Digital Image Fundamentals

Elements of visual perception

- A single photoreceptor
- Any artificial system is benchmarked against the human visual system
- Structure of the human eye

- Nearly a sphere with an average diameter of approximately 20mm
- Enclosed by various membranes
- Cornea and sclera outer cover
 - Cornea: Transparent convex anterior portion of the outer fibrous coat of the eyeball that covers the iris and the pupil and is continuous with the sclera
 - Sclera: Tough opaque white fibrous outer envelope of tissue covering all of the eyeball except the cornea
- Choroid
 - Dark-brown vascular coat of the eye next to sclera towards the interior of the eye
 - Network of blood vessels to provide nutrition to eye
 - Heavily pigmented to reduce the amount of extraneous light entering the eye, and backscatter within optical globe
 - Divided into ciliary body and iris diaphragm
 - Iris expands or contracts to control the amount of light entering the eye
 - Central opening of iris (pupil) varies from 2 to 8 mm in diameter
 - Front of iris contains the visible pigment of the eye whereas the back contains the black pigment
- Lens
 - Made up of concentric layers of fibrous cells
 - Suspended by fibers attached to the ciliary body
 - Colored by slightly yellow pigmentation that increases with age
 - Excessive clouding of lens, called cataract, leads to poor color discrimination and loss of clear vision

1Figure from Wikimedia
* Absorbs about 8% of visible light, and most of IR and UV waves, possibly causing damage in excessive amounts

− Retina
 * Delicate, multilayered, light-sensitive membrane lining the inner eyeball and connected by the optic nerve to the brain
 * Distribution of discrete light receptors allows for pattern discrimination
 * Cones
 - 6 to 7 million photoreceptors, packed at about 150,000 cones per sq mm in the center of fovea
 - Mostly concentrated in central portion of retina (fovea)
 - Highly sensitive to color
 - Each one is connected to its own nerve end, allowing for fine resolution detail
 - Responsible for photopic or bright light vision and detailed pattern recognition
 * Rods
 - 75 to 150 million over the retinal surface with several rods connected to a single nerve end, providing coarse resolution
 - Distributed all over the retina with highest density about 20° from the center
 - General overall view of the scene
 - Not involved in color vision and sensitive to low levels of illumination
 - Responsible for scotopic or low light vision

• Image formation in eye
 − Flexible lens
 − Lens changes refractive power depending on the distance of object, by flexing the fibers in ciliary muscles
 − Retinal image reflected on the fovea
 − Perception involves transformation of radiant energy into electrical impulses decoded by brain
 − Cyclopian image and diplopia
 - Hold a finger about a foot from your eyes, concentrate on finger first (background is split) and then on background (see two fingers)
 − Saccadic movement

• Brightness adaptation and discrimination
 − Digital images displayed as a discrete set of intensities
 − Range of human eye is about 10^{10} different light intensity levels, from scotopic threshold to the glare limit (Fig 2.4)
 * Visual system cannot operate over the enormous range simultaneously
 * Subjective brightness (as perceived by humans) is a logarithmic function of light intensity incident on the eye
 * Mesopic vision: Both cones and rods respond to sensory input
 − Brightness adaptation
 - Change in overall sensitivity of perceived brightness
 - Number of distinct intensity level that can be perceived simultaneously is small compared to number of levels that can be perceived
 - Brightness adaptation level – current sensitivity level of the visual system
 − Weber ratio
 * Measure of contrast discrimination ability
 * Background intensity given by I
 * Increment of illumination for short duration at intensity ΔI
 * ΔI_c is the increment of illumination when the illumination is visible half the time against background intensity I
* Weber ratio is given by $\Delta I_c/I$
* A small value of $\Delta I_c/I$ implies that a small percentage change in intensity is visible, representing good brightness discrimination
* A large value of $\Delta I_c/I$ implies that a large percentage change is required for discrimination, representing poor brightness discrimination
* Typically, brightness discrimination is poor at low levels of illumination and improves at higher levels of background illumination (Figure 2.6)

- Mach bands
 - Scalloped brightness pattern near the boundaries shown in stripes of constant intensity
 https://en.wikipedia.org/wiki/Mach_bands
 - Figure 2.7
 - The bars themselves are useful for calibration of display equipment

- Simultaneous contrast
 - A region’s perceived brightness does not depend simply on intensity
 - Lighter background makes an object appear darker while darker background makes the same object appear brighter
 - Figure 2.8

- Optical illusions
 - Figure 2.9
 - Show the compensation achieved by eye
 https://en.wikipedia.org/wiki/Optical_illusion

• Eye more sensitive to low-frequency components compared to the high-frequency components
 - Low-frequency components in an image/scene are regions where pixel values do not change rapidly
 - High-frequency components are regions where pixel values change rapidly (corners and edges)

• Eye is more sensitive to changes in brightness than to color
• Eye is sensitive to motion, even in peripheral vision

Light and electromagnetic spectrum

• Visible light vs the complete spectrum (Figure 2.10)

