Morphological Image Processing

Binary image processing

- In binary images, we conventionally take background as black (0) and foreground objects as white (1 or 255)
 - Figure 4.1 – objects on a conveyor belt
 - Thresholding may not produce a perfect separation between foreground and background
 - Characterized by noisy results

Morphology

- Provide a powerful technique to clean up the noise in binary images
- Identification, analysis, and description of the structure of the smallest unit of words
- Theory and technique for the analysis and processing of geometric structures
 - Based on set theory, lattice theory, topology, and random functions
 - Extract image components useful in the representation and description of region shape such as boundaries, skeletons, and convex hull
 - Input in the form of images, output in the form of attributes extracted from those images
 - Attempt to extract the meaning of the images

Preliminaries

- Set theory in the context of image processing
 - Sets of pixels represent objects in the image
 - Set of all white pixels in a binary image is a complete morphological description of the image
- Sets in binary images
 - Members of the 2D integer space Z^2
 - Each element of the set is a 2-tuple whose coordinates are the (x, y) coordinates of a white pixel in the image
 - Gray scale images can be represented as a set of 3-tuples in Z^3
 - Set reflection \hat{B}
 \[\hat{B} = \{ w | w = -b, \text{ for } b \in B \} \]
 - In binary image, \hat{B} is the set of points in B whose (x, y) coordinates have been replaced by $(-x, -y)$
 - Figure 9.1a
 - Set translation
 - Translation of a set B by point $z = (z_1, z_2)$ is denoted by $(B)_z$
 \[(B)_z = \{ c | c = b + z, \text{ for } b \in B \} \]
 - In binary image, $(B)_z$ is the set of points in B whose (x, y) coordinates have been replaced by $(x + z_1, y + z_2)$
 - Figure 9.1c
 - Set reflection and set translation are used to formulate operations based on so-called structuring elements
 - Small sets or subimages used to probe an image for properties of interest
Preference for SES to be rectangular arrays

- Some locations are such that it does not matter whether they are part of the SE
 - Such locations are flagged by \(\times \) in the SE

- The origin of the SE must also be specified
 - Indicated by \(\bullet \) in Figure 9.2
 - If SE is symmetric and no \(\bullet \) is shown, the origin is assumed to be at the center of SE

Using SES in morphology

- Figure 9.3 – A simple set \(A \) and an SE \(B \)
- Convert \(A \) to a rectangular array by adding background elements
- Make background border large enough to accommodate the entire SE when the origin is on the border of original \(A \)
- Fill in the SE with the smallest number of background elements to make it a rectangular array
- Operation of set \(A \) using SE \(B \)
 - Create a new set by running \(B \) over \(A \)
 - Origin of \(B \) visits every element of \(A \)
 - If \(B \) is completely contained in \(A \), mark that location as a member of the new set; else it is not a member of the new set
 - Results in eroding the boundary of \(A \)

Erosion and dilation

- Erosion
 - With \(A \) and \(B \) as sets in \(\mathbb{Z}^2 \), erosion of \(A \) by \(B \), denoted by \(A \ominus B \) is defined as
 \[
 A \ominus B = \{ z | (B)_z \subseteq A \}
 \]
 - Set of all points \(z \) such that \(B \), translated by \(z \), is contained in \(A \)
 - \(B \) does not share any common elements with the background
 \[
 A \ominus B = \{ z | (B)_z \cap A^c = \emptyset \}
 \]
 - Figure 9.4
 - Example: Figure 9.5
 - Erosion shrinks or thins objects in a binary image
 - Morphological filter in which image details smaller than the SE are filtered/removed from the image

- Dilation
 - With \(A \) and \(B \) as sets in \(\mathbb{Z}^2 \), dilation of \(A \) by \(B \), denoted by \(A \oplus B \) is defined as
 \[
 A \oplus B = \{ z | (\hat{B})_z \cap A \neq \emptyset \}
 \]
 - Reflect \(B \) about the origin, and shift the reflection by \(z \)
 - Dilation is the set of all displacements \(z \) such that \(B \) and \(A \) overlap by at least one element
 - An equivalent formulation is
 \[
 A \oplus B = \{ z | [(\hat{B})_z \cap A] \subseteq A \}
 \]
 - Grows or thickens objects in a binary image
 - Figure 9.6
Example: Figure 9.7

- Bridging gaps in broken characters
- Lowpass filtering produces a grayscale image; morphological operation produces a binary image

