable the construction of
extremely large tables, accessible in parallel by many servers

+ Table’s aggregate bandwidth is multiple of number of storage devices
* DynamoDB distributes data by rows
- Every element in the row is mapped to the same device

- Device determined by Part it ionKey which is hashed to an index that determines the physical storage
device in which the row resides

- RowKey specifies that items are stored in order sorted by the RowKey value
* Use the following code to create DynamoDB table

dyndb = boto3.resource (’dynamodb’, region_name=’us-west-2')

First time definition of table
table = dyndb.create_table(
TableName='DataTable’,

Managing Data in Cloud 9

KeySchema=[
{ "AttributeName’: ’'PartitionKey’, ’'KeyType’, 'HASH' },
{ "AttributeName’: ’'RowKey’, "KeyType’, ’'RANGE’ 1}

I

AttributeDefinitions=|[
{ "AttributeName’: ’'PartitionKey’, ’AttributeType’: 'S’ 1},
{ "AttributeName’: ’'RowKey’, "AttributeType’: 'S’ }

1,

Wait for the table to be created
table.meta.client.get_waiter ('table_exists’) .wait (TableName='"DataTable’)

If the table has been previously defined
table = dyndb.Table ("DataTable")

— Read data from csvV file
* CSV file format

itemID, experimentID, date, filename, comment
* URL for the data file should be publicly readable — indicated via ACL="public-read’

import csv

urlbase = "https://s3-us-west-2.amazonaws.com/datacont/"
with open (’/ \path-to-your—-datalexperiments.csv’,’rb’) as csvfile:
csvi = csv.reader (csvfile.delimiter=',’,quotechar’ |’)

for item in csvf:
body = open (’'path-to-your—-dataldatafiles\\’+item[3]) .put (Body=body)
md = s3.0bject (’datacont’, item[3]) .Acl ()
.put (ACL="public-read’)
url=urlbase + item][3]
metadata_item={’PartitionKey’: item[0], ’'RowKey’: item[1l],
"description’: item([4], ’‘date’:item[2], ’'url’:url}
table.put_item(Item=metadata_item)

Using Microsoft Azure storage services

e Amazon account ID is defined by a pair — your access key and your secret key
e Azure account defined by your personal ID and a subscription ID

— Personal 1D may be your email address — public

— Subscription ID should be kept secret
e Implement example using Azure standard blob storage and Table service

— Each row has fields PartitionKey, RowKey, comments, date, and URL just as in Amazon DynamoDB
— RowKey is a unique integer for each row

* Unique global identifier for the row
— PartitionKey used as a hash to locate a row in specific storage device

e Storage services

— In Amazon S3, you create buckets and then, create blobs within a bucket

