CUDA

GPU vs Multicore computers

- **Multicore machines**
 - Emphasize multiple full-blown processor cores, implementing the complete instruction set of the CPU
 - The cores are out-of-order implying that they could be doing different tasks
 - They may additionally support hyperthreading with two hardware threads
 - Designed to maximize the execution speed of sequential programs

- **GPUs (Nvidia)**
 - Typically have hundreds of cores
 - Cores are heavily multithreaded, in-order, and single-instruction issue processors
 - Each core shares control and instruction cache with seven other cores
 - Achieve about 10X performance compared to single core machines

- **Design philosophy of general-purpose multicore CPUs**
 - Design of CPU optimized for sequential code performance
 - Emphasis of parallelizing different parts of instruction (pipelining) to improve performance of sequential processes
 - Large cache memories to reduce instruction and data latency
 - Core i7 (Announced for Q1 2012)
 - Two load/store operations per cycle for each memory channel
 - Allows for 32KB data and 32KB instruction L1 cache at 3 clocks and 256KB L2 cache at 8 clocks per core
 - Up to 8 physical cores and 16 logical cores through hyperthreading

- **Design philosophy of many-core GPUs**
 - Shaped by video game industry; large number of floating point calculations per video frame
 - Maximize chip area and power budget for floating point computation
 - Optimize for the execution throughput of large number of threads
 - Large bandwidth to move data (10X compared to CPU)
 - Nvidia GeForce 8800 GTX moves data at 85GB/s in and out of its main DRAM; GT200 chips support 150GB/s; CPU-based systems support about 50GB/s
 - Simpler memory models
 - No legacy applications, OS, or I/O devices to restrict increase in memory bandwidth
 - Small cache memories to control bandwidth requirements for applications
 - Designed as numeric computing engines
 - Applications designed to execute sequential part on CPU and numerically intensive part on GPU

- **CUDA**
 - Compute Unified Device Architecture
 - Designed to support joint CPU/GPU execution of applications
 - Set of developing tools to create applications to execute on GPU
 - CUDA compiler uses a variation of C with some C++ extensions
 - Avoids the performance overhead of graphics layer APIs by compiling software directly to the hardware
Includes a unified shader pipeline allowing each ALU on the GPU to be used for general-purpose computations
* ALUs built to comply with IEEE single precision floating point standard
* Execution units on GPU allowed arbitrary read/write access to memory as well as software-managed cache known as *shared memory*

Modern GPU architecture

- Array of highly threaded streaming multiprocessors SMs
 - SMs share control logic and instruction cache
- A set of SMs combined into a building block
 - Above figure (GeForce 8800) contains 16 highly threaded SMs per block
 - 128 FPU	* Each has a multiply-add unit and additional multiply unit
 - Special function units perform floating point functions such as square root
 - Each SP can run multiple threads (768 threads/SM)
 - 367 GFLOPS
 - 768 MB DRAM
 - 86.4 GB/s memory bandwidth
 - 8 GB/s bandwidth to CPU
 * 4GB/s from device to system
 * 4GB/s from system to device
 - 4GB of graphics double data rate (GDDR) DRAM – global memory – on GPU
 * GDDR DRAM differs from system DRAM on CPU motherboard
CUDA Introduction

- GDDR DRAM is frame buffer memory used for graphics
- Functions as very high bandwidth off-chip memory for computing

CUDA-enabled GPUs

- Operate as a co-processor within the host computer
- Each GPU has its own memory and PEs
- Data needs to be transferred from host to device memory and device to host memory
 - Memory transfers affect performance times
- Use the nvcc compiler to convert C code to run on a GPU
- Preferred to use .cu as extensions to CUDA C source code
- Program to move data between host and device memory