• Wavelength (λ) and frequency (ν) are related using the constant c for speed of light

$$\lambda = \frac{c}{\nu}$$

• Energy of various components in EM spectrum is given by

$$E = h\nu$$

where $h \approx 6.626 \times 10^{-34}$ watts seconds squared is Planck’s constant
 - Energy is contained in particles called *photons*
 - Wave-particle duality

• Units of measurements
 - Frequency is measured in Hertz (Hz)
 - Wavelength is measured in meters; also microns (μm or 10^{-6}m) and nanometers (10^{-9}m)
– Energy is measured in electron-volt

• Photon
 – Massless particles whose stream in a sinusoidal wave pattern forms energy
 – Energy is directly proportional to frequency
 * Higher frequency energy particles carry more energy
 * Radio waves have less energy while gamma rays have more energy, making X rays and gamma rays more dangerous to living organisms

• Visible spectrum
 – 0.43\(\mu\)m (violet) to 0.79\(\mu\)m (red)
 – VIBGYOR regions
 – Colors are perceived because of light reflected from an object
 – Absorption vs reflectance of colors
 * An object appears white because it reflects all colors equally

• Achromatic or monochromatic light
 – No color in light
 – Amount of energy describes intensity
 * Quantified by gray level from black through various shades of gray to white
 – Monochrome images also called gray scale images

• Chromatic light
 – Spans the energy spectrum from 0.43 to 0.79 \(\mu\)m
 – Described by three basic quantities: radiance, luminance, brightness
 – Radiance
 * Total amount of energy flowing from a light source
 * Measured in Watts
 – Luminance
 * Amount of energy perceived by an observer from a light source
 * Measured in lumens (lm)
 – Brightness
 * Subjective descriptor of light perception
 * Achromatic notion of intensity
 * Key factor in describing color sensation
 – Light emitted from an old tungsten light bulb contains a lot of energy in the IR band; LED bulbs give the same amount of luminance with less energy consumption
 * A 26 watt CFL bulb has the same luminance as an old 100 watt tungsten bulb

Image sensing and acquisition

• Illumination source and absorption/reflectance of objects in the scene
 – Images generated by a combination of an “illumination” source and reflection/absorption of energy by the elements in “scene”
 – Illumination energy is reflected from or transmitted through objects
• X-ray images

• Three principal sensor arrangements
 – Transform incoming energy into voltage by a combination of input electrical power and sensor material responsive to the type of energy being detected
 – Output voltage waveform from sensor is digitized to get a discrete response

• Image acquisition using a single sensor
 – Exemplified by a photodiode
 * Outputs voltage waveform proportional to incident light
 – Selectivity can be improved by using filters
 * A green (pass) filter will allow only the green light to be sensed
 – 2D image acquired by relative displacement of the sensor in both x and y directions
 – Single sensor mounted on a axle to provide motion perpendicular to the motion of object being scanned; also called microdensitometer
 – Slow and relatively antiquated

• Image acquisition using sensor strips
 – Strips in the form of in-line arrangement of sensors
 – Imaging elements in one direction
 – Used in flat-bed scanners and photocopy machines
 – Basis for computerized axial tomography

• Image acquisition using sensor arrays
 – Individual sensors in the form of a 2D array
 – CCD array in video cameras
 – Response of each sensor is proportional to the integral of light energy projected onto the surface of sensor
 – Noise reduction is achieved by integrating the input light signal over a certain amount of time
 – Complete image can be obtained by focusing the energy pattern over the surface of array

• Plenoptic function
 – http://en.wikipedia.org/wiki/Light_field
 – Gives direction of each ray of light from each object point to every possible observation point
 – Given by a 5D function
 * Light ray passing all locations (x, y, z) in all directions (θ, ϕ)
 * θ and ϕ are two angles that uniquely specify the direction of a ray in 3D space
 – Energy along a ray of light is measured by radiance; its value does not change along a ray traveling through free space
 * Plenoptic function is equal if evaluated at two location-directions $(x_1, y_1, z_1, \theta, \phi)$ and $(x_2, y_2, z_2, \theta, \phi)$ such that there is no blockage of light
 * Light-field
 - A 4D function of the radiance over position and direction
 - Two points (x_1, y_1) and (x_2, y_2), each on a different parallel plane
 - Collection of perspective images of one plane from a point on the other plane

• Pinhole camera
– Light-proof box with a small hole (focal point) in one side
– Light enters the box from the hole and projects an inverted image on the opposite side of the box (image plane)

– Sampling the plenoptic function at the 3D location of the pinhole
– Line from focal point perpendicular to the image plane is optical axis
– Distance from focal point to image plane along optical axis is focal length

