- Category of computing solutions to allow access to a service/technology on demand - Elastic computer - On-demand computing and storage - Enabling ubiquitous network access to a shared pool of configurable computing resources - Resources can be - * Physical or virtual - * Dedicated or shared - * Accessed via modem/LAN/WAN/Internet - Provide various capabilities to process and store data in third party data centers - * Sharing of resources to achieve coherence and economies of scale - * Converged infrastructure and shared services - * Focus on maximizing the effectiveness of shared resources - · Shared by multiple users and dynamically reallocated on demand - · Maximize usage of resources by possibly allocating in different time zones - Move away from CAPEX (capital expenditure) model to OPEX (operating expenditure) model - * Do not buy the expensive hardware infrastructure - * Buy only as much [virtual] infrastructure as needed and expand as business grows - Characterized by self service interfaces - Takes advantage of virtualization - Save investment costs in infrastructure - Back to the Future - Mainframes - Distributed client server model, based on PC - * Distribute processing across multiple nodes without the need for mainframe gatekeepers - * Parallel and distributed computing; data-intensive and network-centric model - * Rapid deployment of applications without the assurance of proper security and controls - * Nonstandard and insecure applications, leading to security breaches, identity thefts, and cyber threats - * Complex challenge to manage enterprise - · Problems with integration, interoperability, and widespread patching - · Move from business enablement to IT maintenance - Network connecting the organization to the rest of the world through Internet - * Integration of computers across organizations - * Interoperability of the systems from suppliers and consumers to customers - * Further increase in system complexity, with decrease in level of control and governance - * High performance computing (HPC) vs high throughput computing (HTC) - · HPC characterized by raw speed performance; current goal of exascale computing - HTC emphasizes high-flux computing; high-speed search and web services to millions of users simultaneously - · HTC issues include cost, energy savings, security, and reliability at many data centers - · Upgrade data centers with fast servers, storage systems, and high-bandwidth networks - · Clusters, grids, and clouds - * Peer-to-peer (P2P) networks for distributed file sharing and content delivery applications - · P2P system built over multiple client machines - · Peer machines may be globally distributed - HTC design objectives - * Efficiency Job throughput, data access, storage, power efficiency - * Dependability Quality of service (QoS) assurance, even under failure conditions - * Adaptation in the programming model Ability to support billions of job requests over massive data sets and virtualized cloud resources under various workload and service models - * Flexibility in application deployment Ability of distributed systems to run well - Current emphasis on mobile computing and ubiquitous computing - * Ubiquitous computing uses pervasive devices at any place and time using wired or wireless communications - * Internet of Things (IoT) is a networked connection of everyday objects, supported by cloud to achieve ubiquitous computing with any object - Cloud computing - * Innovative collaboration of cloud technology and big iron - \cdot Best of mainframe technologies combined with the best of PC-enabled client-server plus the Internet - · At scale, using a pay-as-you-go billing model - · No need to buy expensive hardware or build data centers - * Allows to pick resources as needed at every level from hardware to applications - * Commodity clouds - * Enterprise-class clouds - Cloud service classification - * Public cloud - · Provided by some big players such as Amazon, Google, and Microsoft - · Provide computing, storage, and other services to anyone willing to pay - · Not regulated like public utilities - * Private cloud - · Operated by a private entity for a limited customer base - * Public clouds operate at a very large scale compared to private cloud - They offer a broad range of powerful features: elasticity, fine-grained billing, high reliability due to geographic distribution, wide variety of resource types, and rich sets of platform services - * Hybrid clouds - · Combination of public and private cloud - · Cloud burst - * Community cloud - · A private cloud to support a certain community - · Academic cloud - Cloud computing - Five essential characteristics of cloud computing identified by NIST: on-demand self-service, broad network access, resource pooling, rapid elasticity/expansion, and measured service - IT as a Service - * Computers in the cloud configured to work together - * Applications using collective computing power as if running on a single system - * Flexibility from the allocation of resources on demand - * Resources used as an aggregated virtual computer - Software as a Service (SaaS) - * Meeting customer needs to be met over the web as an on-demand software solution - Platform as a Service (PaaS) - * Platform to quickly develop scalable solutions without infrastructure costs - Infrastructure as a Service (IaaS) - * Virtual data center to build scalable solutions at a lower cost - Advantages of cloud computing - Reduced cost - * Reduced capital expenses and operating expenses - * Resources are only acquired when needed and paid for when used - Refined usage of personnel - * Personnel focus on delivering value rather than maintaining hardware/software - Robust scalability - * Allows for immediate scalability, both up and down, without long-term commitment ### Disadvantages - Unregulated marketplace - Not fully understood by professionals - * No standards or best practices - * Multiple definitions and interpretations of cloud-based models and frameworks in the IT literature - Wrong adoption decisions may affect the business adversely - Must make educated decisions about the scope of technology and its role in projects - * The business goals should be well documented and fulfilled in a concrete and measurable manner at each