
Morphological Image Processing

Morphology

• Identification, analysis, and description of the structure of the smallest unit of words

• Theory and technique for the analysis and processing of geometric structures

– Based on set theory, lattice theory, topology, and random functions

– Extract image components useful in the representation and description of region shape such as boundaries,
skeletons, and convex hull

– Input in the form of images, output in the form of attributes extracted from those images

– Attempt to extract the meaning of the images

Preliminaries

• Set theory in the context of image processing

– Sets of pixels represent objects in the image

– Set of all white pixels in a binary image is a complete morphological description of the image

• Sets in binary images

– Members of the 2D integer space Z2

– Each element of the set is a 2-tuple whose coordinates are the (x, y) coordinates of a white pixel in the
image

∗ Gray scale images can be represented as a set of 3-tuples in Z3

∗ Higher dimensions can be used to represent other attributes such as color

– Morphological operations

∗ Defined in terms of sets: objects and structuring elements

∗ Objects defined as sets of foreground pixels

∗ ses specified in terms of both foreground and background pixels

· ses may contain “don’t care” elements

∗ Sets are embedded in rectangular arrays due to rectangular nature of images

· Figure 9.1

– Set reflection B̂
B̂ = {w|w = −b, for b ∈ B}

∗ In binary image, B̂ is the set of points in B whose (x, y) coordinates have been replaced by (−x,−y)

∗ Figure 9.2

– Set translation

∗ Translation of a set B by point z = (z1, z2) is denoted by (B)z

(B)z = {c|c = b+ z, for b ∈ B}

∗ In binary image, (B)z is the set of points in B whose (x, y) coordinates have been replaced by
(x+ z1, y + z2)

∗ Figure 9.1c

– Set reflection and set translation are used to formulate operations based on so-called structuring elements

∗ Small sets or subimages used to probe an image for properties of interest
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∗ Figure 9.2

∗ Preference for ses to be rectangular arrays

∗ Some locations are such that it does not matter whether they are part of the se

· Such locations are flagged by × in the se

∗ The origin of the se must also be specified

· Indicated by • in Figure 9.2

· If se is symmetric and no • is shown, the origin is assumed to be at the center of se

– Using ses in morphology

∗ Figure 9.3 – A simple set A and an se B

∗ Convert A to a rectangular array by adding background elements

∗ Make background border large enough to accommodate the entire se when the origin is on the border
of original A

∗ Fill in the se with the smallest number of background elements to make it a rectangular array

∗ Operation of set A using se B

· Create a new set by running B over A

· Origin of B visits every element of A

· If B is completely contained in A, mark that location as a member of the new set; else it is not a
member of the new set

· Results in eroding the boundary of A

Erosion and dilation

• Erosion

– With A and B as sets in Z2, erosion of A by B, denoted by A⊖B is defined as

A⊖B = {z | (B)z ⊆ A}

– Set of all points z such that B, translated by z, is contained in A

– B does not share any common elements with the background

A⊖B = {z | (B)z ∩Ac = ∅

– Figure 9.4

– Example: Figure 9.5

∗ Erosion shrinks or thins objects in a binary image

∗ Morphological filter in which image details smaller than the se are filtered/removed from the image

• Dilation

– With A and B as sets in Z2, dilation of A by B, denoted by A⊕B is defined as

A⊕B = {z | (B̂)z ∩A ̸= ∅}

– Reflect B about the origin, and shift the reflection by z

– Dilation is the set of all displacements z such that B and A overlap by at least one element

– An equivalent formulation is
A⊕B = {z | [(B̂)z ∩A] ⊆ A}

– Grows or thickens objects in a binary image

– Figure 9.6
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– Example: Figure 9.7

∗ Bridging gaps in broken characters

∗ Lowpass filtering produces a grayscale image; morphological operation produces a binary image

• Erosion and dilation are based on set operations and therefore, are nonlinear

• Duality

– Erosion and dilation are duals of each other with respect to set complementation and reflection