• A simple image formation model
 – Denote images by 2D function \(f(x, y) \)
 – \(x \) and \(y \) are spatial coordinates on a plane and \(f(x, y) \) is a positive scalar/vector quantity to represent the energy at that point
 – Image function values at each point are positive and finite
 \[0 \leq f(x, y) < \infty \]
 – \(f(x, y) \) is characterized by two components
 - **Illumination**: Amount of source illumination incident on the scene being viewed; denoted \(i(x, y) \)
 - **Reflectance**: Amount of illumination reflected by objects in the scene; denoted \(r(x, y) \)
 – The product of illumination and reflectance yields \(f(x, y) = i(x, y) \cdot r(x, y) \) such that \(0 \leq i(x, y) < \infty \) and \(0 \leq r(x, y) \leq 1 \)
 * Reflectance is bounded by 0 (total absorption) and 1 (total reflectance)
 * For images formed by transmission rather than reflection (X-rays), reflectivity function is replaced by transmissivity function with the same limits

• Intensity of monochrome image at any coordinate is called the gray level \(l \) of the image at that point
 – The range of \(l \) is given by
 \[L_{\text{min}} \leq l \leq L_{\text{max}} \]
 – The interval \([L_{\text{min}}, L_{\text{max}}]\) is called the gray scale
 – It is common to shift this interval to \([0, L - 1]\) where \(l = 0 \) is considered black and \(l = L - 1 \) is considered white, with intermediate values providing different shades of gray

Image sampling and quantization

• Sensors output a continuous voltage waveform whose amplitude and spatial behavior are related to the physical phenomenon being sensed
 – Need to convert continuous sampled data to discrete/digital form using sampling and quantization

• Basic concepts in sampling and quantization
 – Figure 2.16
Continuous image to be converted into digital form

Image continuous with respect to x and y coordinates as well as amplitude

Sampling: Digitizing the coordinate values

* Image pixel $I(x, y)$ modeled as the integration of the irradiance function over the area of the pixel and over all wavelengths after multiplying by the sensitivity function $s(\lambda)$, $0 \leq s(\lambda) \leq 1$

$$I(x, y) = \varphi \left(\int \int E(x', y', \lambda')s(\lambda')dx'dy'd\lambda' \right)$$

Quantization: Digitizing the amplitude values

* Assigns a discrete gray level to every pixel

Issues in sampling and quantization, related to sensors

* Electrical noise
* Limits on sampling accuracy
* Number of quantization levels

• Representing digital images

Continuous image function of two variables s and t denoted by $f(s, t)$

* Convert $f(s, t)$ into a digital image by sampling and quantization
* Sample the continuous image into a 2D array $f(r, c)$ with M rows and N columns, using integer values for discrete coordinates r and c: $r = 0, 1, 2, \ldots, M - 1$, and $c = 0, 1, 2, \ldots, N - 1$
* Matrix of real numbers, with M rows and N columns

• Concepts/Definitions

Spatial domain: Section of the real plane spanned by the coordinates of an image

Spatial coordinates: Discrete numbers to indicate the locations in the plane, given by a row number r and column number c

Image representation (Fig. 2.18)

* As a 3D plot of (x, y, z) where x and y are planar coordinates and z is the value of f at (x, y)
* As intensity of each point, as a real number in the interval $[0, 1]$
* As a set of numerical values in the form of a matrix (we’ll use this in our work)
 * We may even represent the matrix as a vector of size $MN \times 1$ by reading each row one at a time into the vector

• Conventions

* Origin at the top left corner
* c increases from left to right
* r increases from top to bottom
* Each element of the matrix array is called a pixel, for picture element

• Definition of sampling and quantization in formal mathematical terms

* Let \mathcal{Z} and \mathbb{R} be the set of integers and real numbers
* Sampling process is viewed as partitioning the xy plane into a grid
 * Coordinates of the center of each grid are a pair of elements from the Cartesian product \mathcal{Z}^2
 * \mathcal{Z}^2 denotes the set of all ordered pairs of elements (z_i, z_j) such that $z_i, z_j \in \mathcal{Z}$
* $f(r, c)$ is a digital image if
 * $(r, c) \in \mathcal{Z}^2$, and
 * f is a function that assigns a gray scale value (real number) to each distinct pair of coordinates (r, c)
 * If gray scale levels are integers, \mathcal{Z} replaces \mathbb{R}; image is a 2D function with integer coordinates and amplitudes
Decision about the size and number of gray scales

* No requirements for M and N, except that they be positive integers
* Gray scale values are typically powers of 2 because of processing, storage, and sampling hardware considerations

\[L = 2^k \]

* Assume that discrete levels are equally spaced and in the interval $[0, L - 1]$ – dynamic range of the image
 - Dynamic range is the ratio of maximum measurable intensity to the minimum detectable intensity
 - Upper limit is determined by saturation and the lower limit is determined by noise
* Contrast – Difference in intensity between the highest and lowest intensity levels in the image
* High dynamic range – gray levels span a significant portion of range
* High contrast – Appreciable number of pixels are distributed across the range

