- Category of computing solutions to allow access to a service/technology on demand
 - Elastic computer
 - On-demand computing and storage
 - Enabling ubiquitous network access to a shared pool of configurable computing resources
 - Resources can be
 - * Physical or virtual
 - * Dedicated or shared
 - * Accessed via modem/LAN/WAN/Internet
 - Provide various capabilities to process and store data in third party data centers
 - * Sharing of resources to achieve coherence and economies of scale
 - * Converged infrastructure and shared services
 - * Focus on maximizing the effectiveness of shared resources
 - · Shared by multiple users and dynamically reallocated on demand
 - · Maximize usage of resources by possibly allocating in different time zones
 - Move away from CAPEX (capital expenditure) model to OPEX (operating expenditure) model
 - * Do not buy the expensive hardware infrastructure
 - * Buy only as much [virtual] infrastructure as needed and expand as business grows
- Characterized by self service interfaces
- Takes advantage of virtualization
- Save investment costs in infrastructure
- Back to the Future
 - Mainframes
 - Distributed client server model, based on PC
 - * Distribute processing across multiple nodes without the need for mainframe gatekeepers
 - * Parallel and distributed computing; data-intensive and network-centric model
 - * Rapid deployment of applications without the assurance of proper security and controls
 - * Nonstandard and insecure applications, leading to security breaches, identity thefts, and cyber threats
 - * Complex challenge to manage enterprise
 - · Problems with integration, interoperability, and widespread patching
 - · Move from business enablement to IT maintenance
 - Network connecting the organization to the rest of the world through Internet
 - * Integration of computers across organizations
 - * Interoperability of the systems from suppliers and consumers to customers
 - * Further increase in system complexity, with decrease in level of control and governance
 - * High performance computing (HPC) vs high throughput computing (HTC)
 - · HPC characterized by raw speed performance; current goal of exascale computing
 - HTC emphasizes high-flux computing; high-speed search and web services to millions of users simultaneously
 - · HTC issues include cost, energy savings, security, and reliability at many data centers
 - · Upgrade data centers with fast servers, storage systems, and high-bandwidth networks
 - · Clusters, grids, and clouds

- * Peer-to-peer (P2P) networks for distributed file sharing and content delivery applications
 - · P2P system built over multiple client machines
 - · Peer machines may be globally distributed
- HTC design objectives
 - * Efficiency Job throughput, data access, storage, power efficiency
 - * Dependability Quality of service (QoS) assurance, even under failure conditions
 - * Adaptation in the programming model Ability to support billions of job requests over massive data sets and virtualized cloud resources under various workload and service models
 - * Flexibility in application deployment Ability of distributed systems to run well
- Current emphasis on mobile computing and ubiquitous computing
 - * Ubiquitous computing uses pervasive devices at any place and time using wired or wireless communications
 - * Internet of Things (IoT) is a networked connection of everyday objects, supported by cloud to achieve ubiquitous computing with any object
- Cloud computing
 - * Innovative collaboration of cloud technology and big iron
 - \cdot Best of mainframe technologies combined with the best of PC-enabled client-server plus the Internet
 - · At scale, using a pay-as-you-go billing model
 - · No need to buy expensive hardware or build data centers
 - * Allows to pick resources as needed at every level from hardware to applications
 - * Commodity clouds
 - * Enterprise-class clouds
- Cloud service classification
 - * Public cloud
 - · Provided by some big players such as Amazon, Google, and Microsoft
 - · Provide computing, storage, and other services to anyone willing to pay
 - · Not regulated like public utilities
 - * Private cloud
 - · Operated by a private entity for a limited customer base
 - * Public clouds operate at a very large scale compared to private cloud
 - They offer a broad range of powerful features: elasticity, fine-grained billing, high reliability due to geographic distribution, wide variety of resource types, and rich sets of platform services
 - * Hybrid clouds
 - · Combination of public and private cloud
 - · Cloud burst
 - * Community cloud
 - · A private cloud to support a certain community
 - · Academic cloud
- Cloud computing
 - Five essential characteristics of cloud computing identified by NIST: on-demand self-service, broad network access, resource pooling, rapid elasticity/expansion, and measured service
 - IT as a Service
 - * Computers in the cloud configured to work together
 - * Applications using collective computing power as if running on a single system
 - * Flexibility from the allocation of resources on demand
 - * Resources used as an aggregated virtual computer

- Software as a Service (SaaS)
 - * Meeting customer needs to be met over the web as an on-demand software solution
- Platform as a Service (PaaS)
 - * Platform to quickly develop scalable solutions without infrastructure costs
- Infrastructure as a Service (IaaS)
 - * Virtual data center to build scalable solutions at a lower cost
- Advantages of cloud computing
 - Reduced cost
 - * Reduced capital expenses and operating expenses
 - * Resources are only acquired when needed and paid for when used
 - Refined usage of personnel
 - * Personnel focus on delivering value rather than maintaining hardware/software
 - Robust scalability
 - * Allows for immediate scalability, both up and down, without long-term commitment

Disadvantages

- Unregulated marketplace
- Not fully understood by professionals
 - * No standards or best practices
 - * Multiple definitions and interpretations of cloud-based models and frameworks in the IT literature
- Wrong adoption decisions may affect the business adversely
- Must make educated decisions about the scope of technology and its role in projects
 - * The business goals should be well documented and fulfilled in a concrete and measurable manner at each phase of adoption