(A⊖B)c = Ac ⊕ B̂

(A⊕B)c = Ac ⊖ B̂

– Duality property is especially useful when se is symmetric with respect to its origin so that B̂ = B

∗ Allows for erosion of an image by dilating its background (Ac) using the same se and complementing
the results

– Proving duality

∗ Definition for erosion can be written as

(A⊖B)c = {z | (B)z ⊆ A}c

∗ (B)z ⊆ A ⇒ (B)z ∩Ac = ∅
∗ So, the previous expression yields

(A⊖B)c = {z | (B)z ∩Ac = ∅}c

∗ The complement of the set of z’s that satisfy (B)z ∩Ac = ∅ is the set of z’s such that (B)z ∩Ac ̸= ∅
∗ This leads to

(A⊖B)c = {z | (B)z ∩Ac ̸= ∅}
= Ac ⊕ B̂

Opening and closing

• Opening smoothes the contours of an object, breaks narrow isthmuses, and eliminates thin protrusions

• Closing smoothes sections of contours, fusing narrow breaks and long thin gulfs, eliminates small holes, and
fills gaps in the contour

• Opening of a set A by se B, denoted by A ◦B, is defined by

A ◦B = (A⊖B)⊕B

• Closing of a set A by se B, denoted by A •B, is defined by

A •B = (A⊕B)⊖B

• Geometric interpretation of opening expressed as a fitting process such that

A ◦B =
⋃

{(B)z | (B)z ⊆ A}

– Union of all translates of B that fit into A

– Figure 9.8

• Similar interpretation of closing in Figure 9.9
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• Example – Figure 9.10

• Duality property

(A •B)c = (Ac ◦ B̂)

(A ◦B)c = (Ac • B̂)

• Opening operation satisfies the following properties

1. A ◦B ⊆ A

2. C ⊆ D ⇒ C ◦B ⊆ D ◦B
3. (A ◦B) ◦B = A ◦B

• Similarly, closing operation satisfies

1. A ⊆ A •B
2. C ⊆ D ⇒ C •B ⊆ D •B
3. (A •B) •B = A •B

– In both the above cases, multiple application of opening and closing has no effect after the first application

• Example: Removing noise from fingerprints

– Figure 9.11

– Noise as random light elements on a dark background

Hit-or-miss transformation

• Basic tool for shape detection in a binary image

– Uses the morphological erosion operator and a pair of disjoint ses B1 and B2; B2 = Bc
1

– First se fits in the foreground of input image I; second se misses it completely

– The pair of two ses is called composite structuring element

– The operator is defined as

I ⊛B1,2 = {z|(B1)z ⊆ A and (B2)z ⊆ Ac}
= (A⊖B1) ∩ (Ac ⊖B2)

• Figure 9.12

– Three disjoint shapes denoted C, D, and E

∗ A = C ∪D ∪ E

– Objective: To find the location of one of the shapes, say D

– Origin/location of each shape given by its center of gravity

– Let D be enclosed by a small window W

– Local background of D defined by the set difference (W −D)

∗ Note that D and W −D provide us with the two disjoint ses

D ∩ (W −D) = ∅

– Compute Ac
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– Compute A⊖D

– Compute Ac ⊖ (W −D)

– Set of locations where D exactly fits inside A is (A⊖D) ∩ (Ac ⊖ (W −D))

∗ The exact location of D

– If B is the set composed of D and its background, the match of B in A is given by

A⊛B = (A⊖D) ∩ [Ac ⊖ (W −D)]

• The above can be generalized to the composite se being defined by B = (B1, B2) leading to

A⊛B = (A⊖B1) ∩ (Ac ⊖B2)

– B1 is the set formed from elements of B associated with the object; B1 = D

– B2 = (W −D)

• A point z in universe A belongs to the output if (B1)z fits in A (hit) and (B2)z misses A

• The object can be directly detected if we can process both foreground and background pixels simultaneously