Fixed-function graphics pipeline

- Configurable but non-programmable graphics hardware
- Graphics APIs to use software or hardware functionality
- Send commands to a GPU to display an object being drawn
- Graphics pipeline
 - Host interface receives graphics commands and data from CPU
 - Commands given by host through API
 - DMA hardware in host interface to efficiently transfer bulk data between host and device memory
 - Vertex
 * Corner of a polygon
 * Graphics pipeline optimized to render triangles
 * Vertex in GeForce refers to vertex of a triangle
 * Surface of an object drawn as a set of triangles
 * Smaller triangles imply better image quality
 - Addressing modes for limited texture size/dimension
 - Vertex control stage
 * Receives parameterized triangle data from CPU
 * Converts it to a form understood by hardware
 * Places prepared data into vertex cache
 - Vertex shading, transform, and lighting stage
 * Transforms vertices and assigns per-vertex values
 - Color, normal, texture coordinates, tangents
 * Shading done by pixel shading hardware
 * Vertex shader assigns color to each vertex but color is not immediately applied to triangle pixels
 * Edge equations to interpolate colors and other per-vertex data (texture coordinates) across the pixels touched by triangle
 - Raster stage
CUDA Introduction

- Determines pixels contained in each triangle
- Interpolates per vertex values to shade the pixels
- Performs color raster operations to blend the colors of overlapping/adjacent colors for transparency and antialiasing
- Determines the visible objects for a given viewpoint and discards occluded pixels
- Antialiasing gives each pixel a color that is blended from the colors of objects that partially overlap the pixel

- Shader stage
 - Determines final color of each pixel
 - Combined effect of many techniques: interpolation of vertex colors, texture mapping, per-pixel lighting mathematics, reflections, and so on

- Frame buffer interface stage
 - Memory read/write to the display frame buffer memory
 - High bandwidth requirement for high resolution displays
 - Two techniques
 1. Special memory design for higher bandwidth
 2. Simultaneously manage multiple memory channels connected to multiple memory banks

- Evolution of programmable real-time graphics
 - CPU die area dominated by cache memories
 - GPU dominated by floating point datapath and fixed-function logic
 - GPU memory interfaces emphasize bandwidth over latency
 - Latency can be hidden by massively parallel execution

CUDA Programming Model

- General purpose programming model
 - User kicks off batches of threads on the GPU
 - GPU – dedicated super-threaded, massively data parallel co-processor

- Targeted software stack
 - Compute oriented drivers, language, and tools

- Driver for loading computation programs into GPU
 - Standalone driver – optimized for computation
 - Interface designed for compute – graphics-free API
 - Data sharing with OpenGL buffer objects
 - Guaranteed maximum download and readback speeds
 - Explicit GPU memory management

- C with no shader limitations
 - Integrated host+device app C program
 - Serial or modestly parallel parts in host C code
 - Highly parallel parts in device SPMD kernel C code

- Kernel call
- "Hello world" program
- An empty function named `kernel()` qualified with `__global__`
- A call to the empty function, embellished with `<<<1,1>>>
- Nvidia tools feed the code into the host compiler (gcc)
- `__global__` qualifier alerts the compiler that a function should be compiled to run on the device instead of host
- Kernel is a function callable from the host and executed on the CUDA device – simultaneously by many threads in parallel
- Host calls the kernel by specifying the name of the kernel and an execution configuration
 * Execution configuration defines the number of parallel threads in a group and the number of groups to use when running the kernel for CUDA device
 * Execution configuration defined in angular brackets
 - Angular brackets are not arguments to the device code
 - Parameters to influence how the runtime will launch device code
- Code for addnum
 * Can pass parameters to a kernel just like any C function
 * Need to allocate memory on device to do anything useful
- Code for incr_arr
 * No loop in the device code
 * Function is simultaneously executed by an array of threads on device
 * Each thread is provided with a unique ID that is used to compute different array indices or to make control decisions
 * Unique ID calculated in the register variable `idx` used to refer each element in the array
 * Number of threads can be larger than the size of the array
 - `idx` is checked against `n` to see if the index element needs to be operated on
 * Call to kernel `incr_arr_dev` queues the launch of kernel function on device by an asynchronous call
 - Execution configuration contains the number of blocks and block size
 - Arguments to kernel passed by standard C parameter list
 - Since the device is idle, kernel immediately starts to execute as per execution configuration and function arguments
 - Both host and device execute concurrently their separate code
 - Host calls `cudaMemcpy` which waits until all threads have finished on device (returned from `incr_arr_dev`)
 - Specification of kernel configuration by number of blocks and block size allows the code to be portable without recompilation
 * Built-in variables in the kernel
 - `blockIdx` Block index within the grid
 - `threadIdx` Thread index within the block
 - `blockDim` Number of threads in a block
 - Structures containing integer components of the variables
 - Blocks have `x`, `y`, and `z` components because they are 3D
 - Grids are 2D and contain only `x` and `y` components
 - We used only `x` component because the input array is 1D
 - We added an extra block if `n` was not evenly divisible by `blk_sz`; this may lead to some threads not having any work in the last block
 - Important: *Each thread should be able to access the entire array `a`, `c` on device*
 - No data partitioning when the kernel is launched
• **cudaMalloc**
 - The code should not try to dereference the pointer returned on host
 - Host code can pass this pointer around, perform arithmetic on it, or cast it to a different type
 - Just cannot read or write in memory using this pointer
 - Memory allocated must be freed by using a call to `cudaFree`
 - Pointers within the device code are used exactly as you would on host