- Erosion and dilation are based on set operations and therefore, are nonlinear

- Duality
 - Erosion and dilation are duals of each other with respect to set complementation and reflection
 \[(A \ominus B)^c = A^c \oplus \hat{B}\]
 \[(A \oplus B)^c = A^c \ominus \hat{B}\]
 - Duality property is especially useful when SE is symmetric with respect to its origin so that \(\hat{B} = B\)
 * Allows for erosion of an image by dilating its background \((A^c)\) using the same SE and complementing the results
 - Proving duality
 * Definition for erosion can be written as
 \[(A \ominus B)^c = \{z | (B)_z \subseteq A\}\]
 * \((B)_z \subseteq A \Rightarrow (B)_z \cap A^c = \emptyset\)
 * So, the previous expression yields
 \[(A \oplus B)^c = \{z | (B)_z \cap A^c = \emptyset\}\]
 * The complement of the set of z’s that satisfy \((B)_z \cap A^c = \emptyset\) is the set of z’s such that \((B)_z \cap A^c \neq \emptyset\)
 * This leads to
 \[(A \ominus B)^c = \{z | (B)_z \cap A^c \neq \emptyset\}\]
 \[= A^c \oplus \hat{B}\]

Opening and closing

- Opening smooths the contours of an object, breaks narrow isthmuses, and eliminates thin protrusions
- Closing smooths sections of contours, fusing narrow breaks and long thin gulfs, eliminates small holes, and fills gaps in the contour
- Opening of a set \(A\) by SE \(B\), denoted by \(A \diamond B\), is defined by
 \[A \diamond B = (A \ominus B) \oplus B\]
- Closing of a set \(A\) by SE \(B\), denoted by \(A \bullet B\), is defined by
 \[A \bullet B = (A \oplus B) \ominus B\]
- Geometric interpretation of opening expressed as a fitting process such that
 \[A \diamond B = \bigcup \{(B)_z | (B)_z \subseteq A\}\]
 - Union of all translates of \(B\) that fit into \(A\)
 - Figure 9.8
- Similar interpretation of closing in Figure 9.9
Example – Figure 9.10

Duality property

\[(A \bullet B)^c = (A^c \circ B)\]
\[(A \circ B)^c = (A^c \bullet B)\]

Opening operation satisfies the following properties

1. \(A \circ B \subseteq A\)
2. \(C \subseteq D \Rightarrow C \circ B \subseteq D \circ B\)
3. \((A \circ B) \circ B = A \circ B\)

Similarly, closing operation satisfies

1. \(A \subseteq A \bullet B\)
2. \(C \subseteq D \Rightarrow C \bullet B \subseteq D \bullet B\)
3. \((A \bullet B) \bullet B = A \bullet B\)

In both the above cases, multiple application of opening and closing has no effect after the first application

Example: Removing noise from fingerprints

– Figure 9.11
– Noise as random light elements on a dark background

Hit-or-miss transformation

Basic tool for shape detection in a binary image

– Uses the morphological erosion operator and a pair of disjoint SEs
– First SE fits in the foreground of input image; second SE misses it completely
– The pair of two SEs is called composite structuring element

Figure 9.12

– Three disjoint shapes denoted \(C\), \(D\), and \(E\)
 * \(A = C \cup D \cup E\)
– Objective: To find the location of one of the shapes, say \(D\)
– Origin/location of each shape given by its center of gravity
– Let \(D\) be enclosed by a small window \(W\)
– Local background of \(D\) defined by the set difference \((W - D)\)
 * Note that \(D\) and \(W - D\) provide us with the two disjoint SEs

\[D \cap (W - D) = \emptyset\]

– Compute \(A^c\)
– Compute \(A \ominus D\)
– Compute \(A^c \ominus (W - D)\)
– Set of locations where \(D\) exactly fits inside \(A\) is \((A \ominus D) \cap (A^c \ominus (W - D))\)
The exact location of D

If B is the set composed of D and its background, the match of B in A is given by

$$A \odot B = (A \ominus D) \cap [A^c \ominus (W - D)]$$

The above can be generalized to the composite se being defined by $B = (B_1, B_2)$ leading to

$$A \odot B = (A \ominus B_1) \cap (A^c \ominus B_2)$$

- B_1 is the set formed from elements of B associated with the object; $B_1 = D$
- $B_2 = (W - D)$

A point z in universe A belongs to the output if $(B_1)_z$ fits in A (hit) and $(B_2)_z$ misses A