– Remake the se to restate the transform as

I ⊛B = {z|(B)z ⊆ I}

– B is made up of both foreground and background

– Figure 9.13

Some basic morphological algorithms

• Useful in extracting image components for representation and description of shape

• Boundary extraction

– Boundary of a set A

∗ Denoted by β(A)

∗ Extracted by eroding A by a suitable se B and computing set difference between A and its erosion

β(A) = A− (A⊖B)

– Figure 9.13

∗ Using a larger se will yield a thicker boundary

– Figure 9.14

• Hole filling

– Hole

∗ Background region surrounded by a connected border of foreground pixels

– Algorithm based on set dilation, complementation, and intersection

– Let A be a set whose elements are 8-connected boundaries, each boundary enclosing a background (hole)

– Given a point in each hole, we want to fill all holes

– Start by forming an array X0 of 0s of the same size as A

∗ The locations in X0 corresponding to the given point in each hole are set to 1

– Let B be a symmetric se with 4-connected neighbors to the origin
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0 1 0
1 1 1
0 1 0

– Compute Xk = (Xk−1 ⊕B) ∩Ac k = 1, 2, 3, . . .

– Algorithm terminates at iteration step k if Xk = Xk−1

– Xk contains all the filled holes

– Xk ∪A contains all the filled holes and their boundaries

– The intersection with Ac at each step limits the result to inside the roi

∗ Also called conditioned dilation

– Figure 9.15

– Example: Figure 9.16

∗ Thresholded image of polished spheres (ball bearings)

∗ Eliminate reflection by hole filling

∗ Points inside the background selected manually

• Extraction of connected components

– Let A be a set containing one or more connected components

– Form an array X0 of the same size as A

∗ All elements of X0 are 0 except for one point in each connected component set to 1

– Select a suitable se B, possibly an 8-connected neighborhood as

1 1 1
1 1 1
1 1 1

– Start with X0 and find all connected components using the iterative procedure

Xk = (Xk−1 ⊕B) ∩A k = 1, 2, 3, . . .

– Procedure terminates when Xk = Xk−1; Xk contains all the connected components in the input image

– The only difference from the hole-filling algorithm is the intersection with A instead of Ac

∗ This is because here, we are searching for foreground points while in hole filling, we looked for
background points (holes)

– Figure 9.17

– Example: Figure 9.18

∗ X-ray image of chicken breast with bone fragments

∗ Objects of “significant size” can be selected by applying erosion to the thresholded image

∗ We may apply labels to the extracted components (region labeling)

• Convex hull

– Convex set A

∗ Straight line segment joining any two points in A lies entirely within A

– Convex hull H of an arbitrary set of points S is the smallest convex set containing S

– Set difference H − S is called the convex deficiency of S

– Convex hull and convex deficiency are useful to describe objects

– Algorithm to compute convex hull C(A) of a set A

∗ Figure 9.19



Morphological Image Processing 7

∗ Let Bi, i = 1, 2, 3, 4 represent the four structuring elements in the figure

· Bi is a clockwise rotation of Bi−1 by 90◦

∗ Implement the equation

Xi
k = (Xk−1 ⊛Bi) ∪A i = 1, 2, 3, 4 and k = 1, 2, 3, . . .

with Xi
0 = A

∗ Apply hit-or-miss with B1 till Xk == Xk−1, then, with B2 over original A, B3, and B4

∗ Procedure converges when Xi
k = Xi

k−1 and we let Di = Xi
k

∗ Convex hull of A is given by

C(A) =

4⋃
i=1

Di

– Shortcoming of the above procedure

∗ Convex hull can grow beyond the minimum dimensions required to guarantee convexity

∗ May be fixed by limiting growth to not extend past the bounding box for the original set of points

∗ Figure 9.20

• Thinning

– Transformation of a digital image into a simple topologically equivalent image

∗ Remove selected foreground pixels from binary images

∗ Used to tidy up the output of edge detectors by reducing all lines to single pixel thickness

– Thinning of a set A by se B is denoted by A⊗B

– Defined in terms of hit-or-miss transform as

A⊗B = A− (A⊛B)

