
Managing Data in Cloud

File system

• Model to organize data into files and directories

• Accessed by attaching a virtual disk to a virtual machine

Blob Storage

• Binary Large Object

• Flat object model for data

• Extremely scalable

Databases

• Highly structured data collections

• Three types of databases

1. Relational databases – Based on relational algebra and accessed by SQL

2. Tables and NoSQL databases – easily distributed over multiple machines
3. Graph databases – data represented by graphs (nodes/edges)

Storage as a Service

Three motivating examples

• Cloud services as data services

– Run in cloud, host digital content in cloud, provide apps to access, store, and share that content

• Three use cases

1. Set of simulation output files in climate science lab

– Network Common Data Form (NetCDF) format
– 20TB of data
– Accessibility via interactive tools through web portal
– Data to be partitioned to enable distributed analysis over multiple machines in parallel

2. Records of experimental observations in seismic observatory

– Time of observation, experimental parameters, and measurement in CSV format
– A million records of 100 TB

– Data stored for easy access by a large team and to permit tracking of data inventory and accesses

3. Team of scientists operating a collection of several thousand instruments

– Each instrument generates a small data record every few seconds
– Analysis across entire collection every few hours poses data management challenge
– Similar to analyzing large web traffic or social media stream

Storage models

• Support for many different storage models in cloud

– Highly scalable from MB to hundreds of TB

Managing Data in Cloud 2

• File systems

– Tree of directories

– Standard API of Unix-derived version of file system is Portable Operating System Interface (POSIX)

∗ Read/write/delete files within directories

– Allows for direct use of many existing programs without modification

– Most people are familiar with it (navigation, code development, file sharing via email)

– Straightforward mechanism to represent hierarchical relationship among data

– Concurrent access by multiple readers

– Disadvantages

∗ No support to enforce conventions concerning representation of data elements and their relationship
∗ No support to help user navigate complex data collections
∗ Problem with scalability: need to maintain consistency as multiple processes read/write a file system, leading

to bottlenecks in file system implementation

• Object stores

– Stores unstructured binary objects

– Blobs, or Binary Large Objects

– Object stores eliminate hierarchy and forbids updates to objects once created

– Two-level folder-file hierarchy, creating object containers

∗ Each object container can hold zero or more objects
∗ Each object identified by a unique id and can have various metadata associated with it
∗ Objects cannot be modified once uploaded; they can be deleted or replaced

– Advantages

∗ Simplicity, performance, reliability
∗ Since objects cannot be modified, you can create highly scalable and reliable implementations
· Replicate an object across multiple storage devices to increase resilience and performance
· No need for synchronization logic for concurrent updates

∗ Objects can be moved manually or automatically among storage classes with different performance/cost pa-
rameters

– Limitations

∗ Little support to organize data
∗ No support for search: object can be accessed only by its id
∗ Need a separate index to map from object characteristics to its id
∗ No mechanism to work with structured data
∗ Object store cannot be mounted as a file system or accessed with existing tools in the ways file system can

• Relational databases

– Database: an organized collection of data

– Models real world objects in the form of entities and relationships

– DBMS safely stores and efficiently manages databases, and allows discovery of relationships between entities

– Three components: data model, query language, transactions/crash recovery

– Advantages

∗ Simplified data management and manipulation
∗ Efficient querying and analysis

Managing Data in Cloud 3

∗ Durable and reliable storage
∗ Scaling to large data size
∗ Validation of data formats
∗ Management of concurrent accesses

– Properties

∗ Tabular data, rows represent entities and columns represent attributes
∗ Uses SQL to specify a range of powerful operations on tables
∗ Sophisticated indexing and query planning techniques
∗ Based on relational algebra, giving efficient and correct implementations
∗ ACID semantics
· Atomiticity – Entire transaction succeeds or fails
· Consistency – Data collection never left in invalid or conflicting state
· Isolation – Concurrent transactions cannot interfere with each other
· Durability – After completion, system failures cannot invalidate the result

• NoSQL databases

– Suitable for data that may not be rigidly structured (text)

– Scale the quantities of data and number of users that can be supported

– Key-value store

∗ Organize large number of records
∗ Each record associates an arbitrary key with an arbitrary value

– Document store

∗ A variant of key-value store that permits text search on the stored values

– Limitations

∗ Do not support full relational algebra
∗ Do not support queries that join two tables

– “Not only SQL”

∗ May allow for rapid accumulation of unstructured data
∗ Arbitrary data can be stored without modification to a DB schema; new columns introduced over time as

data/understanding evolves

– May not satisfy ACID semantics

∗ Databases may be distributed over multiple servers and replicated over multiple data centers
∗ Consistency may be replaced by eventual consistency; DB state may be momentarily inconsistent across repli-

cas

– The CAP theorem

∗ Consistency: All computers see the same data at the same time
∗ Availability: Every request receives a response about whether it succeeded or failed
∗ Partition tolerance: System continues to operate even if a network failure prevents computers from communi-

cating
Theorem 1 It is not possible to create a distributed system with all three properties.