• Utility computing

- Receive computing services from a paid service provider
- Two major design objectives in any computing model: reliability and scalability
- Models supported by QoS and SLAs
- Users expect new network-efficient CPUs, scalable memory and storage schemes, distributed OSes, middleware for machine virtualization, new programming models, effective resource management, and application program development
- Internet of Things (IoT)
 - Networked connection of everyday objects, tools, devices, or computers
 - Sensors that interconnect all things in our daily life
 - Tag every object using RFID or sensor or other technology like GPS
 - Uses IPv6 to distinguish all objects and pervasive devices; universal addressability
 - Devices are interconnected and interact with each other in a meaningful way
 - * Communication patterns from human-to-human (H2H), human-to-thing (H2T), and thing-to-thing (T2T)
- Cyber-physical systems (CPS)
 - Interactions between computational processes and physical world
 - CPS intergrates cyber (heterogeneous, asynchronous) with physical (concurrent, information-dense) objects

- Merges computation, communications, and control into an intelligent closed feedback system
- Exploration of VR applications in physical world

Technologies for network-based systems

- Multicore CPUs and multithreading
 - Processor speed measured in MIPS
 - Network bandwith measured in Mbps or Gbps; GE 1 Gbps Ethernet bandwidth
 - Advances in CPU
 - * Multicore architectures
 - * Exploiting parallelism at ILP and TLP levels
 - * Moore's Law Number of transistors in a dense IC doubles approximately every two years
 - * Clock rate increased as well but hit a limit on CMOS chips dues to power limitations; excessive heat generation with high frequency or high voltages
 - * ILP makes up for frequency using multiple-issue superscalar architecture, dynamic branch prediction, and speculative execution
 - * Rise of GPGPU
 - Multithreading
 - * Simultaneous multithreaded processor (SMT)
 - * Simultaneous scheduling of instructions from different threads in the same cycle
 - Power efficiency
 - * About 2nJ/instruction on CPU; 200 pJ/instruction on GPU
 - * CPU optimized for latency in caches and memory
 - * GPU optimized for throughput with explicit management of on-chip memory
- Memory, storage, and wide-area networking
 - Disk and storage technology
 - * Rapid growth in flash memory and SSD
 - * SSD can handle large loads of read/write over a long time
 - System-area interconnects
 - * Nodes in a small cluster connected by an Ethernet switch or a LAN
 - * LAN connects client hosts to big servers
 - * SAN connects servers to network storage
 - * Network attached storage (NAS) connects clients hosts directly to network storage
 - Wide-area networking
 - * Increases the capability to build massively distributed systems
 - * Based on Gigabit Ethernet as interconnect in server clusters
- Virtual machines and virtualization middleware
 - Novel solution to underutilized resources, application inflexibility, software manageability, and security concerns in existing physical machines
 - Virtual machines
 - * Host machine equipped with physical hardware
 - * VM provisioned for any hardware system
 - * VM built with virtual resources managed by a guest OS to run a specific application

- * Virtual machine monitor (VMM)
 - · Middleware layer between host machine and VM
 - · Hypervisor or bare metal VM handles the bare hardware directly
 - · Host VM VMM runs in non-privileged mode; host OS need not be modified
 - · Dual mode part of VMM runs in user mode, another part runs in privileged mode
- Hypervisor
 - * Software to enable users to monitor and control servers built on hosted environments
 - * Used to remotely allocate shared resources that can have a large impact on the efficiency of data transfer
- VM primitive operations
 - * VMM provides VM abstraction to the guest OS
 - * With full virtualization, VMM exports a VM abstraction identical to the physical machine so that a standard OS can run just as it would on physical hardware
 - 1. Multiplex VMs between hardware machines
 - 2. VM suspended and stored in stable storage
 - 3. Suspended VM resumed or provisioned to new hardware platform
 - 4. Migrate VM from one hardware platform to another
- Virtual infrastructure
 - * Connects resources to distributed applications
 - * Dynamic mapping of system resources to specific applications
 - * Decrease in costs and increase in efficiency and responsiveness
- Data center virtualization for cloud computing
 - Cloud architectures built with commodity hardware and network devices
 - Data center design emphasizes price/preformance ratio over speed
 - Data center growth and cost breakdown
 - * IT equipment 30%
 - * Chiller 33%
 - * UPS -18%
 - * Computer room air conditioning 9%
 - * Power distribution 7%
 - Low-cost design philosophy
 - * No need for high end switches and equipment
 - * Software layer to handle network traffic balancing, fault tolerance, and expandability

System models for distributed and cloud computing

- Clusters of cooperative computers
 - Interconnected stand-alone computers working cooperatively as a single computing resource
 - Can handle heavy workloads with large data sest
 - Cluster architecture
 - * Built around a low-latency high-bandwidth interconnection network
 - · Loosely coupled node computers
 - · Scalable with an increasing number of nodes
 - · All resources on a node managed by its own OS
 - * Cluster connected to Internet via a VPN gateway

- · Gateway IP address locates the cluster
- Single-system image
 - * Presents a collection of resources as a single, integrated, powerful resource
 - * Makes cluster appear as a single machine to the user

Accessing the cloud: Web, APIs, SDKs

- Web interfaces, APIs, SDKs, and CLIs
 - Most clouds support access via web, with no local installation
 - Web interface can be tedious for repeated work
 - Cloud services support REST API Representational State Transfer to permit request transmission via secure hypertext protocol (https), using GET and PUT commands
 - Cloud service providers give access to SDKs that allow the users to access REST APIs via programs in high level language
- Local and cloud-hosted applications
 - Should the application be run locally or in the cloud?