Number of bits required to store an image – $M \times N \times k$

* For $M = N$, this yields $M^2 k$

8-bit image

** Spatial and gray-level resolution

* Spatial resolution determined by sampling
 - Smallest discernible detail in an image; proximity of image samples in the image plane
 - Stated as line pairs per unit distance, or dots per unit distance
 - Construct a chart with alternate black and white vertical lines, each of width W units
 - Width of each line pair is $2W$, or $1/2W$ lines pairs per unit distance
 - Dots per inch is common in the US
 - Important to measure spatial resolution in terms of spatial units, not just as the number of pixels
 - Lower resolution images are smaller

* Gray-level resolution determined by number of gray scales
 - Also known as radiometric resolution
 - Smallest discernible change in gray level
 - Most common number is 8 bits (256 levels)

* Subsampling
 - Possible by deleting every other row and column
 - Possible by averaging a pixel block

* Resampling by pixel replication

* Changing the number of gray levels (Fig 2-24)
 - False contouring – Effect caused by insufficient number of gray scale levels
 - Manifests itself in images with 16 or fewer intensity levels

* Amount of detail in an image (Fig 2-25)
 - Frequency of an image
 - Isopreference curves (Fig 2-26)
 - Become vertical with increasing intensity resolution and horizontal with increasing spatial resolution

* Spectral resolution
 - Bandwidth of the light frequencies captured by the sensor

* Temporal resolution
 - Important in video or image sequences
 - Interval between time samples at which images are captured
• Image interpolation
 – Basic tool used extensively in tasks such as zooming, shrinking, rotating and geometric corrections
 – Process of using known data to estimate values at unknown locations
 – Enlarge an image of size 500 \times 500 pixels by 1.5 times to 750 \times 750 pixels
 * Create an imaginary 750 \times 750 pixel grid with same pixel spacing as original
 * Shrink it so that it fits over the original image exactly
 * Assign the intensity of the nearest pixel in the 500 \times 500 pixel image to the pixel in the 750 \times 750 pixel image
 * After assignment, expand the grid to its original size
 * Method known as nearest neighbor interpolation
 – Zooming and shrinking considered as image resampling methods
 * Zooming ⇒ oversampling
 * Shrinking ⇒ undersampling
 – Zooming
 * Create new pixel locations
 * Assign gray levels to these pixel locations
 * Pixel replication
 * Special case of nearest neighbor interpolation
 * Applicable when size of image is increased by an integer number of times
 * New pixels are exact duplicates of the old ones
 * Nearest neighbor interpolation
 * Assign the gray scale level of nearest pixel to new pixel
 * Fast but may produce severe distortion of straight edges, objectionable at high magnification levels
 * Better to do bilinear interpolation using a pixel neighborhood
 * Bilinear interpolation
 * Use four nearest neighbors to estimate intensity at a given location
 * Let \((r, c)\) denote the coordinates of the location to which we want to assign an intensity value \(v(r, c)\)
 * Bilinear interpolation yields the intensity value as
 \[
 v(r, c) = C_1 c + C_2 r + C_3 rc + C_4
 \]
 where the four coefficients are determined from the four equations in four unknowns that can be written using the four nearest neighbors of point \((r, c)\)
 * Better results with a modest increase in computing
 * Bicubic interpolation
 * Use 16 nearest neighbors of a point
 * Intensity value for location \((r, c)\) is given by
 \[
 v(x, y) = \sum_{i=0}^{3} \sum_{j=0}^{3} c_{ij} x^i y^j
 \]
 where the 16 coefficients are determined from the 16 equations in 16 unknowns that can be written using the 16 nearest neighbors of point \((x, y)\)
 * Bicubic interpolation reduces to bilinear form by limiting the two summations from 0 to 1
 * Bicubic interpolation does a better job of preserving fine detail compared to bilinear
 * Standard used in commercial image editing programs
 * Other techniques for interpolation are based on splines and wavelets
 – Shrinking
* Done similar to zooming
* Equivalent to pixel replication is row-column deletion
* Aliasing effects can be removed by slightly blurring the image before reducing it
– Example using Figure 2.27

Basic relationships between pixels

• Neighbors of a pixel p
 – 4-neighbors ($N_4(p)$)
 * Four vertical and horizontal neighbors for pixel p at coordinates (r, c) are given by the pixels at coordinates

 \[N_4(p) = \{(r+1, c), (r, c+1), (r-1, c), (r, c-1)\} \]

 * Each 4-neighbor is at a unit distance from p
 * Some neighbors may be outside of the image if p is a boundary pixel
 – 8-neighbors ($N_8(p)$)
 * Non-uniform distance from p
 * Include $N_4(p)$ as well as the pixels along the diagonal given by

 \[N_D(p) = \{(r+1, c+1), (r-1, c+1), (r-1, c-1), (r+1, c-1)\} \]