Some basic morphological algorithms

- Useful in extracting image components for representation and description of shape
- Boundary extraction
 - Boundary of a set A
 * Denoted by $\beta(A)$
 * Extracted by eroding A by a suitable $\text{se} B$ and computing set difference between A and its erosion
 $$\beta(A) = A - (A \ominus B)$$
 - Figure 9.13
 * Using a larger se will yield a thicker boundary
 - Figure 9.14
- Hole filling
 - Hole
 * Background region surrounded by a connected border of foreground pixels
 - Algorithm based on set dilation, complementation, and intersection
 - Let A be a set whose elements are 8-connected boundaries, each boundary enclosing a background (hole)
 - Given a point in each hole, we want to fill all holes
 - Start by forming an array X_0 of 0s of the same size as A
 * The locations in X_0 corresponding to the given point in each hole are set to 1
 - Let B be a symmetric se with 4-connected neighbors to the origin

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

- Compute $X_k = (X_{k-1} \oplus B) \cap A^c$
 $k = 1, 2, 3, \ldots$
- Algorithm terminates at iteration step k if $X_k = X_{k-1}$
- X_k contains all the filled holes
- $X_k \cup A$ contains all the filled holes and their boundaries
- The intersection with A^c at each step limits the result to inside the ROI
 * Also called conditioned dilation
- Figure 9.15
- Example: Figure 9.16
 * Thresholded image of polished spheres (ball bearings)
 * Eliminate reflection by hole filling
 * Points inside the background selected manually

- Extraction of connected components
 - Let A be a set containing one or more connected components
 - Form an array X_0 of the same size as A
 * All elements of X_0 are 0 except for one point in each connected component set to 1
 - Select a suitable se B, possibly an 8-connected neighborhood as
 \[
 \begin{array}{ccc}
 1 & 1 & 1 \\
 1 & 1 & 1 \\
 1 & 1 & 1 \\
 \end{array}
 \]
 - Start with X_0 and find all connected components using the iterative procedure
 \[
 X_k = (X_{k-1} \oplus B) \cap A \quad k = 1, 2, 3, \ldots
 \]
 - Procedure terminates when $X_k = X_{k-1}$; X_k contains all the connected components in the input image
 - The only difference from the hole-filling algorithm is the intersection with A instead of A^c
 * This is because here, we are searching for foreground points while in hole filling, we looked for background points (holes)
 - Figure 9.17
 - Example: Figure 9.18
 * X-ray image of chicken breast with bone fragments
 * Objects of “significant size” can be selected by applying erosion to the thresholded image
 * We may apply labels to the extracted components (region labeling)

- Convex hull
 - Convex set A
 * Straight line segment joining any two points in A lies entirely within A
 - Convex hull H of an arbitrary set of points S is the smallest convex set containing S
 - Set difference $H - S$ is called the convex deficiency of S
 - Convex hull and convex deficiency are useful to describe objects
 - Algorithm to compute convex hull $C(A)$ of a set A
 * Figure 9.19
 * Let B^i, $i = 1, 2, 3, 4$ represent the four structuring elements in the figure
 - B^i is a clockwise rotation of B^{i-1} by 90°
 * Implement the equation
 \[
 X_k^i = (X_{k-1} \oplus B^i) \cup A \quad i = 1, 2, 3, 4 \text{ and } k = 1, 2, 3, \ldots
 \]
 with $X_0^i = A$
 * Apply hit-or-miss with B^1 till $X_k = X_{k-1}$, then, with B^2 over original A, B^3, and B_4
 * Procedure converges when $X_k^i = X_{k-1}^i$ and we let $D^i = X_k^i$
Convex hull of A is given by
\[C(A) = \bigcup_{i=1}^{4} D^i \]

- Shortcoming of the above procedure
 * Convex hull can grow beyond the minimum dimensions required to guarantee convexity
 * May be fixed by limiting growth to not extend past the bounding box for the original set of points
 * Figure 9.20

Thinning

- Transformation of a digital image into a simple topologically equivalent image
 * Remove selected foreground pixels from binary images
 * Used to tidy up the output of edge detectors by reducing all lines to single pixel thickness
- Thinning of a set A by se B is denoted by $A \otimes B$
- Defined in terms of hit-or-miss transform as
 \[A \otimes B = A - (A \ast B) \]
 \[= A \cap (A \ast B)^c \]

