
Message-Passing Programming

Introduction

• MPI – Message Passing Interface standard

– Most popular message-passing specification to support parallel programming

– Standardized and portable to function on a wide variety of parallel computers

– Allowed for the development of portable and scalable large-scale parallel applications

Message-passing model

• Similar to task/channel model

#
"

!

Interconnection
Network

CPU

Memory

CPU

Memory

�
�

�

CPU

Memory

CPU

Memory

@
@

@

CPU

Memory
CPU

Memory

�
�

�
CPU

Memory

CPU

Memory

@
@

@

• Underlying hardware a collection of processors, each with its own local memory

– Processor can access only its own instructions and data in its local memory

– Message passing between processors supported by an interconnection network

– Local data sent by PE A to PE B giving B indirect access to those values

• Implicit channel between every pair of processors

– Use the network design strategies to minimize the communications overhead

• User specifies the number of concurrent processes when the program begins

– Typically, the number of active processes remains constant throughout the execution of program

– Processes are independent and may perform different functions

– Process alternately performs computations on local variables and communicates with other processes/I/O devices

• Processes pass messages to communicate and synchronize with each other

• Advantages of message passing model over other parallel programming models

– Runs well on a wide variety of MIMD architectures

Message-Passing Programming 2

∗ Allows programmers to manage memory hierarchy

∗ Natural fit for multicomputers that do not share global address space

∗ Possible to execute message-passing programs using shared variables as message buffers

– Encourages the use of local memory in the design of algorithms

∗ Maximize local computation and minimize communications

∗ Remote memory entails communications overhead

∗ High cache-hit-rates on multicomputers for good performance

– Portable to many architectures

– Debugging message-passing programs is simpler than debugging shared-variable programs

∗ Processes cannot accidentally overwrite a variable controlled by another process

∗ Easier to create deterministic programs

Circuit satisfiability

• Implement a program to compute whether a circuit is satisfiable (yields 1 for some combination of inputs)

– Important for the design and verification of logical devices

– NP-complete

– Consider the following circuit:

((((a ∨ b) ∧ (b̄ ∨ d̄)) ∧ ((c ∨ d) ∧ (d̄ ∨ ē))) ∧

((e ∨ f̄) ∧ (f ∨ g)) ∧ ((f ∨ ḡ) ∧ (h ∨ ī))) ∧

(((i ∨ j) ∧ (i ∨ j̄)) ∧ ((j̄ ∨ k̄) ∧ (k̄ ∨ l))) ∧

((j ∨ l) ∧ (m ∨ n)) ∧ (h̄ ∨ n̄) ∧ (n ∨ ō) ∧

((o ∨ p) ∧ (g ∨ p̄))

Message-Passing Programming 3

• Solve the problem by trying every combination

– For a circuit with n inputs, you have to try 2n combinations

• Solve by partitioning, or functional decomposition

– Associate one task with each combination of inputs

– If a task finds that its combination of inputs causes the circuit to return the value 1, it prints the combination

– Independent tasks imply that satisfiability checks may be performed in parallel

• No channels between tasks

– Embarrasingly parallel

– Any of the tasks may produce an output

∗ A channel from each task to output device

• Agglomeration and mapping

– Fixed number of tasks with no communication between tasks

– Variable time for each task to complete

∗ Most of the tasks represent bit combinations for which the circuit is not satisfiable

∗ Some tasks may give up quickly; other tasks may take longer

– Map tasks to processors in a cyclic fashion to balance computational load

– Minimize process creation time

∗ One process per processor

∗ n tasks for p processors

∗ Cyclic/interleaved allocation

· Assign each process pth task in round robin fashion

· Distribution with n = 20 and p = 6

· Task k is assigned to process k%p

– Code in csat/csat1.c on stovokor

∗ Each active process executes its own copy of this program

∗ Each MPI process has its own copy of all the active variables declared in the program