    ```
    *c = a + b;
    ```
 - In a similar way, do not try to access host memory from within device

CUDA error handling

• Every CUDA call, with the exception of kernel launches, returns an error of type `cudaError_t`
 - The successful calls return `cudaSuccess`
 - A failure returns an error code
• The error code can be converted to human readable form by the function

  ```
  char * cudaGetErrorString ( cudaError_t code );
  ```
• `cudaGetLastError` reports last error for any previous run time call in host thread
 - Kernel launches are asynchronous; so cannot explicitly check with `cudaGetLastError`
 * Use `cudaThreadSynchronize` to block until the device has completed all previous calls, including kernel calls
 * Returns an error if one of the preceding calls fails
 * Queuing multiple kernel launches implies that error checking can only be done after all the kernels have completed
 - Errors are reported to the correct host thread
 * If host runs multiple threads on different CUDA devices, error is reported to the correct host thread
– If there are multiple errors, only the last error is reported

Querying devices

- Find out memory capacity and other capabilities of CUDA device
- Some machines may have more than one CUDA capable device
 - The class machine gpu.umsl.edu has two such devices
- Iterate through each device to get the relevant information on each
 - Properties returned in a structure of type cudaDeviceProp

* Defined in /usr/local/cuda/include/driver_types.h

```c
struct cudaDeviceProp {
    char name[256]; // ASCII string to identify the device
    size_t totalGlobalMem; // Device memory in bytes
    size_t sharedMemPerBlock; // Maximum amount of shared memory in bytes
    // usable in a single block
    int regsPerBlock; // Number of 32-bit registers per block
    int warpSize; // Number of threads in a warp
    size_t memPitch; // Maximum pitch allowed for memory copies
    // in bytes
    int maxThreadsPerBlock; // Maximum number of threads in a block
    int maxThreadsDim[3]; // Max number of threads along each dimension
    int maxGridSize[3]; // Number of blocks along each side of grid
    size_t totalConstMem; // Available constant memory
    int major; // Major revision of device compute capability
    int minor; // Minor revision of device compute capability
    int clockRate; // Clock frequency in kHz
    size_t textureAlignment; // Device requirement for texture alignment
    int deviceOverlap; // Can device simultaneously perform a
    // cudaMemcpy and kernel execution
    int multiProcessorCount; // Number of PEs on device
    int kernelExecTimeoutEnabled; // Is there a runtime limit for
    // kernels executed on this device
    int integrated; // Is the device an integrated GPU?
    // Integrated GPU is part of chipset and
    // not a discrete GPU
    int canMapHostMemory; // Device can map host memory into CUDA
    // address space
    int computeMode; // Device computing mode: default,
    // exclusive, or prohibited
    int maxTexture1D; // Max size for 1D textures
    int maxTexture2D[2]; // Max dimensions for 2D textures
    int maxTexture3D[3]; // Max dimensions for 3D textures
    int maxTexture2DArray[3]; // Max dimensions for 2D texture arrays
    int concurrentKernels; // Does device support executing multiple
    // kernels within same context simultaneously
};
```