- Only need to do pattern matching with se; no background operation required in hit-or-miss transform
- A more useful expression for thinning A symmetrically based on a sequence of ses
 \[\{B\} = \{B^1, B^2, \ldots, B^n\} \]
 where B^i is a rotated version of B^{i-1}
- Define thinning by a sequence of ses as
 \[A \otimes \{B\} = (\ldots((A \otimes B^1) \otimes B^2) \ldots) \otimes B^n) \]
 - Figure 9.21
 * Iterate over the procedure till convergence

Thickening

- Morphological dual of thinning defined by
 \[A \circ B = A \cup (A \ast B) \]
- ses complements of those used for thinning
- Thickening can also be defined as a sequential operation
 \[A \circ \{B\} = (\ldots((A \circ B^1) \circ B^2) \ldots) \circ B^n) \]
 - Figure 9.22
 - Usual practice to thin the background and take the complement
 * May result in disconnected points
 * Post-process to remove the disconnected points

Skeletons

- Figure 9.23
 * Skeleton $S(A)$ of a set A
 * Deductions
1. If \(z \) is a point of \(S(A) \) and \((D)_z \) is the largest disk centered at \(z \) and contained in \(A \), one cannot find a larger disk (not necessarily centered at \(z \)) containing \((D)_z \) and included in \(A \); \((D)_z \) is called a maximum disk.

2. Disk \((D)_z \) touches the boundary of \(A \) at two or more different places.

- Skeleton can be expressed in terms of erosions and openings

\[
S(A) = \bigcup_{k=0}^{K} S_k(A)
\]

where

\[
S_k(A) = (A \ominus kB) - (A \ominus kB) \circ B
\]

* \(A \ominus kB \) indicates \(k \) successive erosions of \(A \)

\[
(A \ominus kB) = (((A \ominus B) \ominus B) \ominus \ldots) \ominus B
\]

* \(K \) is the last iterative step before \(A \) erodes to an empty set

\[
K = \max\{k \mid (A \ominus kB) \neq \emptyset\}
\]

* \(S(A) \) can be obtained as the union of skeleton subsets \(S_k(A) \)

* \(A \) can be reconstructed from the subsets using the equation

\[
\bigcup_{k=0}^{K} (S_k(A) \oplus kB)
\]

where \((S_k(A) \oplus kB) \) denotes \(k \) successive dilations of \(S_k(A) \)

\[
(S_k(A) \oplus kB) = (((S_k(A) \oplus B) \oplus B) \oplus \ldots) \oplus B
\]

* Figure 9.24

- Pruning

 - Complement to thinning and skeletonizing algorithms to remove unwanted parasitic components

 - Automatic recognition of hand-printed characters

 * Analyze the shape of the skeleton of each character
 * Skeletons characterized by “spurs” or parasitic components
 * Spurs caused during erosion by non-uniformities in the strokes
 * Assume that the length of a spur does not exceed a specific number of pixels

 - Figure 9.25 – Skeleton of hand-printed “a”

 * Suppress a parasitic branch by successively eliminating its end point
 * Assumption: Any branch with \(\leq 3 \) pixels will be removed
 * Achieved with thinning of an input set \(A \) with a sequence of SEs designed to detect only end points

\[
X_1 = A \ominus \{B\}
\]

* Figure 9.25d – Result of applying the above thinning three times

 * Restore the character to its original form with the parasitic branches removed

 * Form a set \(X_2 \) containing all end points in \(X_1 \)

\[
X_2 = \bigcup_{k=1}^{8} (X_1 \oplus B^k)
\]
* Dilate end points three times using set A as delimiter

$$X_3 = (X_2 \oplus H) \cap A$$

where H is a 3×3 SE of 1s and intersection with A is applied after each step

* The final result comes from

$$X_4 = X_1 \cup X_3$$

Morphological Reconstruction

- Works on two images and an SE
 - One image is called the *marker* and contains the starting points for transformation
 - Second image is called the *mask* and contains the transformation or constraint
 - SE is used to define connectivity

- Geodesic dilation and erosion
 - Let F be the marker image and G be the mask image
 - F and G are binary images and $F \subseteq G$
 - Geodesic dilation
 * Geodesic dilation of size 1 of F with respect to G is defined as
 $$D_G^{(1)}(F) = (F \oplus B) \cap G$$
 * Geodesic dilation of size n of F with respect to G is defined as
 $$D_G^{(n)}(F) = D_G^{(1)} \left[D_G^{(n-1)}(F)\right]$$
 with $D_G^{(0)}(F) = F$
 - Set intersection is performed at each step of recursion
 - Mask G limits the growth of marker F
 - Figure 9.26
 - Geodesic erosion
 * Geodesic erosion of size 1 of F with respect to G is defined as
 $$E_G^{(1)}(F) = (F \ominus B) \cup G$$
 * Geodesic erosion of size n of F with respect to G is defined as
 $$E_G^{(n)}(F) = E_G^{(1)} \left[E_G^{(n-1)}(F)\right]$$
 with $E_G^{(0)}(F) = F$
 - Set union is performed at each step of recursion
 - Guarantees that geodesic erosion of an image remains greater than or equal to its mask
 - Figure 9.27
 - Bottom leftmost pixel of F should be white
 - Geodesic dilation and erosion are duals with respect to set complementation
 - Both operations converge after a finite number of iterative steps