= A ∩ (A⊛B)c

– Only need to do pattern matching with se; no background operation required in hit-or-miss transform

– A more useful expression for thinning A symmetrically based on a sequence of ses

{B} = {B1, B2, . . . , Bn}

where Bi is a rotated version of Bi−1

– Define thinning by a sequence of ses as

A⊗ {B} = ((. . . ((A⊗B1)⊗B2) . . .)⊗Bn)

– Figure 9.21

∗ Iterate over the procedure till convergence

• Thickening

– Morphological dual of thinning defined by

A⊙B = A ∪ (A⊛B)

– ses complements of those used for thinning

– Thickening can also be defined as a sequential operation

A⊙ {B} = ((. . . ((A⊙B1)⊙B2) . . .)⊙Bn)

– Figure 9.22
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– Usual practice to thin the background and take the complement

∗ May result in disconnected points

∗ Post-process to remove the disconnected points

• Skeletons

– Figure 9.23

∗ Skeleton S(A) of a set A

∗ Deductions

1. If z is a point of S(A) and (D)z is the largest disk centered at z and contained in A, one cannot
find a larger disk (not necessarily centered at z) containing (D)z and included in A; (D)z is called
a maximum disk

2. Disk (D)z touches the boundary of A at two or more different places

– Skeleton can be expressed in terms of erosions and openings

S(A) =
K⋃

k=0

Sk(A)

where
Sk(A) = (A⊖ kB)− (A⊖ kB) ◦B

∗ A⊖ kB indicates k successive erosions of A

(A⊖ kB) = ((. . . ((A⊖B)⊖B)⊖ . . .)⊖B)

∗ K is the last iterative step before A erodes to an empty set

K = max{k | (A⊖ kB) ̸= ∅}

∗ S(A) can be obtained as the union of skeleton subsets Sk(A)

∗ A can be reconstructed from the subsets using the equation

K⋃
k=0

(Sk(A)⊕ kB)

where (Sk(A)⊕ kB) denotes k successive dilations of Sk(A)

(Sk(A)⊕ kB) = ((. . . ((Sk(A)⊕B)⊕B)⊕ . . .)⊕B)

∗ Figure 9.24

• Pruning

– Complement to thinning and sketonizing algorithms to remove unwanted parasitic components

– Automatic recognition of hand-printed characters

∗ Analyze the shape of the skeleton of each character

∗ Skeletons characterized by “spurs” or parasitic components

∗ Spurs caused during erosion by non-uniformities in the strokes

∗ Assume that the length of a spur does not exceed a specific number of pixels

– Figure 9.25 – Skeleton of hand-printed “a”

∗ Suppress a parasitic branch by successively eliminating its end point

∗ Assumption: Any branch with ≤ 3 pixels will be removed
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∗ Achieved with thinning of an input set A with a sequence of ses designed to detect only end points

X1 = A⊗ {B}

∗ Figure 9.25d – Result of applying the above thinning three times

∗ Restore the character to its original form with the parasitic branches removed

∗ Form a set X2 containing all end points in X1

X2 =

8⋃
k=1

(X1 ⊛Bk)

∗ Dilate end points three times using set A as delimiter

X3 = (X2 ⊕H) ∩A

where H is a 3× 3 se of 1s and intersection with A is applied after each step

∗ The final result comes from
X4 = X1 ∪X3

Morphological Reconstruction

• Works on two images and an se

– One image is called the marker and contains the starting points for transformation

– Second image is called the mask and contains the transformation or constraint

– se is used to define connectivity

• Geodesic dilation and erosion

– Let F be the marker image and G be the mask image

– F and G are binary images and F ⊆ G

– Geodesic dilation

∗ Geodesic dilation of size 1 of F with respect to G is defined as

D
(1)
G (F ) = (F ⊕B) ∩G

∗ Geodesic dilation of size n of F with respect to G is defined as

D
(n)
G (F ) = D

(1)
G

[
D

(n−1)
G (F )