 * Effectively, we have $N_8(p) = N_4(p) + N_D(p)$
 – Adjacency, connectivity, regions, boundaries
 – Pixels are connected if they are neighbors and their gray scales satisfy a specified criteria of similarity
 – Adjacency
 * Defined using a set of gray-scale values V
 * $V = \{1\}$ if we refer to adjacency of pixels with value 1 in a binary image
 * In a gray scale image, the set V may contain more values
 * 4-adjacency
 * Two pixels p and q with values from V are 4-adjacent if $q \in N_4(p)$
 * 8-adjacency
 * Two pixels p and q with values from V are 8-adjacent if $q \in N_8(p)$
 * m-adjacency (mixed adjacency)
 * Modification of 8-adjacency
 * Two pixels p and q with values from V are m-adjacent if
 1. $q \in N_4(p)$, or
 2. $q \in N_D(p)$ and the set $N_4(p) \cap N_4(q)$ has no pixels whose values are from V
 * Eliminates the ambiguities arising from 8-adjacency (Fig 2-28)
 – Path
 * A digital path or curve from pixel $p(r, c)$ to $q(r', c')$ is a set of adjacent pixels from p to q, given by
 \[(r_0, c_0), (r_1, c_1), \ldots, (r_n, c_n) \]
 where $(r, c) = (r_0, c_0)$ and $(r', c') = (r_n, c_n)$ and pixels at (r_i, c_i) and (r_{i-1}, c_{i-1}) are adjacent
 * Length of the path is given by the number of pixels in such a path
 * Closed path, if $(r_0, c_0) = (r_n, c_n)$
 * 4-, 8-, or m- paths depending on the type of adjacency defined
Connected pixels
- Let S represent a subset of pixels in an image
- Two pixels p and q are connected in S if there is a path between them consisting entirely of pixels in S
- For any pixel p in S, the set of pixels connected to it in S form a connected component of S
- If there is only one connected component of S, the set S is known as a connected set

Region
- Let R be a subset of pixels in the image
- R is a region of the image if R is a connected set
- Two regions R_i and R_j are adjacent if their union forms a connected set
- Regions that are not adjacent are disjoint
- Foreground and background
 - Let an image contain K disjoint regions $R_k, k = 1, 2, \ldots, K$, none of which touch the image border
 - Let R_u be the union of all the K regions and let $(R_u)^c$ be its complement
 - All the pixels in R_u form the foreground in image
 - All the pixels in $(R_u)^c$ form the image background
- The boundary of a region R is the set of pixels in the region that have one or more neighbors that are not in R
 - The set of pixels within the region on the boundary are also called inner border
 - The corresponding pixels in the background are called outer border
 - This distinction will be important in border-following algorithms
 - If R is an entire rectangular image, its boundary is the set of pixels in the first and last rows and columns
 - An image has no neighbors beyond its borders

Edge
- Gray level discontinuity at a point
- Formed by pixels with derivative values that exceed a preset threshold

Distance measures
- Properties of distance measure D, with pixels $p(r, c), q(r', c'),$ and $z(r'', c'')$
 - $D(p, q) \geq 0$; $D(p, q) = 0 \iff p = q$
 - $D(p, q) = D(q, p)$
 - $D(p, z) \leq D(p, q) + D(q, z)$
- Euclidean distance
 $$D_e(p, q) = \sqrt{(r - r')^2 + (c - c')^2}$$
 Also represented as $||p - q||$
- City-block distance (D_4 distance)
 $$D_4(p, q) = |r - r'| + |c - c'|$$
 Pixels with $D_4 = 1$ are 4-neighbors
- Chessboard distance (D_8 distance)
 $$D_8(p, q) = \max(|r - r'|, |c - c'|)$$
 Pixels with $D_8 = 1$ are 8-neighbors
- D_4 and D_8 distances are independent of any path between points as they are based on just the position of points
- D_m distances are based on m-adjacency and depend on the shortest m path between the points

Mathematical tools for digital image processing
- Array vs matrix operations
– An array operation on images is carried on a per pixel basis
– Need to make a distinction between array and matrix operations
– Consider the following 2×2 images

$$
\begin{bmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{bmatrix}
\quad \text{and} \quad
\begin{bmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{bmatrix}
$$

– Array product of these two images is

$$
\begin{bmatrix}
a_{11}a_{11} & a_{12}b_{12} \\
a_{21}a_{12} & a_{22}b_{22}
\end{bmatrix}
=
\begin{bmatrix}
a_{11}b_{11} & a_{12}b_{12} \\
a_{21}b_{12} & a_{22}b_{22}
\end{bmatrix}
$$

– Matrix product is given by

$$
\begin{bmatrix}
a_{11}a_{11} & a_{12}a_{21} \\
a_{21}a_{12} & a_{22}a_{22}
\end{bmatrix}
=
\begin{bmatrix}
a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\
a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22}
\end{bmatrix}
$$