phase of adoption # • Utility computing - Receive computing services from a paid service provider - Two major design objectives in any computing model: reliability and scalability - Models supported by QoS and SLAs - Users expect new network-efficient CPUs, scalable memory and storage schemes, distributed OSes, middleware for machine virtualization, new programming models, effective resource management, and application program development - Internet of Things (IoT) - Networked connection of everyday objects, tools, devices, or computers - Sensors that interconnect all things in our daily life - Tag every object using RFID or sensor or other technology like GPS - Uses IPv6 to distinguish all objects and pervasive devices; universal addressability - Devices are interconnected and interact with each other in a meaningful way - * Communication patterns from human-to-human (H2H), human-to-thing (H2T), and thing-to-thing (T2T) - Cyber-physical systems (CPS) - Interactions between computational processes and physical world - CPS intergrates cyber (heterogeneous, asynchronous) with physical (concurrent, information-dense) objects - Merges computation, communications, and control into an intelligent closed feedback system - Exploration of VR applications in physical world # Technologies for network-based systems - Multicore CPUs and multithreading - Processor speed measured in MIPS - Network bandwith measured in Mbps or Gbps; GE 1 Gbps Ethernet bandwidth - Advances in CPU - * Multicore architectures - * Exploiting parallelism at ILP and TLP levels - * Moore's Law Number of transistors in a dense IC doubles approximately every two years - * Clock rate increased as well but hit a limit on CMOS chips dues to power limitations; excessive heat generation with high frequency or high voltages - * ILP makes up for frequency using multiple-issue superscalar architecture, dynamic branch prediction, and speculative execution - * Rise of GPGPU - Multithreading - * Simultaneous multithreaded processor (SMT) - * Simultaneous scheduling of instructions from different threads in the same cycle - Power efficiency - * About 2nJ/instruction on CPU; 200 pJ/instruction on GPU - * CPU optimized for latency in caches and memory - * GPU optimized for throughput with explicit management of on-chip memory - Memory, storage, and wide-area networking - Disk and storage technology - * Rapid growth in flash memory and SSD - * SSD can handle large loads of read/write over a long time - System-area interconnects - * Nodes in a small cluster connected by an Ethernet switch or a LAN - * LAN connects client hosts to big servers - * SAN connects servers to network storage - * Network attached storage (NAS) connects clients hosts directly to network storage - Wide-area networking - * Increases the capability to build massively distributed systems - * Based on Gigabit Ethernet as interconnect in server clusters - Virtual machines and virtualization middleware - Novel solution to underutilized resources, application inflexibility, software manageability, and security concerns in existing physical machines - Virtual machines - * Host machine equipped with physical hardware - * VM provisioned for any hardware system - * VM built with virtual resources managed by a guest OS to run a specific application - * Virtual machine monitor (VMM) - · Middleware layer between host machine and VM - · Hypervisor or bare metal VM handles the bare hardware directly - · Host VM VMM runs in non-privileged mode; host OS need not be modified - · Dual mode part of VMM runs in user mode, another part runs in privileged mode - Hypervisor - * Software to enable users to monitor and control servers built on hosted environments - * Used to remotely allocate shared resources that can have a large impact on the efficiency of data transfer - VM primitive operations - * VMM provides VM abstraction to the guest OS - * With full virtualization, VMM exports a VM abstraction identical to the physical machine so that a standard OS can run just as it would on physical hardware - 1. Multiplex VMs between hardware machines - 2. VM suspended and stored in stable storage - 3. Suspended VM resumed or provisioned to new hardware platform - 4. Migrate VM from one hardware platform to another - Virtual infrastructure - * Connects resources to distributed applications - * Dynamic mapping of system resources to specific applications - * Decrease in costs and increase in efficiency and responsiveness - Data center virtualization for cloud computing - Cloud architectures built with commodity hardware and network devices - Data center design emphasizes price/preformance ratio over speed - Data center growth and cost breakdown - * IT equipment 30% - * Chiller 33% - * UPS -18% - * Computer room air conditioning 9% - * Power distribution 7% - Low-cost design philosophy - * No need for high end switches and equipment - * Software layer to handle network traffic balancing, fault tolerance, and expandability ### System models for distributed and cloud computing - Clusters of cooperative computers - Interconnected stand-alone computers working cooperatively as a single computing resource - Can handle heavy workloads with large data sest - Cluster architecture - * Built around a low-latency high-bandwidth interconnection network - · Loosely coupled node computers - · Scalable with an increasing number of nodes - · All resources on a node managed by its own OS - * Cluster connected to Internet via a VPN gateway - · Gateway IP address locates the cluster - Single-system image - * Presents a collection of resources as a single, integrated, powerful resource - * Makes cluster appear as a single machine to the user # Accessing the cloud: Web, APIs, SDKs - Web interfaces, APIs, SDKs, and CLIs - Most clouds support access via web, with no local installation - Web interface can be tedious for repeated work - Cloud services support REST API Representational State Transfer to permit request transmission via secure hypertext protocol (https), using GET and PUT commands - Cloud service providers give access to SDKs that allow the users to access REST APIs via programs in high level language - Local and cloud-hosted applications - Should the application be run locally or in the cloud?