Auditing in the cloud

Ownership of data

- Historically, with the company
 - Company responsible to secure data
 - Firewall, infrastructure hardening, database security
- Auditing
 - Performed on site by inspecting processes and controls
 - Seizing data for investigation only after gaining company’s permission
 - Company owning data is always in control of data (may not be secure)
- Storing data in cloud
 - Company shares responsibility with cloud service provider (CSP)
 - More responsibility with CSP higher up the cloud stack
 - Security and compliance become the core competencies for CSP
 * Securing and encrypting data, hardening environment, backup and recovery processes, other infrastructure-related tasks
 - Company still responsible to secure overall application
 * Security and compliance as shared responsibility
 * Auditing the entire solution becomes more complex
 * Auditing across multiple actors: consumers and providers

Data and cloud security

- Out of IT control? Out of security?
- Results from a recent study (Alert Logic, 2013)
 - Cloud is not inherently less safe than enterprise data centers
 - Attacks in CSP environments tend to be crimes of opportunity
 * Attacks in data centers tend to be more targeted and sophisticated
 - Web applications are equally threatened in cloud and enterprise data centers
- Study concluded that success rate for penetration from outside threats higher in corporate data centers

Auditing cloud applications

- Auditors validate that their clients adequately address a collection of controls and processes
- Different regulations to satisfy industry standards, business processes, and data requirements
 - **Physical environment** Perimeter security and data center controls
 - **Systems and applications** Security and control of network, databases, software
 - **Software development life cycle (SDLC)** Deployment and change management
 - **Personnel** Background checks, drug testing, security clearance
Auditing in the cloud

• Physical machine vs cloud
 – Controls and processes map to a CSP instead of an individual
 – Compliance a high priority in the cloud
 * Relying on information provided by CSP
 – Private cloud to retain total control of data and processes

• IaaS environment
 – Multitenant environment
 – Auditor of a tenant not allowed to access infrastructure to protect the rights of other tenants
 – IaaS provider’s auditors audit perimeter security, processes, and controls
 – Client auditors forced to inspect audit reports from CSP to ensure compliance
 – For private cloud, auditors may have access to actual infrastructure

• PaaS environment
 – Physical aspects of auditing get more complex
 – Infrastructure as well as application stack abstracted and managed by CSP
 * Monthly patching, locking down OS, intrusion detection
 * Even DB may be managed and controlled by CSP; customer controls only DB access and administration of users

• SaaS environment
 – Even more responsibility outsourced to CSP
 – CSP responsible for entire application

• Importance of audit
 – Adherence to regulations for business processes in the cloud
 – HIPAA compliance for health care applications in the US
 – Out of compliance leads to fines, legal issues, lost business and bad publicity

• Important to understand responsibility for data in each service model

Regulations in the cloud

• Industry specific, type of data and transactions, standards for any cloud-based system

• Actors include
 – CSP
 – Company building the applications

• Infrastructure may be compliant but applications may not be
 – Entire application needs to pass the audit

• Regulations and controls table
Auditing in the cloud

<table>
<thead>
<tr>
<th>Audit</th>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO27001</td>
<td>Software</td>
<td>Computer system</td>
</tr>
<tr>
<td>SSAE-16</td>
<td>Security</td>
<td>Controls for finance, security, and privacy</td>
</tr>
<tr>
<td>Directive 95/46/ec</td>
<td>Security</td>
<td>European security and privacy controls</td>
</tr>
<tr>
<td>Directive 2002/58/ec</td>
<td>Security</td>
<td>European e-privacy controls</td>
</tr>
<tr>
<td>SOX</td>
<td>Financial</td>
<td>Public company financial accountability controls</td>
</tr>
<tr>
<td>PCI DSS</td>
<td>Credit card</td>
<td>Security and privacy of credit card information</td>
</tr>
<tr>
<td>HIPAA</td>
<td>Health</td>
<td>Security and privacy of health care information</td>
</tr>
<tr>
<td>FedRAMP</td>
<td>Security</td>
<td>Standards for cloud computing</td>
</tr>
<tr>
<td>FIPS</td>
<td>Software</td>
<td>Standard for computer systems</td>
</tr>
<tr>
<td>FERPA</td>
<td>Education</td>
<td>Security and privacy of education information</td>
</tr>
</tbody>
</table>

