
Document Classification

Introduction

• Search engine on web

– Search directories, subdirectories for documents

– Search for documents with extensions .html, .txt, and .tex

– Using a dictionary of key words, create a profile vector for each document

– Store profile vectors

• Problem to be solved with manager/worker style parallel program

Parallel algorithm design

• Profile vector

– Commonly used words eliminated by a stop list

– Words stripped down to their roots

∗ Store, Storage, Storing, Stored – All forms of the same word store

– Weight assigned to each keyword in the document

– Term frequency

– Inverse document frequency

– Data dependence diagram

• Partitioning and Communication

– Most time spent on reading documents and generating profile vectors

– Two primitive tasks for each document

1. Read the document file

2. Generate the vector

Document Classification 2

• Agglomeration and mapping

– Number of tasks not known at compile time

– Tasks do not communicate with each other

– Time needed to perform each task may vary widely

∗ Different size of documents

∗ Files may contain markup (.html and .tex files compared to .txt files)

– Strategy: map tasks to processes at run time

• Manager/worker paradigm

– Can also be viewed as domain partitioning with run-time allocation of data to tasks

– Manager

∗ Responsible to keep track of assigned and unassigned data
∗ Assigns tasks to workers and retrieves results back from them

– Allocating only a single task at a time to each worker balances workload

– Worker

∗ Done when it completes a task and manager has no more tasks to assign

Document Classification 3

∗ No worker has more than one task to complete

– Disadvantage of allocating a single task

∗ Introduces additional communication overhead

∗ Increases execution time

∗ Lowers speedup

– SPMD Style

∗ Single Program Multiple Data

∗ Almost all the processes we have worked on so far

∗ Every process executes the same functions

· A designated process may be responsible for file or user I/O

– Manager/worker paradigm

∗ Does not follow SPMD style

· Manager process has different responsibilities than worker processes

∗ MPI manager/worker system splits control flow early on

· Manager and workers perform completely different functions

∗ Helps in balancing workload for high efficiency

∗ Decide the tasks to be performed by the manager and workers

· Reading dictionary should be a job for the workers

· Worker reads a document file and creates the profile vector

· Manager responsible for gathering the documents vectors and writing the results file

∗ Interaction cycle between the manager and each worker

· Manager provides a worker with a task

· Worker does the job and sends the report (completed task) to manager

· The cycle repeats

∗ Start with the worker who sends a message to manager that he is ready for some work

· Makes sure that manager only sends tasks to workers it knows are active

• Manager process

– Identifies n plain text documents

Document Classification 4

– Receives the document vector size k from process 0 to allocate space for n × k matrix s to store vectors received
from workers

– Initializes variables d and t to show that no documents have been assigned and no workers have been terminated,
respectively

– Pseudocode for manager

a -- Array showing documents assigned to each process
k -- Document vector length
n -- Number of documents
s -- Storage array containing document vectors

Identify n documents in user-specified directory
Receive dictionary size k from worker 0
Allocate nxk matrix s to store document vectors
d = 0 // Documents assigned
t = 0 // Terminated workers

// Repeat loop until all workers are terminated

do
Receive message from worker j
if message contains document vector v

s[a[j]] = v // Store document vector in s
// else worker is indicating that it is ready for a document
// Only happens once per worker

if d < n // more documents?
Send file name d to worker j
a[j] = d // Record in a the document assigned
d++

else
Send worker termination message
t++

while workers present
Write document vectors s to file

• Function MPI_Abort

– A quick and dirty way for one process to terminate all processes in specified communicator

– Manager allocates space for an n × k matrix to store document vectors

– In case of allocation failure, the code should be terminated

– MPI_Abort makes a best effort attempt to terminate all processes in the specified communicator

int MPI_Abort (
IN MPI_Comm comm, // Communicator of tasks to abort
IN int error_code // Error code to return to invoking environment
);

• Worker process

– Worker needs to read dictionary using one of the following two options

1. Each worker opens dictionary file and reads it from filesystem
2. One worker reads the dictionary and broadcasts it to other workers

∗ Better option if broadcast bandwidth inside the parallel computer is greater than bandwidth between par-
allel computer and file server

Document Classification 5

– Pseudocode for worker

Send first request for work to manager
if worker 0

Read dictionary from file

Broadcast dictionary among workers
Build hash table from dictionary
if worker 0

Send dictionary size k to manager

// Reading/sharing dictionary overlaps communication with manager

do
Receive file name f from manager
if file_name == NULL

terminate

Read document from file f
Generate document vector v
Send document vector v to manager

while (1)

– Task/channel graph

• Creating a worker-only communicator

– Dictionary is broadcast among workers while manager searches native directory structure for document files

– Use MPI_Bcast for collective broadcast

– Need workers-only communicator for workers-only broadcast

– Use MPI_Comm_split to split the current communicator into manager and workers

– Manager passes MPI_UNDEFINED as the value of color, meaning it will not be part of any new communicator

∗ Return value of new_comm will be MPI_COMM_NULL for manager

– Usage example

Document Classification 6

int id;
MPI_Comm worker_comm;
...
if (! id) // Manager

MPI_Comm_split (MPI_COMM_WORLD, MPI_UNDEFINED, id, &worker_comm);
else // Worker

MPI_Comm_split (MPI_COMM_WORLD, 0, id, &worker_comm);

