Digital Image Processing

- Digital image processing
 - Processing of digital images on a computer
 - Algorithms operate on input images to produce output images
 - Improvement for human interpretation
 - Processing for storage, transmission, and representation
 - Not just limited to the visual band of the electromagnetic spectrum
- Image analysis
 - Field of study in which algorithms operate on images to extract high-level information
- Image enhancement
 - Transforming an input image into another image to improve its visual appearance
- Image restoration
 - Restore an image that may have been corrupted by some type of noise
- Image compression
 - Manipulating an image so that the storage requires fewer bits than the original signal, while preserving the visual quality of the image
 - May be applied to still images or video
- Image segmentation
 - Analyzing an image to determine the pixels in an image that belong together, or that are part of the same object in a scene
 - Bottom-up process by looking at neighborhood of pixels
- Pixel classification
 - Analyzing an image to determine the pixels that belong to a predefined model
 - Top-down process relying on some system to facilitate a criterion to facilitate the creation of a model
- Shape from X
 - Recover the 3D structure of a scene using stereo, video, shading, or texture
 - Depends on linear algebra, projective geometry, and function optimization
- Machine vision
 - Systems in an industrial setting in which placement of the sensor and light source can be controlled
- Computer vision
 - Characterized by unstructured setting where placement of sensor and light source may not be controlled

History and related fields

- Newspaper industry
– Bartlane cable picture transmission system across Atlantic (1920s)
 www.hffax.de/history/html/bartlane.html
– Superseded by photographic reproduction from tapes using telegraph terminals
– Earlier images could code in five levels of gray, improved to 15 levels in 1929

● Figure 1.3

● Image analysis and computer vision
 – Areas based on image processing
 – Image processing outputs an image while image analysis and computer vision use image processing techniques to reason on images
 – Low-level processing
 * Both input and output are images
 * Image preprocessing operations such as noise reduction, contrast enhancement, and image sharpening
 – Mid-level processing
 * Inputs are images but outputs are characteristics extracted from those images, such as edges, contours, and identity of individual objects
 * Processing images to render them useful for further computer processing
 * Segmentation for object recognition and classification
 – High-level processing
 * Performing cognitive functions typically associated with human vision
 * Tracking or identifying objects in an image

Sample applications

● Space
 – Correction of distortion inherent in the onboard television camera on spacecraft
 – Remote earth observation and astronomy

● Medicine
 – Computerized axial tomography (CAT scan)
 – A ring of detectors circle the patient and an X-ray source, concentric with the detector ring, rotates about the patient
 – The sensed data is used to build a slice through the object
 * Numerous slices of patient’s body are generated as the patient is moved in a longitudinal direction
 * The slices are then combined to create a 3D rendering of the inside of patient’s body