∗ Creates a challenge with large transactional datasets
∗ Distribution needed for high performance but large number of computers leads to likelihood of network dis-

ruption
∗ Strict consistency cannot be achieved
∗ DB designer must chooses between high consistency or high availability

Managing Data in Cloud 4

∗ Choose high availability for checkout in e-commerce setting; errors hidden from the user and handled later
when adding items to a shopping cart

∗ For final order submission, favor consistency because several services (credit card processing, shipping and
handling, reporting) need to access data simultaneously

• Graph databases

– G = ({V }, {E})
– Search data based on relationships among data items

– Often built on top of existing NoSQL databases

• Data warehouses

– Data management systems optimized to support analytic queries that involve reading large datasets

Cloud storage landscape

• File systems

– Also known as file shares

– Virtual data drives that can be attached to virtual machines

– Amazon’s Elastic Block Store (EBS)

∗ Device to be mounted onto a single EC2 compute server instance at a time
∗ Low-latency access to data from a single EC2 instance
∗ Working data that is read/written frequently by an application but too large to fit into memory
∗ Accessible only to EC2 instances (inside Amazon cloud)

– Amazon’s Elastic File System (EFS)

∗ General-purpose file storage service
∗ Provides file system interface, file system access semantics (strong consistency, file locking), and concurrently-

acessible storage for many EC2 instances
∗ EFS can hold state that is to be read/written by many concurrent processes
∗ Accessible only to EC2 instances (inside Amazon cloud)

– Google Compute Engine

∗ Offers three types of attached disks, and a way to attach an object store
1. Persistent disk – up to 64 TB in size, most inexpensive, accessible anywhere in a zone
2. Local SSD – Higher performance, more expensive, up to 3 TB, accessible only in the instance to which

attached
3. RAM disk – In-memory, up to 208 GB, expensive, accessible only in the instance to which attached

– Azure File Storage

∗ Allows creation of file shares accessible by a special protocol SMB

∗ SMB lets Windows and Linux VMs to mount file shares natively
∗ The file shares can be mounted on a user’s Windows or Mac

• Object stores

– Amazon’s Simple Storage Service (S3)

∗ Uses containers called buckets to hold objects
∗ A related service – Glacier – provides long-term, secure, durable, and extremely low cost data archiving
∗ Glacier access time may be several hours making it unsuitable for applications needing rapid data access

Managing Data in Cloud 5

– Google’s Cloud Storage

∗ Basic object storage; durable, replicated, and highly available
∗ Supports three storage tiers, with different performance and pricing levels

1. Standard – Most expensive, multiregional; used for data that is accessed often
2. Regional – Mid-range; used for batch jobs with noncritical response time
3. Nearline – Inexpensive; cold storage and disaster recovery

∗ There is also Coldline similar to Amazon’s Glacier

– Azure Storage

∗ Azure Storage explorer tool storageexplorer.com to see and manage services on Windows, Mac, and
Linux

∗ Use Azure Blob storage service for highly reliable storage of unstructured objects
∗ Provides tiered storage and pricing given by hot and cool

• NoSQL services

– Amazon’s DynamoDB

∗ Based on extended key-value model
∗ The only required attribute is the primary key
∗ Any number of additional columns may be defined, indexed, and made searchable in multiple ways

– Amazon Elastic MapReduce (EMR)

∗ Allows analysis of large quantities of data with Spark and other data analytics platforms

– Google Cloud Bigtable

∗ Powers many Google services including search, analytics, maps, and gmail
∗ Maps two arbitrary strings (row key and column key) and a timestamp to an associated arbitrary byte array
· Timestamp helps with versioning and garbage collection

∗ Provides low latency and high bandwidth; efficient in terms of space and for massive workloads
∗ Deployed on a Google-hosted dynamically-resizable cluster