Nonblocking communications

• Three phases of manager process

1. Find plain text files; receive dictionary size from worker 0, allocate space (2D array) for profile vectors

2. Allocate documents to workers and collect profile vectors

3. Write the complete set of profile vectors to a file

• Phase I

– Manager must search directory and receive a message from worker 0

– Need to overlap the two activities

– MPI_Send and MPI_Recv are blocking operations

∗ MPI_Send does not return until message is copied to a system buffer or the message has been sent

∗ MPI_Recv does not return until message has been copied into buffer specified by user

∗ Blocking send and receive may limit the performance of a parallel program

– Operations can be initiated by MPI_Isend and MPI_Irecv

– MPI_Wait blocks until the operation is complete

– Calls can be made early

∗ MPI_Isend as soon as value(s) assigned

∗ MPI_Irecv as soon as buffer available

– Can eliminate a message copying step

– Allows communication/computation overlap

• Manager’s communication

– Manager needs to receive the dictionary size from worker even though it does not use it until after it has identified
document files to be processed

• Function MPI_Irecv

– Begins a nonblocking receive

int MPI_Irecv (
void * bufr, // Address of receive buffer
int count, // Number of elements in receive buffer
MPI_Datatype datatype, // Datatype of each element in receive buffer
int src, // Rank of source process
int tag, // Message tag
MPI_Comm comm, // Communicator
MPI_Request * request // Communication request
);

– The first six parameters are the same as MPI_Recv

Document Classification 7

– Last parameter (request) returns a pointer to an MPI_Request object to identify the communication operation
that is initiated

– Only initiates receive; you cannot access \bufr until a matching call to MPI_Wait has returned

– Does not return a pointer to an MPI_Status object because receive is not yet completed

• Function MPI_Wait

– Wait for an MPI request to complete

int MPI_Wait (
MPI_Request * request, // Communication request
MPI_Status * status // Status object; may be MPI_STATUS_IGNORE
);

– Function blocks until the operation associated with request completes

– For send operation, buffer may be assigned a new value

– For receive operation, buffer may be referenced; status points to object containing information about received
message

• Workers’ communications

– Each worker initially notifies the manager that it is active

– Send a notification to manager and proceed to read/broadcast of dictionary and build hash table

– Worker receives file name from manager

∗ File names may be deeply nested in the directory structure and worker may not know the number of characters
in incoming filename

∗ How to handle it?
· Allocate a huge buffer
· Check the length of incoming message and then, allocate buffer

• Function MPI_Isend

– Initiate a nonblocking send

int MPI_Isend (
IN void * bufr, // Address of send buffer
IN int count, // Number of elements in send buffer
IN MPI_Datatype datatype, // Datatype of each element in send buffer
IN int dest, // Rank of destination process
IN int tag, // Message tag
IN MPI_Comm comm, // Communicator
OUT MPI_Request * request // Communication request
);

∗ The parameter request returns a handle to an object created by run-time system to identify communication
request

∗ The message buffer may not be reused until the matching call to MPI_Wait has returned

• Function MPI_Probe

– Blocking test for a message

– Blocks until a message matching the source and tag specifications is available to be received

int MPI_Probe (
IN int src, // Source rank, or MPI_ANY_SOURCE
IN int tag, // Tag value, or MPI_ANY_TAG
IN MPI_Comm comm, // Communicator
OUT MPI_Status * status // Status object
);

Document Classification 8

∗ status returns information about the source, tag, and length of message

– Blocks until the message matching the source and tag specifications is available to be received

– Does not actually receive message

– MPI_ANY_SOURCE allows you to probe for a message from any other process

– MPI_ANY_TAG allows you to probe for any message from the process specified as src

– Best to keep source and tag specification as narrow as possible

∗ Minimize mismatch bugs that occur when messages arrive in unexpected order

– In the current problem, worker knows both source and tag of message expected from manager

• Function MPI_Get_count

– Get the number of top level elements, or number of elements in message

int MPI_Get_count (
IN MPI_Status * status, // Return status of receive operation
IN MPI_Datatype datatype, // Datatype of each element in receive buffer
OUT int * count // Number of received elements
);

∗ If the size of datatype is 0, count is 0

∗ If the amount of data in status is not an exact multiple of datatype size, count is MPI_UNDEFINED

Parallel Program

• Four types of messages being sent and received: dictionary size, file name, profile, empty

– Allows a process to receive messages from another process in a different order than they were sent

– Worker 0 sends an initial request to manager for work

– After it has read, broadcast, and processed the dictionary, it sends dictionary size to manager

– Manager needs to to allocate the document vector profile storage area before handling requests for work from
workers

∗ Must know dictionary size from worker 0 before it receives the initial request for work from worker 0

– Two messages get different tags, enabling out-of-order reception

Enhancements

• Assigning groups of documents

– Preallocation of data to processes may result in imbalanced workload

– We allocated data to processes at run time to balance workload

– Our process introduced additional communications overhead, lowering speedup

– Middle ground between pre-allocation and one-at-a-time allocation

– Assign k documents at a time to workers

• Pipelining

– We identify all documents before we start processing any of them

∗ No document files are processed until the manager has identified all of them

∗ If the time to perform these tasks is not negligible, our design will not scale well to a larger number of processes

Document Classification 9

– Detriment to scaling over a number of processors