• Function MPI_Init

– First MPI function call made by every MPI process; must be called before any other MPI function

∗ The only exception is the function MPI_Initialized to check if MPI has been initialized

– Do any set up needed for further calls to MPI library

– All MPI identifiers, including function identifiers, begin with prefix MPI_, followed by a capital letter and a series
of lowercase letters and underscores

– All MPI constants are strings of capital letters and underscores beginning with MPI_

Message-Passing Programming 4

int MPI_Init (&argc, &argv);

• Function MPI_Comm_rank and MPI_Comm_size

– After initialization, every active process is a member of a communicator called MPI_COMM_WORLD

– Communicator

∗ Opaque object to provide the environment for message passing among processes
∗ MPI_COMM_WORLD is the default communicator though you can also create your own communicators

– Rank

∗ Processes within a communicator are ordered, with rank providing their position in overall order
∗ For p processes, the rank is given by a unique number between 0 and p − 1

∗ Process uses its rank to determine its identity and to determine its portion of computation/dataset
∗ Process identifies its own rank by
int MPI_Comm_rank (MPI_COMM_WORLD, int * id);

∗ Total number of processes in a communicator is determined by
int MPI_Comm_size (MPI_COMM_WORLD, int * num_procs);

• Function MPI_Finalize

– After a process has finished all MPI library calls, it calls MPI_Finalize to release all resources allocated to MPI,
such as memory

int MPI_Finalize();

Message-Passing Programming 5

• Compiling MPI programs

– Use the command mpicc as

mpicc -o csat csat1.c

• Running MPI programs

– Use the command mpirun

mpirun -np 10 csat

Introducing collective communication

• Count the number of solutions found

– Keep a count of solutions for each process

– Compute the global sum of those values

– Processors need to cooperate with each other to compute global sums

• Collective communication

– Group of processes work together to distribute/gather a set of one or more values

– Reduction operation

– New code in csat/csat2.c

• Function MPI_Reduce

– Performs one or more reduction operations on values submitted by all processes in communicator

int MPI_Reduce (void * operand, void * result, int count, MPI_Datatype type,
MPI_Op operator, int root, MPI_Comm communicator);

– operand is location of first element for reduction

– count is the number of reductions to be performed

∗ Each process submits count values
∗ Each of submitted values is a list element for a different reduction
∗ If count> 1, list elements for all reductions occupy a contiguous block of memory

– type designates the type of elements being reduced

– operator indicates the type of reduction to perform

– root gives the rank of process that will have result of all reductions

– result points to location of first reduction result

∗ Is meaningful only for root process
∗ Only a single process gets the global result; every process must call MPI_Reduce
∗ If not every process participates, the program will hang

Benchmarking parallel performance

• Functions MPI_Wtime and MPI_Wtick

– Look at wall clock time

– Better results by ignoring the overheads like initiating MPI processes, establishing communications sockets, per-
forming I/O on sequential device

Message-Passing Programming 6

– Concentrate on the middle area between reading dataset and printing results – the actual computation time

– MPI_Wtime returns the number of seconds elapsed since some point

– MPI_Wtick returns the precision of the result returned by MPI_Wtime

– Headers are:

double MPI_Wtime();
double MPI_Wtick();

– Benchmark by enclosing the code between a pair of calls to MPI_Wtime, and taking the difference between the
two times

– Caveats

∗ Technically, every MPI process does not start to execute at exactly the same time

∗ This can throw off timing significantly

∗ If there is a need to synchronize, such as MPI_Reduce, no process may complete until all processes have
reached this point

∗ Some processes may report significantly longer computation time than the latecomers

• Function MPI_Barrier

– Barrier synchronization before first call to MPI_Wtime

– No process can proceed past a barrier until all processes have reached it

– Barrier ensures that all processes get into the measured section of the code at the same time

int MPI_Barrier (MPI_Comm comm);

– See csat3.c for code

– Run csat3 with different number of processors to benchmark