– Google Cloud Datastore

∗ Similar to Google Bigtable
∗ Implements ACID semantics
∗ Rich set of SQL-like operators

– Azure Table Storage

∗ Simple NoSQL key-value store
∗ Supports highly reliable storage of large amounts of data
∗ Limited query capabilities with modest cost

– Azure HDInsight

∗ Hadoop storage service
∗ Implements popular big data tools – Spark, HBase NoSQL database, Hive SQL database

– DocumentDB

∗ Similar to Table
∗ Supports full text indexing and query, but at a higher cost

• Relational databases

– Mature technology with deployments that scale to especially large size

– Amazon Relational Database Service (RDS)

Managing Data in Cloud 6

∗ Allows to set up a conventional relational database (Postgres/MySQL) on Amazon computers to port existing
applications

– Amazon Aurora Service

∗ Compatible with MySQL

∗ Higher availability, performance, and resilience than RDS

∗ Can scale to many TBs, replicate across data centers
∗ Can create many read replicas to support large number of concurrent reads

– Google’s Cloud SQL

∗ Has a Spanner system that is globally distributed providing ACID transactions and SQL semantics with high
scaling and availability

– Azure’s SQL database

• Warehouse analytics

– Amazon Redshift

∗ Data warehouse system
∗ Supports high performance execution of analytic and reporting workloads against large datasets

– Google BigQuery

∗ Petascale data warehouse
∗ Fully distributed and replicated
∗ Supports SQL query semantics

– Azure Data Lake

∗ Full suite of data analytics tools
∗ Built on open source YARN and WebHDFS platforms

• Graphs and more

– Messaging services

∗ Allow applications to send/receive messages using publish/subscribe semantics
∗ One application waits on a queue for a message to arrive
∗ Other applications prepare the message and send it to queue

– Amazon’s Titan

∗ Extension to DynamoDB

∗ Supports graph databases

– Google

∗ Supports open source database Cayley

– Azure Graph Engine

∗ Distributed, in-memory, large graph processing system

• OpenStack storage services and Jetstream

– Supports only a few standard storage services: object storage, block storage, and file system storage

– OpenStack object storage service Swift

∗ Implements a REST API

∗ Allows users to store, delete, manage permissions of, and associate metadata with immutable unstructured data
objects located within containers

∗ Objects replicated across multiple storage servers for fault tolerance and performance reasons; may be accessed
from anywhere

Managing Data in Cloud 7

– OpenStack Shared File Systems service

∗ Implements a file system model in cloud environment
∗ Users interact with the service by mounting remote file systems, called shares on their virtual machine instances
∗ Users can creates shares, configure the file system protocol system supported, manage access to shares, delete

shares, and configure rate limits and quotas
∗ Shares may be mounted on any number of client machines using NFS, CIFS, GlusterFS, or HDFS drivers
∗ Shares may be accessed only from VM instances running on the OpenStack cloud

– Jetstream

∗ Operated as a part of the XSEDE supercomputer project xsede.org
∗ Runs OpenStack object store, based on Ceph, implementing the Swift API

∗ Primary user interaction through a system called Atmosphere
∗ Atmosphere
· Designed to manage VMs, data, and visualization tools
· Provides a volume management system to mount external volumes on VMs

∗ Operates Globus identity, group, and file management services

Using Cloud Storage Services

Two access methods: Portals and APIs

• Possible to accomplish most tasks by using a few mouse clicks

– Not good for repetitive tasks; managing hundreds of data objects

– REST APIs allow to access storage services programmatically

– Access APIs via SDKs

• REST APIs and SDKs from different providers are not identical

– Standardization efforts under progress

– CloudBridge and Apache Libcloud Libcloud.apache.org as Python SDK

– May not be able to cover all capabilities of individual platforms

• Build data sample collection in cloud

– Collection of data samples on PC to be accessed by collaborators

– Four items of metadata for each sample: item number, creation date, experiment ID, text string comment

– Upload to cloud storage and create a searchable table, also hosted in the cloud, containing metadata and cloud
storage URL for each object (Figure 3.1)

– Each data sample in binary format on PC

– Associated metadata in CSV file, with one line per item, also on PC

– CSV file format for each line

item ID, experiment ID, date, filename, comment string

Using Amazon cloud storage services

• Use S3 to store blobs and DynamoDB to store the table

• Need Amazon key pair (access key plus secret key) obtained from Amazon IAM Management Console