– Assume array operations in this course, unless stated otherwise

• Linear vs nonlinear operations
– Consider a general operator H that produces an output image $g(r, c)$ for a given input image $f(r, c)$

$$
g(r, c) = H[f(r, c)]
$$

– H is a linear operator if

$$
H[a_i f_i(r, c) + a_j f_j(r, c)] = a_i H[f_i(r, c)] + a_j H[f_j(r, c)] = a_i g_i(r, c) + a_j g_j(r, c)
$$

where a_i and a_j arbitrary constants, and f_i and f_j are two images of the same size

– Linear operators have the following properties

 Additivity Output of linear operator on the sum of two images is same as the sum of output of linear operator applied to those images individually

 Homogeneity Output of linear operation to constant times an image is the same as constant times the output of linear operation to the images

– Let H be the summation operator, then, we have

$$
\sum [a_i f_i(r, c) + a_j f_j(r, c)] = \sum a_i f_i(r, c) + \sum a_j f_j(r, c) = a_i \sum f_i(r, c) + a_j \sum f_j(r, c) = a_i g_i(r, c) + a_j g_j(r, c)
$$

showing that summation operator is linear

– Now consider the max operation to get the maximum value of any pixel in the images, and the following two images

$$
\begin{bmatrix}
0 & 2 \\
2 & 3
\end{bmatrix}
\quad \text{and} \quad
\begin{bmatrix}
6 & 5 \\
4 & 7
\end{bmatrix}
$$

Let $a_1 = 1$ and $a_2 = -1$

* The left hand side of the equation evaluates to

$$
\max \left\{ (1) \begin{bmatrix} 0 & 2 \\ 2 & 3 \end{bmatrix} + (-1) \begin{bmatrix} 6 & 5 \\ 4 & 7 \end{bmatrix} \right\} = \max \left\{ \begin{bmatrix} -6 & -3 \\ -2 & -3 \end{bmatrix} \right\} = -2
$$
* The right hand side evaluates to

\[
(1) \max \left\{ \begin{bmatrix} 0 & 2 \\ 2 & 3 \end{bmatrix} \right\} + (-1) \max \left\{ \begin{bmatrix} 6 & 5 \\ 4 & 7 \end{bmatrix} \right\} = 3 + (-1)7 = -4
\]

• **Arithmetic operations**

 – Array operations between corresponding pixel pairs

 \[
 s(r, c) = f(r, c) + g(r, c) \\
 d(r, c) = f(r, c) - g(r, c) \\
 p(r, c) = f(r, c) \times g(r, c) \\
 v(r, c) = f(r, c) \div g(r, c)
 \]

 – Example: Addition of noisy images for noise reduction

 * Let \(g(r, c) \) denote a corrupted image formed by the addition of uncorrelated noise \(\eta(r, c) \) to a noiseless image \(f(r, c) \)

 \[
 g(r, c) = f(r, c) + \eta(r, c)
 \]

 * Form an average image by averaging \(K \) different noisy images

 \[
 \bar{g}(r, c) = \frac{1}{K} \sum_{i=1}^{K} g_i(r, c)
 \]

 * Since the noise is uncorrelated, the expected value is

 \[
 E\{\bar{g}(r, c)\} = f(r, c)
 \]

 * The variances are related by

 \[
 \sigma_{\bar{g}(r, c)}^2 = \frac{1}{K} \sigma_{\eta(r, c)}^2
 \]

 * The standard deviation at any point in the average image is

 \[
 \sigma_{\bar{g}(r, c)} = \frac{1}{\sqrt{K}} \sigma_{\eta(r, c)}
 \]

 * As \(K \) increases, the variance at each location \((r, c)\) decreases

 * In practice, the images \(g_i(r, c) \) must be registered for expected addition to approach \(f(r, c) \)

 * Image averaging as above is important in astronomy where images under low light level cause sensor noise to render single images virtually useless for analysis

 * Figure 2.29

 * Addition provides a discrete version of continuous integration

 – Image subtraction to enhance differences

 * Figure 2.31

 * Change detection via image subtraction

 * Mask mode radiography

 \[
 g(r, c) = f(r, c) - h(r, c)
 \]

 * \(h(x, y) \) is the mask or X-ray image of a patient’s body captured by intensified TV camera, located opposite an X-ray source

 * Inject an X-ray contrast medium into a patient’s bloodstream, taking a series of live images, and subtracting the mask from the live stream

 * Areas that are different between \(f(r, c) \) and \(h(r, c) \) appear in the output stream as enhanced detail
· Over time, the process shows the propagation of contrast medium through various arteries
 - Figure 2.32

Image multiplication for shading correction
* Let the sensor produce an image \(g(r, c) \) that is product of a perfect image \(f(r, c) \) with a shading function \(h(r, c) \)
* If \(h \) is known, we can obtain \(f(r, c) \) by dividing \(g \) by \(h \)
* We can obtain an approximation to \(h \) by imaging a target of constant intensity
 - Figure 2.33