- Using device properties
 - Device properties useful in optimizing the code to take advantage of the underlying hardware and software
- Double precision floating point math is supported in cards with compute capability 1.3 or higher
 * To support double precision floating point, we need to work with the device that has compute capability of 1.3 or higher
- Find the device that can achieve the goals and use it

```c
int dev;
cudaDeviceProp prop;
memset(&prop, 0, sizeof(cudaDeviceProp));
prop.major = 1;
prop.minor = 3;
cudaChooseDevice(&dev, &prop);
printf( "CUDA device closest to revision 1.3 is: %d\n", dev);
cudaSetDevice(dev);
```

CUDA parallel programming

- `__global__` qualifier
 - Adding this qualifier and calling it with special angle bracket syntax, the function is executed on GPU
- Kernel to increment an array defined as follows:

```c
__global__
void incr_arr_dev(
    float * arr, // Array to be incremented
    int n       // Number of elements in array
)
{
    int idx;     // To define thread index

    idx = blockIdx.x * blockDim.x + threadIdx.x;

    if ( idx < n )
        arr[idx] += 1.0f;
}
```

- Kernel launch
 - Requires specification of an execution configuration
 * Number of threads that compose a block
 * Number of blocks that form a grid
 * A block can only be processed on a single multi-processor
 - The call to launch kernel is in terms of:

```c
int n = 256;        // Size of array
int a_d[256];      // Array on device
int blk_sz = 4;
int num_blks = (int)ceil((float)n / blk_sz);
incr_arr_dev <<<num_blks, blk_sz >>>(a_d, n);
```
 * This creates `num_blks` copies of the kernel and executes those concurrently
 * Within the kernel, the block is identified as a CUDA built-in variable `blockIdx`; variable defined by CUDA runtime
 * Blocks can be defined in two dimensions
- Since we are adding a 1D array, we use `blockIdx.x` to get the first dimension; the second one being 1
- Collection of parallel blocks is called a *grid*
- The above call interprets kernel as a grid of 1D blocks
- Scalar values are interpreted as 1D

Data Parallelism

- Many arithmetic operations can be concurrently and safely performed on data structures
- Example: Matrix-matrix multiplication $C = A \cdot B$
 - Each element of product matrix C is a result of dot product of a row from A and column from B
 - The dot product for each element of C can be performed concurrently

Shared memory

- Global memory can deliver over 60GB/s or 15GF/s for single touch use of data
- Reuse of local data can achieve higher performance
 - May hide global memory latency and global memory bandwidth restrictions
- Kernel launch requires specification of an execution configuration as
 - Number of threads that compose a block
 - Number of blocks that compose a grid
- A block can only be processed on a single multiprocessor
 - Threads within a block can communicate with each other through local multiprocessor resources such as local shared memory
- Balancing hardware and software resources against cost
 - Developers want large amounts of local multiprocessor resources such as registers and shared memory
 - Hardware needs to be inexpensive but fast local multiprocessor memory is expensive
 - Different hardware with different capabilities and cost
 - CUDA occupancy calculator:
 - Autoconfiguring the application by querying the device helps in optimization
- **CUDA execution model**
 - Each hardware multiprocessor can concurrently process multiple blocks
 - Capability depends on number of registers per thread and the amount of shared memory needed by the kernel
 - Blocks processed by one multiprocessor at one time are called *active*
 - Kernels with minimal resource requirements are better because multiprocessor resources are split among all threads of active blocks
 - If there are not enough resources to process at least one block, kernel will fail to launch
 - Kernel failure can be caught by checking for errors
 - Warp
 - Each active block split into SIMD groups of threads called warps
 - Each warp has the same number of threads (warp size), executed in SIMD fashion
 - Efficient and cost-effective model from hardware point
 - Serializes conditionals in the sense that both branches of the condition must be evaluated