● Robotics, including industrial inspection

● Document image analysis

● Transportation

● Homeland security, security, and surveillance

● Remote sensing

● Scientific imaging, plants and insects

● Entertainment
Examples of fields that use image processing

- Classification of images based on the source of energy, ranging from gamma rays at one end to radio waves at the other
- Viewing images in non-visible bands of the electromagnetic spectrum, as well as in other energy sources such as acoustic, ultrasonic, and electronic
- Gamma-ray imaging
 - Nuclear medicine
 * Inject a patient with a radioactive isotope that emits gamma rays as it decays
 * Used to locate sites of bone pathology such as infection of tumors
 - Positron emission tomography (PET scan) to detect tumors
 * Similar to CAT
 * Patient is given a radioactive isotope that emits positrons as it decays
 * When a positron meets an electron, both are annihilated giving off two gamma rays
 - Astrophysics
 * Studying images of stars that glow in gamma rays as natural radiation
 - Nuclear reactors
 * Looking for gamma radiation from valves
- X-ray imaging
 - Medical and industrial applications
 * Generated using an X-ray tube – a vacuum tube with a cathode and an anode
 * Cathode is heated causing free electrons to be released
 * Electrons flow at high speed to positively charged anode
 * Upon electron’s impact with a nucleus, energy released in the form of X-ray radiation
 * Energy captured by a film sensitive to X-rays
 - Angiography or contrast-enhanced radiography
 * Used to obtain images or angiograms of blood vessels
 * A catheter is inserted into an artery or vein in the groin
 * Catheter threaded into the blood vessel and guided to the area to be studied
 * An X-ray contrast medium is injected into the catheter tube
 * Enhances the contrast of blood vessels and enables radiologists to see any irregularities or blockages
- Imaging in ultraviolet band
 - Lithography, industrial inspection, microscopy, lasers, biological imaging
 - Fluorescence microscopy
 * A mineral fluorspar fluoresces when UV light is directed upon it
 * UV light by itself is not visible but when a photon of UV radiation collides with an electron in an atom of a fluorescent material, it elevates the electron to a higher energy level
 * The excited electron relaxes and emits light in the form of a lower energy photon in the visible light region
 * Fluorescence microscope uses excitation light to irradiate a prepared specimen and then, to separate the much weaker radiating fluorescent light from the brighter excitation light
 * Only the emission light reaches the sensor
 * Resulting fluorescing areas shine against a dark background with sufficient contrast to permit detection
 - Astronomy
• Visible and IR band
 – Remote sensing, law enforcement
 – Thematic bands in satellite imagery
 – Multispectral and hyperspectral imagery (Fig. 1.10)
 – Weather observation and monitoring
 – Target detection

• Imaging in microwave band
 – Radar

• Imaging in radio band
 – Medicine (MRI) and astronomy

• Other imaging modalities
 – Acoustic imaging (ultrasound), electron microscopy

Image basics

• Image
 – A discrete 2D array of values, like a matrix
 * Width of image is the number of columns in the image
 * Height of image is the number of rows in the image
 * Aspect ratio is width divided by height
 – A 2D function \(f(x, y) \)
 – \(x \) and \(y \) are spatial coordinates
 – Amplitude of \(f \) at a point is intensity or gray level of image at that point
 – Digital image
 * \(x, y, \) and \(f(x, y) \) are all discrete and finite
 * Finite number of elements with a given value at a location
 · Elements are called picture elements or pixels
 – Pixel coordinates may be represented using a vector notation
 * By convention, each vector is vertically oriented while its transpose is horizontally oriented
 \[
 \mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix} = [x \ y]^T = (x, y)
 \]

• Image storage into memory
 * Column major order
 * Row major order

• Accessing image data – origin at the top left corner
 * Scanline
 * Raster scan order
 * Image accessed as 1D array of pixels, with indices in the range \(i = 0, 1, \ldots, n \) where \(n \) is width \(\times \) height
* Relationship between 1D and 2D arrays

\[
i = y \cdot \text{width} + x \\
x = i \% \text{width} \\
y = i / \text{width}
\]

- Image types
 - Grayscale image
 * Pixel values quantized into finite number of discrete gray levels
 * Number of bits used to store each gray level known as bit depth
 - \(b \) bits imply \(2^b \) gray levels
 - 8 bits per pixel gives 256 gray levels
 - Hexadecimal notation
 - Specialized applications may use more quantization levels to increase the dynamic range
 - RGB color image
 * Each pixel is a vector of three integers, representing three color channels
 * 24 bpp
 * Pixel vector stored as RGB or BGR
 * Values of different colors stored as interleaved channels as \(B_0G_0R_0B_1G_1R_1B_2G_2R_2 \cdots B_{n-1}G_{n-1}R_{n-1} \)
 * Other method for storage is planar layout, with each color channel stored separately
 \[B_0B_1B_2 \cdots B_{n-1}G_0G_1G_2 \cdots G_{n-1}R_0R_1R_2 \cdots R_{n-1} \]
 - Alpha value or opacity
 * 00 indicates transparent while FF indicates opaque
 - Binary image
 * Each pixel is either black or white
 * 1 bpp, but displayed with 8bpp
 * Useful for building masks to separate areas of image
 - Real-valued image, or floating point image
 * 32-bit floating point number; 64-bit double precision values, 16-bit half-precision values
 - Complex-valued images
 * Output from computing the Fourier transform of an image