Image multiplication for masking or ROI operations
* Figure 2.34

Pixel saturation
* Most image representations used by us are in the range \([0, 255]\]
* Addition and subtraction may yield values in the range \([-255, 510]\]
* Change the minimum value of each pixel to 0
 \[
 f_m = f - \text{min}(f)
 \]
* Scale the image in the range \([0, K]\) by
 \[
 f_s = K \cdot \text{max}(f_m) / \text{max}(f_m)
 \]
* The discussion is applicable to images in ImageMagick that are in the range \([0, \text{MAXRGB}]\)

Set and logical operations

Basic set operations
* Let \(A \) be a set composed of ordered pairs of real numbers
* If \(a = (a_1, a_2) \) is an element of \(A \), we say \(a \in A \)
* If \(a \) is not an element of \(A \), we have \(a \notin A \)
* The set with no elements in called null or empty set and is denoted by \(\emptyset \)
* Set is specified by the contents of two braces: \{·\}
* \(C = \{w|w = -d, d \in D\} \)
* Elements of sets could be coordinates of pixels (ordered pairs) representing regions (objects) in an image
* If every element of \(A \) is also an element of \(B \), then, \(A \subseteq B \)
* Union of two sets \(A \) and \(B \) is denoted by \(C = A \cup B \)
* Intersection of two sets \(A \) and \(B \) is denoted by \(D = A \cap B \)
* Two sets \(A \) and \(B \) are disjoint or mutually exclusive if they have no common elements, or \(A \cap B = \emptyset \)
* Set universe \(U \) is the set of all elements in a given application
 * If you are working with the set of real numbers, the set universe is the real line containing all real numbers
 * In image processing, the universe is typically the rectangle containing all pixels in an image
* Complement of a set is the set of elements not in \(A \)
 \[
 A^c = \{w|w \notin A\}
 \]
* Difference of two sets \(A \) and \(B \), denoted \(A - B \), is defined as
 \[
 A - B = \{w|w \in A, w \notin B\} = A \cap B^c
 \]
* \(A^c \) can be defined in terms of universe as
 \[
 A^c = U - A
 \]
 - Figure 2.35 for operations with binary images

Operations with gray scale images
* Above set operations were described with the assumptions that all pixels have one of the two intensity levels – black or white – giving us binary images
* Gray scale image pixels can be represented as a set of 3-tuples \((r, c, m)\) where \(m\) is the magnitude and \(r, c\) are row and column number of pixels
* Define complement of \(A\) as \(A^c = \{(r, c, K - m) | (r, c, m) \in A\}\), and \(K\) is the maximum gray scale value
* Now, the negative of an image is given by its complement
* Union of two gray-scale sets is given by

\[
A \cup B = \left\{ \max \limits_m (a, b) | a \in A, b \in B \right\}
\]

* Figure 2.36
 - Part (c) is result of union of the figure in part (a) with a constant image where all pixels are 3 times the average intensity in part (a)

- Logical operations
 * Foreground (1-valued) and background (0-valued) sets of pixels
 * Regions or objects can be defined as composed of foreground pixels
 * Consider two regions \(A\) and \(B\) composed of foreground pixels
 * \(\lor, \land, \text{ and } \neg\) logical operations
 * \(\neg A\) is the set of pixels in the image that are not in region \(A\) (background pixels and foreground pixels from regions other than \(A\))
 * Figure 2.37

- Fuzzy sets
 * Sets with no clear-cut or crisp boundaries
 * Classifying people as young and old
 * Let \(U\) be the set of all people and \(A \subseteq U\) be the subset of young people
 * Membership function to assign a value 0 or 1 to every person in \(U\); if the value is 1, the person is member of \(A\), otherwise he is not
 * Want to provide flexibility on the border where a person may be young or not young using a gradual transition
 * Allows age to be an imprecise concepts, such as 40% young

- Spatial operations
 - Performed directly on the pixels of a given image
 - Single pixel operations
 * Simplest operation to alter the value of individual pixels based on intensity
 * Expressed as a transform function of the form

\[
s = T(z)
\]

where \(z\) is the intensity of a pixel in the original image and \(s\) is the intensity of the corresponding pixel in the processed image
 - Negative of an image (Figure 2.38)

- Neighborhood operations
 * Let \(S_{rc}\) denote the set of coordinates of a neighborhood centered at a point \((r, c)\) in an image \(f\)
 * Neighborhood processing generates a corresponding pixel at the same coordinates \((r, c)\) by processing all the pixels in \(S_{rc}\).
 * Average value of pixels, centered at \((r, c)\) where \(S_{rc}\) is delimited by a rectangle of size \(m \times n\)

\[
g(r, c) = \frac{1}{mn} \sum_{(r', c') \in S_{rc}} f(r', c')
\]
* Local blurring (Figure 2.39) to eliminate small details