]
with D

(0)
G (F ) = F

· Set intersection is performed at each step of recursion

· Mask G limits the growth of marker F

∗ Figure 9.26

– Geodesic erosion

∗ Geodesic erosion of size 1 of F with respect to G is defined as

E
(1)
G (F ) = (F ⊖B) ∪G

∗ Geodesic erosion of size n of F with respect to G is defined as

E
(n)
G (F ) = E

(1)
G

[
E

(n−1)
G (F )

]
with E

(0)
G (F ) = F
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· Set union is performed at each step of recursion

· Guarantees that geodesic erosion of an image remains greater than or equal to its mask

∗ Figure 9.27

· Bottom leftmost pixel of F should be white

– Geodesic dilation and erosion are duals with respect to set complementation

– Both operations converge after a finite number of iterative steps

• Morphological reconstruction by dilation and erosion

– Morphological reconstruction by dilation

∗ Given mask image G and marker image F

∗ Denoted by RD
G(F )

∗ Defined as the geodesic dilation of F with respect to G iterated till stability is achieved

RD
G(F ) = D

(k)
G (F )

with k such that D
(k)
G (F ) = D

(k+1)
G (F )

∗ Figure 9.28

– Morphological reconstruction by erosion

∗ Given mask image G and marker image F

∗ Denoted by RE
G(F )

∗ Defined as the geodesic erosion of F with respect to G iterated till stability is achieved

RE
G(F ) = E

(k)
G (F )

with k such that E
(k)
G (F ) = E

(k+1)
G (F )

– Reconstruction by dilation and erosion are duals with respect to set complementation

• Sample applications

– Opening by reconstruction

∗ Morphological opening

· Erosion removes small objects

· Dilation attempts to restore the shape of objects that remain

· Accuracy dependent on the shape of objects and se

∗ Opening by reconstruction restores exactly the shape of objects that remain

∗ Opening by reconstruction of size n of an image F is defined as the reconstruction by dilation of F
from the erosion of size n of F

O
(n)
R (F ) = RD

F [F ⊖ nB]

F is used as a mask

∗ Figure 9.29

· Extract characters containing long vertical strokes

– Filling holes

∗ Earlier algorithm based on knowledge of a starting point for each hole

∗ Now, we develop a fully automated procedure based on morphological reconstruction

∗ Input binary image I(x, y)

∗ Marker image

F (x, y) =

{
1− I(x, y) if (x, y) is on the border of I
0 otherwise
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∗ The output binary image with all holes filled is given by

H = [RD
Ic(F )]c

∗ Figure 9.30

∗ Figure 9.31

– Border clearing

∗ Remove objects that touch a border of image so that only the objects that are completely enclosed
in the picture remain

∗ Use original image I(x, y) as the mask

∗ Marker image

F (x, y) =

{
I(x, y) if (x, y) is on the border of I
0 otherwise

∗ Compute the image X as
X = I −RD

I (F )

X has no objects touching the border

∗ Figure 9.32

Gray-scale morphology

• Gray scale image f(x, y), under the assumptions followed so far

• se b(x, y)

– The coefficients of se may be in Z or R
– se performs the same basic functions as binary counterparts; used as probes to examine a given image for

specific properties

– Figure 9.34 – Nonflat and flat se

– Used infrequently in practice

– Reflection of an se in gray scale morphology is denoted by

b̂(x, y) = b(−x,−y)

• Erosion and dilation

– Erosion

∗ Erosion of f by a flat se b at any location (x, y) is defined as minimum value of the image coincident
with b when the origin b is at (x, y)

[f ⊖ b](x, y) = min
(s,t)∈b

{f(x+ s, y + t)}

– Dilation

∗ Dilation of f by a flat se b at any location (x, y) is defined as maximum value of the image coincident

with b when the origin b̂ is at (x, y)

[f ⊕ b](x, y) = max
(s,t)∈b̂

{f(x+ s, y + t)}

where b̂ = b(−x,−y)

– Figure 9.35