- Conceptualizing images
 - Brightness of each pixel proportional to its value
 - Raw pixels as a height map or 3D surface plot
 - \(I(x, y) \) as the value of the function at position \((x, y) \)
 - Grayscale image as a matrix of pixel values
 - Color image as a matrix of 3-tuples
 - Binary image as the set of pixels with value 1

\[
\begin{bmatrix}
1 & 0 & 1 \\
1 & 1 & 1 \\
1 & 0 & 1
\end{bmatrix}
\]

can be represented as

\[\{(0, 0), (2, 0), (0, 1), (1, 1), (2, 1), (0, 2), (2, 2)\} \]
Steps in digital image processing

- Two main types of image processing processes
 1. Both input and output of processing are images
 2. Inputs are images but outputs are some attributes of those images

- Image acquisition
 - Acquiring an image in a digital form
 - Could be acquired from a sensor or from a storage medium
 - May involve preprocessing such as scaling

- Image enhancement
 - Bring out obscured detail
 - Subjective method, depending on application
 - Contrast enhancement

- Image restoration
 - Objective method
 - Based on mathematical or probabilistic models of image degradation
 - Filling in the details, making the picture sharper

- Color image processing
 - Different color models for representation and processing

- Wavelets
 - Provide a foundation to represent images in multiple resolution levels
 - Useful for pyramidal representation and compression

- Compression
 - Techniques to reduce the storage required to save an image, or to conserve bandwidth required for transmission
 - Most common method of compression based on JPEG specification

- Morphological processing
 - Extracting image components useful in the representation and description of shape

- Segmentation
 - Partitioning an image into components, such as objects in the image
 - One of the most difficult tasks in image processing
 - Required for object recognition

- Representation and description
 - Boundary or region-based
 - Boundary representation good for external shape characteristics such as corners and inflections
 - Region representation appropriate for texture or skeletal shapes
 - Description, or feature selection, deals with extracting attributes to get some quantitative information of interest, and to differentiate between object classes
• Recognition
 – Assigning a label to an object based on its description
 – Knowledge about the problem domain
 – Building models of objects to be identified/recognized

• Image display

Components of an image processing system

• Sensor/digitizer
 – Sensor senses the energy radiated by the object to be captured
 – Digitizer converts the energy to digital form

• Specialized image processing hardware
 – Also called digital signal processor (DSP)
 – Used to achieve real-time frame processing (30 frames per second)
 – Older examples include Texas Instruments C80
 – Newer systems replace a specialized DSP with general purpose CPU such as PowerPC being used for its vector processing capabilities

• Software
 – Specialized modules to perform specific tasks
 – ImageMagick
 – OpenCV

• Mass storage
 – Images take up a lot of space
 – Consider storage requirements for 512×512 pixel color image
 * Assume 8-bits per color per pixel (normal)
 * Total memory needed: $512 \times 512 \times 3 = 786432$ bytes
 * On my machine, it gives me a $5.7'' \times 5.7''$ image
 – Short-term storage used during processing
 * Computer memory
 * Frame buffers
 · Allow access at video rates (30 fps)
 · Processed images are visible right away
 – On-line storage for relatively fast recall
 * Magnetic disk
 – Archival storage characterized by infrequent access
 * Magnetic tapes, CD-ROMs, jukeboxes

• Image displays
 – Monitors (CRT, plasma)
 – Stereo displays (require goggles)
• Hardcopy devices
 – Laser printers, film, inkjet printers

• Networking
 – Image transmission bandwidth
 – Good with broadband but consider data coming from Mars