- Morphological reconstruction by dilation and erosion
Morphological Image Processing

– Morphological reconstruction by dilation
 * Given mask image \(G \) and marker image \(F \)
 * Denoted by \(R_D^G(F) \)
 * Defined as the geodesic dilation of \(F \) with respect to \(G \) iterated till stability is achieved
 \[
 R_D^G(F) = D_G^{(k)}(F)
 \]
 with \(k \) such that \(D_G^{(k)}(F) = D_G^{(k+1)}(F) \)
 * Figure 9.28

– Morphological reconstruction by erosion
 * Given mask image \(G \) and marker image \(F \)
 * Denoted by \(R_E^G(F) \)
 * Defined as the geodesic erosion of \(F \) with respect to \(G \) iterated till stability is achieved
 \[
 R_E^G(F) = E_G^{(k)}(F)
 \]
 with \(k \) such that \(E_G^{(k)}(F) = E_G^{(k+1)}(F) \)
 * Reconstruction by dilation and erosion are duals with respect to set complementation

- Sample applications
 - Opening by reconstruction
 * Morphological opening
 - Erosion removes small objects
 - Dilation attempts to restore the shape of objects that remain
 - Accuracy dependent on the shape of objects and \(SE \)
 * Opening by reconstruction restores exactly the shape of objects that remain
 * Opening by reconstruction of size \(n \) of an image \(F \) is defined as the reconstruction by dilation of \(F \) from the erosion of size \(n \) of \(F \)
 \[
 O_R^{(n)}(F) = R_D^F[F \ominus nB]
 \]
 * Figure 9.29
 - Extract characters containing long vertical strokes
 - Filling holes
 * Earlier algorithm based on knowledge of a starting point for each hole
 * Now, we develop a fully automated procedure based on morphological reconstruction
 * Input binary image \(I(x, y) \)
 * Marker image
 \[
 F(x, y) = \begin{cases}
 1 - I(x, y) & \text{if } (x, y) \text{ is on the border of } I \\
 0 & \text{otherwise}
 \end{cases}
 \]
 * The output binary image with all holes filled is given by
 \[
 H = [R_I^F(F)]^c
 \]
 * Figure 9.30
 * Figure 9.31
 - Border clearing
 * Remove objects that touch a border of image so that only the objects that are completely enclosed in the picture remain
* Use original image $I(x, y)$ as the mask
* Marker image

$$F(x, y) = \begin{cases}
I(x, y) & \text{if } (x, y) \text{ is on the border of } I \\
0 & \text{otherwise}
\end{cases}$$

* Compute the image X as

$$X = I - R_I^D(F)$$

X has no objects touching the border
* Figure 9.32

Gray-scale morphology

- Gray scale image $f(x, y)$, under the assumptions followed so far
- se $b(x, y)$
 - The coefficients of se may be in \mathbb{Z} or \mathbb{R}
 - se performs the same basic functions as binary counterparts; used as probes to examine a given image for specific properties
 - Figure 9.34 – Nonflat and flat se
 - Used infrequently in practice
 - Reflection of an se in gray scale morphology is denoted by

$$\hat{b}(x, y) = b(-x, -y)$$

- Erosion and dilation
 - Erosion
 * Erosion of f by a flat se b at any location (x, y) is defined as minimum value of the image coincident with b when the origin \hat{b} is at (x, y)

$$[f \ominus b](x, y) = \min_{(s, t) \in \hat{b}} \{ f(x + s, y + t) \}$$

 - Dilation
 * Dilation of f by a flat se b at any location (x, y) is defined as maximum value of the image coincident with b when the origin \hat{b} is at (x, y)

$$[f \oplus b](x, y) = \max_{(s, t) \in \hat{b}} \{ f(x + s, y + t) \}$$

 where $\hat{b} = b(-x, -y)$
 - Figure 9.35