Monte Carlo Methods

Introduction

- Solve a problem using statistical sampling
 - First important use in development of atomic bomb during WWII
- Appliactions of Monte Carlo Methods
 - Evaluating integrals of arbitrary functions of 6+ dimensions
 - Predicting future value of stocks
 - Solving partial differential equations
 - Sharpening satellite images
 - Modeling cell populations
 - Finding approximate solutions to NP-hard problems in polynomial time
 - We used it as an exercise to compute the value of π
- Absolute error
 - A way to measure the quality of an estimate
 - The smaller the error, the better the estimate
 - Actual value denoted by a
 - Estimated (computed) value denoted by \boldsymbol{e}
 - Absolute error = $\frac{|e-a|}{a}$
 - In the case of π , the absolute error is closely appromiated by the function $\frac{1}{2\sqrt{n}}$
 - Increasing sample size reduces error
- Why Monte Carlo works
 - Mean value theorem

$$I = \int_{a}^{b} f(x)dx = (b - a)\bar{f}$$

where \bar{f} is the mean value of f(x) in the intervals [a,b]

- Monte Carlo method estimates the value of I by evaluating $f(x_i)$ at n points selected from a uniform random distribution over [a,b]
- Expected value of $\frac{1}{n} \sum_{i=0}^{n-1} f(x_i)$ is \bar{f}

Monte Carlo Methods

- Hence, we have

$$I = \int_{a}^{b} f(x)dx$$
$$= (b-a)\bar{f}$$
$$\approx (b-a)\frac{1}{n}\sum_{i=0}^{n-1} f(x_i)$$

2

- Why Monte Carlo is effective
 - Error in Monte Carlo estimate decreases by the factor $\frac{1}{\sqrt{n}}$
 - Rate of convergence independent of integrand's dimension
 - Deterministic numerical integration methods do not share this property
 - * Simpson's rule has rate of convergence that decreases as the dimension increases
 - Hence, Monte Carlo method is superior when integrand has 6 or more dimensions
- Monte Carlo and parallel computing
 - Monte Carlo methods often amenable to parallelism
 - Negligible amount of interprocess communications