- Geometric spatial transformations and image registration
 * Modify the spatial relationship between pixels in an image
 * Also called rubber-sheet transformations
 * Consists of two basic operations
 1. A spatial transformation of coordinates
 2. Intensity interpolation that assigns intensity values to spatially transformed pixels
 * The transform can be expressed as
 \[
 (r, c) = T((r', c'))
 \]
 * The transformation \((r, c) = T((r', c')) = (r'/2, c'/2)\) shrinks the original image to half its size in both directions
 * Affine transform to scale, rotate, translate, or shear a set of coordinate points depending on the value chosen for the elements of matrix \(T\)
 \[
 \begin{bmatrix}
 r \\
 c \\
 1
 \end{bmatrix} = \begin{bmatrix}
 r' \\
 c' \\
 1
 \end{bmatrix} T = \begin{bmatrix}
 r' \\
 c' \\
 1
 \end{bmatrix} \begin{bmatrix}
 t_{11} & t_{12} & 0 \\
 t_{21} & t_{22} & 0 \\
 t_{31} & t_{32} & 1
 \end{bmatrix}
 \]
 * Table 2.3 and Figure 2.40
 * Matrix representation allows us to concatenate together a sequence of operations
 * Above transformations allow us to relocate pixels in an image
 * We may also have to change intensity values at the new locations, possibly by intensity interpolation (zooming)

- Image registration
 * Estimating the transformation function and use it to register the input and output images
 * The image against which we perform registration is called the reference image
 * Used when two images need to be aligned when two images of same object are taken at different time or with different sensors
 * Tie points or control points
 - Corresponding points whose locations are known precisely in the input images
 - Can be applied manually or detected automatically by sophisticated algorithms
 - Some sensors may produce a set of known points, called *reseau marks*, directly on images to be used as guides for tie points
 * Transformation function can be estimated based on modeling
 - Given a set of four tie points in an input image and a reference image
 - A simple model based on bilinear approximation gives
 \[
 \begin{align*}
 x &= c_1 v + c_2 w + c_3 vw + c_4 \\
 y &= c_5 v + c_6 w + c_7 vw + c_8
 \end{align*}
 \]
 - With four pairs of points, we can write eight equations and use them to solve for the eight unknown coefficients \(c_1, c_2, \ldots, c_8\)
 - The coefficients are the model to transform pixels of one image into locations of the other to achieve registration

- Vector and matrix operations
 - Used routinely in multispectral image processing
Each pixel in an RGB Image can be organized in the form of a column vector

\[z = \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix} \]

An RGB image of size \(M \times N \) can be represented by three component images of this size each, or by a total of \(MN \) 3D vectors.

A general multispectral image with \(n \) component images will give us \(n \)-dimensional vectors.

The Euclidean distance \(D \) between a pixel vector \(z \) and an arbitrary point \(a \) in \(n \)-dimensional space is defined by the vector product

\[D(z, a) = \sqrt{(z - a)^T(z - a)} \]

\[= \sqrt{(z_1 - a_1)^2 + (z_2 - a_2)^2 + \cdots + (z_n - a_n)^2} \]

\(D \) is sometime referred to as vector norm and may be denoted by \(||z - a|| \)

Pixel vectors are useful in linear transformations, represented as

\[w = A(z - a) \]

where \(A \) is an \(m \times n \) matrix and \(z \) and \(a \) are column vectors of size \(n \times 1 \)

Image transforms

- All the operations so far work directly on the pixels in *spatial domain*
- Some operations may be done by transforming the image into a *transformation domain* and applying the inverse transform to bring it back to spatial domain
- A 2D linear transform my be expressed in the general form as

\[T(u, v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) r(x, y, u, v) \]

where \(f(x, y) \) is the input image and \(r(x, y, u, v) \) is a forward transformation kernel; the equation is evaluated for \(u = 0, 1, 2, \ldots, M - 1 \) and \(v = 0, 1, 2, \ldots, N - 1 \)
- The image can be transformed back to spatial domain by applying the inverse transform as

\[f(x, y) = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} T(u, v) s(x, y, u, v) \]

- Figure 2.39

Probabilistic methods

- We may treat intensity values as random quantities
- Let \(z_i = 0, 1, 2, \ldots, L - 1 \) be the values of all possible intensities in an \(M \times N \) image
- The probability \(p(z_k) \) of intensity level \(z_k \) in the image is given by

\[p(z_k) = \frac{n_k}{MN} \]

where \(n_k \) is the number of pixels at intensity level \(z_k \)
- Clearly

\[\sum_{k=0}^{L-1} p(z_k) = 1 \]
– The mean intensity of the image is given by
\[m = \sum_{k=0}^{L-1} z_k p(z_k) \]

– The variance of intensities is
\[\sigma^2 = \sum_{k=0}^{L-1} (z_k - m)^2 p(z_k) \]

* Variance is a measure of spread of values of \(z \) around the mean, so it is a useful measure of image contrast

– \(n \)th moment of random variable \(z \) about the mean is defined as
\[\mu_n(z) = \sum_{k=0}^{L-1} (z_k - m)^n p(z_k) \]

* \(\mu_0(z) = 1 \)
* \(\mu_1(z) = 0 \)
* \(\mu_2(z) = \sigma^2 \)
* Figure 2.41