- Controls and processes for software best practices, security, and privacy
 - Incident management
 - Change management
 - Release management
 - Configuration management
 - Service level agreements
 - Availability management
 - Capacity planning
 - Business continuity
 - Disaster recovery
 - Access management
 - Governance
 - Data management
 - Security management

- Local laws
 - Country/state may have specific laws
 - Social media sites may not invest in passing various audits
 * Post terms and conditions that are accepted by users to use the services
 * If individual data is lost, there is not much he/she can do
 - Stricter adherence to regulations in B2B services
 * Loss of data not intended for public knowledge can be dangerous
 * Company’s secrets, information on customers and partners, public relations problems

- Important for a CSP to provide audit certifications

Audit design strategies

- Identify all regulations that apply based on application requirements
 - Common regulation includes IT best practices regulation such as ISO 27001 standard and some security regulation such as SSAE-16 or SOC 2

- Additional regulations
 - Industry requirements (health care, government, education)
- Data types (payments, personal identifiable information)
- Location (country, transmission across country boundaries)

- Workstream in the product roadmap dedicated to auditing
 - Data management
 - Security management
 - Centralized logging
 - SLA management
 - Monitoring
 - Disaster recovery
 - SDLC and automation
 - Operations and support
 - Organizational change management

- Product evolution over time
 - Enterprise view of strategies to leverage the initial investment over future cloud applications in a consistent manner
 - Reduce maintenance costs and improve auditability
 - Add auditing requirements early in the application development stage
 * Part of the core application
 * Reduce risk and auditing costs

- Effect of chosen cloud model on amount of development required
 - For IaaS, cloud consumer has to share a large amount of responsibility
 - In private cloud, consumer has total responsibility for all necessary processes and controls
 - With public cloud, responsibility for infrastructure layer goes to CSP
 - With PaaS and SaaS, more responsibility shifts to CSP

- Audit vs speed to market, especially for startups

Data considerations in the cloud

Data characteristics

- Characteristics of data to consider
 - Physical characteristics
 - Performance requirements
 - Volatility
 - Volume
 - Regulatory requirements
 - Transaction boundaries
 - Retention period

- Two key decisions
 1. Multitenant or single tenant
 2. Type of data store: SQL, NoSQL, file, ...
Physical characteristics

- Location of data
 - Legal responsibilities
- Preexisting data or new data
 - Move preexisting data into cloud?
 - Create new data in cloud?
- Amount of data to be moved into cloud
 - Move data using offline storage
 - Risk of data being compromised during transportation
- Physical location of data
 - Legal aspects of physical location
 - Laws about transporting data across country/state boundaries
- Data ownership
 - Company building the software?
 - Search results from Google
 - Third party?
 - Navigation data for Google maps
 - Customer of the system?
 - Dropped pins on Google maps; documents in Google docs
- Data sharing with other parties
 - Hide any parts?
- Aspects involving privacy, security, and SLAs

Performance requirements

- Real-time performance
 - Subsecond response time
- Near real-time performance
 - Perceived real-time
 - Not really real-time but end-user cannot tell the difference
- Delayed time
 - A few seconds to batch time frame of daily, weekly, monthly, ...
- Faster response time will leverage memory over disk
- Common design patterns for high-volume fast-performing data sets
 - Use a caching layer
 - Reduce size of data sets
– Separate databases into read-only and write-only nodes
– Data segmentation into customer-, time-, or domain-specific segments
– Archive aging data to reduce table sizes
– Denormalize data sets

Volutility

• Frequency of change in data
• Static data sets
 – Event-driven data in chronological order
 – Web logs, transactions, collection
 – Write-once read-many type data sets
 – Stored over long time periods; consume terabytes of space
 – Nonstandard DB practices to maximize performance
• Dynamic data sets
 – Frequently changing data
 – Normalized relational DBMS
 * Good for processing ACID transactions (atomicity, consistency, isolation, durability)
 * Ensure data reliability
 * Protect integrity of data by ensuring that duplicate data and orphan records do not exist
 – Speed of data flow (add/change/delete)
 – Understanding different disk storage systems
 * On AWS, S3 is highly reliable but not best performing
 * EBS volumes are high performing local disk systems but lack the reliability and redundancy of S3

