
Software Delivery

DevOps

• Misunderstood as a hybrid role of developer and sys admin

• Should be perceived as a new way to develop and release software

– Communication and collaboration between development, operations, quality assurance, product, and management

Developing the DevOps mindset

• In the past, different teams working on software lacked effective communications

– Developers lacked the environment in which software is used

– Operations received software to support but had no input in development

– Led to fragile systems

– Deployments are complex and error prone, leading to longer release cycles and creating even more risk

– Systems even harder to maintain with each release

• Unplanned work

– Resources may get pulled off of planned work

– Project schedules are impact and due dates slip

– This leads developers to take shortcuts, resulting in a lack of sound architecture, delaying nonfunctional require-
ments such as security and supportability, and other critical stability features, leading to even more issues

– Quality, reliability, morale, and customer satisfaction degrade over time

• DevOps focusing on system thinking

– CAMS – Culture, Automation, Measurement, Sharing

– Build systems with a mind set that the needs of development, operations, and quality assurance are all related

– Collaborative process

∗ Developers, testers, and operations responsible for entire system
∗ Every actor needs to understand each aspect of the system

• Four principles of DevOps

1. Understand the flow of work

2. Always seek to increase flow

3. Don’t pass defects downstream

4. Achieve a profound understanding of the system

• Influenced by lean manufacturing principles

• Maximize the flow of software creation from concept to development to release, with focus on six practices

1. Automate infrastructure

– Abstraction of infrastructure as an API allows infrastructure to be treated as code
– Capability of scripting provisioning and deprovisioning of infrastructure leads to automating the creation of

environments
– Build code and environments at the same time



Software Delivery 2

– Every sprint with a complete set of code should include the corresponding environment
∗ User stories in sprint should include the necessary development operations and quality assurance require-

ments
– Separation of development, quality assurance, and operations required a lot of back and forth meetings

∗ Leads to bottlenecks and environmental issues
∗ Different development and operations environments introduce new problems
∗ Finding bugs late in the life cycle leads to prioritizing those bugs

· High priority bugs get fixed while others linger on
– Make sure that self-service infrastructure does not lead to chaos, inconsistent environments, non-optimized

costs, and other bad side effects
∗ Create standard set of machine images that can be requested on demand with appropriate access privilege
∗ Ensure that the developers work with discipline and do not modify their environment to cause conflict
∗ Apply patches at regular intervals to all the VMs

2. Automate deployments

– Code, configuration files, and environment scripts should share a single repository
– Decreases cycle times by removing the human error from deployment
– More frequent deployment leads to smaller change sets reducing the risk of failure

3. Design for feature flags

– Allow features to be configured by turning on or off
– If a feature has issues, it can be quickly configured to be turned off during deployment

∗ Rest of the deployed features remain running in production
∗ Gives team time to fix the issue and redeploy when convenient

– Allows features to be tested by a select group before rolling out to all users

4. Measure, monitor, experiment

– Leverage feature flags to run experiments to gather information about system and users
– Complexity of a new registration form
– Test a feature in a geographic area
– Test features in production against real production loads

Continuous integration and continuous delivery

• Continuous integration

– Practice of building and testing applications on every check-in

– Every big or small change gets checked in

• Continuous delivery

– Adds automated testing and automated deployment to continuous integration

– Testing performed throughout the life cycle rather than towards the end

∗ Build process fails if any automated test fails
∗ Prevents defects from being introduced into the build

– Software always works and every change that is successfully integrated into the build becomes part of a release
candidate

• Old model

– Software was assumed to be incorrect until validated by dedicated quality assurance professionals



Software Delivery 3

– Testing was its own phase performed after development

– Developers met deadlines by giving poor-quality code to testers

– Quality assurance cut corners to get the code to operations in time to release the software

– Allowed known bugs to flow into production systems

• DevOps model

– Software assumed to be correct unless automation tells otherwise

– Quality is everyone’s responsibility and testing is performed throughout the life cycle

– High level of communication and collaboration along with a sense of trust and ownership throughout the team

• Applicable to all development, cloud or otherwise