Managing Data in Cloud 8

• Create a new user; select create access key button to create security credentials and download it (Figure 3.2)

• Create the required S3 bucket and upload blobs to that bucket from the Amazon web portal

• Use Amazon Python Boto3 SDK to upload multiple blobs

– Boto3 considers each service to be a resource

– Create an S3 resource object to use the S3 system

– Specify credentials obtained from the IAM Management Console

∗ Provide credentials to Python program
∗ As named parameters to resource instance creation function
import boto3
s3 = boto3.resource(’s3’,

aws_access_key_id=’Your Access Key’,
aws_secret_access_key=’Your Secret Key’)

∗ Problem with the approach
· Security credentials in clear text format
· May be fixed creating a directory $HOME/.aws that contains two protected files

1. config – contains your default Amazon region
2. credentials – contains your access and secret keys
· With those two files, access and secret keys are not needed

– After creating S3 resource object, create the S3 bucket datacont to store data objects

import boto3
s3 = boto.resource (’s3’)
s3.create_bucket(Bucket = ’datacont’,

CreateBucketConfiguration = {’LocationConstraint’: ’us-west-2’})

∗ Second argument to create_bucket is optional (and is also the default if no region is specified)
∗ At present, there are 17 regions operated by Amazon listed at

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html

– Load data objects into the new bucket

Upload a file, ’test.jpg’ into the newly created bucket
s3.Object(’datacont’, ’test.jpg’).put(

Body=open(’/home/mydata/test.jpg’, ’rb’))

– Create the DynamoDB table to store metadata and references to S3 objects

∗ Create the table by defining a special key composed of a PartitionKey and a RowKey
∗ NoSQL systems such as DynamoDB are distributed over multiple storage devices to enable the construction of

extremely large tables, accessible in parallel by many servers
∗ Table’s aggregate bandwidth is multiple of number of storage devices
∗ DynamoDB distributes data by rows
· Every element in the row is mapped to the same device
· Device determined by PartitionKey which is hashed to an index that determines the physical storage

device in which the row resides
· RowKey specifies that items are stored in order sorted by the RowKey value

∗ Use the following code to create DynamoDB table
dyndb = boto3.resource (’dynamodb’, region_name=’us-west-2’)

First time definition of table
table = dyndb.create_table(

TableName=’DataTable’,

Managing Data in Cloud 9

KeySchema=[
{ ’AttributeName’: ’PartitionKey’, ’KeyType’, ’HASH’ },
{ ’AttributeName’: ’RowKey’, ’KeyType’, ’RANGE’ }

],
AttributeDefinitions=[

{ ’AttributeName’: ’PartitionKey’, ’AttributeType’: ’S’ },
{ ’AttributeName’: ’RowKey’, ’AttributeType’: ’S’ }

],
)

Wait for the table to be created
table.meta.client.get_waiter(’table_exists’).wait(TableName=’DataTable’)

If the table has been previously defined
table = dyndb.Table("DataTable")

– Read data from CSV file

∗ CSV file format
itemID, experimentID, date, filename, comment

∗ URL for the data file should be publicly readable – indicated via ACL=’public-read’
import csv
urlbase = "https://s3-us-west-2.amazonaws.com/datacont/"
with open(’\path-to-your-data\experiments.csv’,’rb’) as csvfile:

csvf = csv.reader(csvfile.delimiter=’,’,quotechar’|’)
for item in csvf:

body = open(’path-to-your-data\datafiles\\’+item[3]).put(Body=body)
md = s3.Object(’datacont’, item[3]).Acl()

.put(ACL=’public-read’)
url=urlbase + item[3]
metadata_item={’PartitionKey’: item[0], ’RowKey’: item[1],

’description’: item[4], ’date’:item[2], ’url’:url}
table.put_item(Item=metadata_item)

Using Microsoft Azure storage services

• Amazon account ID is defined by a pair – your access key and your secret key

• Azure account defined by your personal ID and a subscription ID

– Personal ID may be your email address – public

– Subscription ID should be kept secret

• Implement example using Azure standard blob storage and Table service

– Each row has fields PartitionKey, RowKey, comments, date, and URL just as in Amazon DynamoDB

– RowKey is a unique integer for each row

∗ Unique global identifier for the row

– PartitionKey used as a hash to locate a row in specific storage device

• Storage services

– In Amazon S3, you create buckets and then, create blobs within a bucket