Volume

• Amount of data to maintain and process
• Performance of relational DBMS
 – Slow and expensive to maintain beyond a certain amount of data
• Amount of data to be maintained and accessible online vs archived
• Backup strategy
 – Frequency of full and incremental backup
 – Perform backups on a slave database so as to not impact application performance

Regulatory requirements

• Certifications in various regulations
• Data encryption in flight and at rest
Performance overhead

Transaction boundaries

- Unit of work on the web
- Process flow from beginning to end of transaction
 - Booking flight, hotel, car rental on Expedia
- Data points to store state
 - RESTful services (Representational State Transfer) are stateless by design
 - Architect needs to determine a way to save state for multipart transaction
 * Caching, writing to queue, or writing to temporary table or disk
- Frequency of multipart transactions (disk vs cache)

Retention period

- How long to keep data
 - Financial data stored for seven years for audit purposes
 - Bank statements available online from six months to a year; older can be requested

Multitenant or single tenant

- Determined by data characteristics
- Multitenancy in data layer of architecture
 - Multiple organizations or customers share a group of servers
- Total isolation
 - Applications and data isolated on their respective servers
 - Both database layer and application layer have dedicated resources for each tenant
 - Advantages: Independence, privacy, highest scalability
 - Disadvantages: Most expensive, minimal reuse, highest complexity
 - Applications must be infrastructure aware and know how to point to correct infrastructure
 - Useful when tenant has enormous amount of traffic
 - Dedicated servers maximize scaling while avoiding disruptions for other clients
- Data isolation
 - Application takes a multitenant approach to the application layer by sharing application servers, web servers, and other services
 - Database layer is single tenant
 - Advantages of independence and privacy while reducing some costs and complexities
 - Protects the privacy of each tenant’s data and allows tenants to scale independently
 - Amount of traffic is not overwhelming but there is a need to store data in its own schema for privacy reasons
• Data segregation
 – Separate tenants into different database schemas sharing the same servers
 – All layers are shared for all tenants
 – Advantages: Most cost effective, least complex, highest reuse
 – Disadvantages: Lack of independence, lowest performance, lowest scalability
 – Performance issues with one tenant can create issues for other tenants

Choosing data store types

• Relational databases
 – Have been around for long
 – Good for online transaction processing (OLTP) applications
 – Guarantee that transactions are processed successfully to store data in database
 – Superior security features
 – Powerful query engine
 – Enforce referential integrity
 * Accomplished by a lot of overhead built into database engine
 * Ensure that transactions complete and committed before data is stored into database
 – Require indexes to assist in retrieval of records
 * With increasing size, indexes become counterproductive

• NoSQL databases
 – Can handle increasing amount of data
 – Provide access to elastic cloud resources
 – Falling costs of disk resources
 – Useful for analytics, data mining, pattern recognition, and machine learning

• Four types of NoSQL databases
 1. Key-value store
 – Simplest NoSQL database type
 – Hash table
 – Unique key with a pointer points to a particular data item
 – Fast and highly scalable
 * Good for processing massive amounts of writes such as tweets
 – Good for reading large, static-structured data such as historical orders, events, and transactions
 – No schema
 * Bad choice to handle complex data and relationships
 – Redis, Voldemort (LinkedIn), DynamoDB (Amazon)
 2. Column store
 – Store and process large amount of data distributed over many machines
 – Hash key points to multiple columns organized in column families
 – Columns can be added on the fly and do not have to exist in every row
 – Incredibly fast, scalable, and easy to alter on the fly
 – Good to integrate data feeds from different sources with different structures
– Not good for interconnected data sources
– Hadoop, Cassandra

3. Document store
– Used to store unstructured data
 * XML, JSON, PDF, Word, Excel
– Logging solutions to combine log files from different sources
 * Database logs, web server logs, application server logs, application logs
– Good at scaling large amount of data in different formats
– Not good with interconnected data
– CouchDB, MongoDB

4. Graph database
– Used to store and manage interconnected relationships
– Visual representation of relationships, especially in social media analysis
– Good at graphing
– Not good at other things because entire relationship tree must be traversed to produce results
– Neo4j, InfoGrid

• Other storage options
– Data stored as files
 * Photos, videos, MP3
– Content delivery network
 * Network of distributed computers located in multiple data centers
 * High availability and high performance
 * Good for streaming media and other bandwidth intensive data