Digital Image Fundamentals

Elements of visual perception

- A single photoreceptor
- Any artificial system is benchmarked against the human visual system
- Structure of the human eye

- Nearly a sphere with an average diameter of approximately 20 mm
- Enclosed by various membranes
- Cornea and sclera outer cover
 - Cornea: Transparent convex anterior portion of the outer fibrous coat of the eyeball that covers the iris and the pupil and is continuous with the sclera
 - Sclera: Tough opaque white fibrous outer envelope of tissue covering all of the eyeball except the cornea
- Choroid
 - Dark-brown vascular coat of the eye next to sclera towards the interior of the eye
 - Network of blood vessels to provide nutrition to eye
 - Heavily pigmented to reduce the amount of extraneous light entering the eye, and backscatter within optical globe
 - Divided into ciliary body and iris diaphragm
 - Iris expands or contracts to control the amount of light entering the eye
 - Central opening of iris (pupil) varies from 2 to 8 mm in diameter
 - Front of iris contains the visible pigment of the eye whereas the back contains the black pigment
- Lens
 - Made up of concentric layers of fibrous cells
 - Suspended by fibers attached to the ciliary body
 - Colored by slightly yellow pigmentation that increases with age
 - Excessive clouding of lens, called cataract, leads to poor color discrimination and loss of clear vision

Figure from Wikimedia
Absorbs about 8% of visible light, and most of IR and UV waves, possibly causing damage in excessive amounts

- Retina
 - Delicate, multilayered, light-sensitive membrane lining the inner eyeball and connected by the optic nerve to the brain
 - Distribution of discrete light receptors allows for pattern discrimination
- Cones
 - 6 to 7 million photoreceptors, packed at about 150,000 cones per sq mm in the center of fovea
 - Mostly concentrated in central portion of retina (fovea)
 - Highly sensitive to color
 - Each one is connected to its own nerve end, allowing for fine resolution detail
 - Responsible for photopic or bright light vision and detailed pattern recognition
- Rods
 - 75 to 150 million over the retinal surface with several rods connected to a single nerve end, providing coarse resolution
 - Distributed all over the retina with highest density about 20° from the center
 - General overall view of the scene
 - Not involved in color vision and sensitive to low levels of illumination
 - Responsible for scotopic or low light vision

- Image formation in eye
 - Flexible lens
 - Lens changes refractive power depending on the distance of object, by flexing the fibers in ciliary muscles
 - Retinal image reflected on the fovea
 - Perception involves transformation of radiant energy into electrical impulses decoded by brain
 - Cyclopian image and diplopia
 - Hold a finger about a foot from your eyes, concentrate on finger first (background is split) and then on background (see two fingers)
 - Saccadic movement

- Brightness adaptation and discrimination
 - Digital images displayed as a discrete set of intensities
 - Range of human eye is about 10^{10} different light intensity levels, from scotopic threshold to the glare limit (Fig 2.4)
 - Visual system cannot operate over the enormous range simultaneously
 - Subjective brightness (as perceived by humans) is a logarithmic function of light intensity incident on the eye
 - Mesopic vision: Both cones and rods respond to sensory input
 - Brightness adaptation
 - Change in overall sensitivity of perceived brightness
 - Number of distinct intensity level that can be perceived simultaneously is small compared to number of levels that can be perceived
 - Brightness adaptation level – current sensitivity level of the visual system
 - Weber ratio
 - Measure of contrast discrimination ability
 - Background intensity given by I
 - Increment of illumination for short duration at intensity ΔI
 - ΔI_c is the increment of illumination when the illumination is visible half the time against background intensity I
Weber ratio is given by $\Delta I_c/I$

- A small value of $\Delta I_c/I$ implies that a small percentage change in intensity is visible, representing good brightness discrimination
- A large value of $\Delta I_c/I$ implies that a large percentage change is required for discrimination, representing poor brightness discrimination
- Typically, brightness discrimination is poor at low levels of illumination and improves at higher levels of background illumination (Figure 2.6)

- Mach bands
 - Scalloped brightness pattern near the boundaries shown in stripes of constant intensity
 - Figure 2.7
 - The bars themselves are useful for calibration of display equipment

- Simultaneous contrast
 - A region’s perceived brightness does not depend simply on intensity
 - Lighter background makes an object appear darker while darker background makes the same object appear brighter
 - Figure 2.8

- Optical illusions
 - Figure 2.9
 - Show the compensation achieved by eye

- Eye more sensitive to low-frequency components compared to the high-frequency components
 - Low-frequency components in an image/scene are regions where pixel values do not change rapidly
 - High-frequency components are regions where pixel values change rapidly (corners and edges)

- Eye is more sensitive to changes in brightness than to color
- Eye is sensitive to motion, even in peripheral vision

Light and electromagnetic spectrum

- Visible light vs the complete spectrum (Figure 2.10)
- Wavelength (λ) and frequency (ν) are related using the constant c for speed of light
 \[\lambda = \frac{c}{\nu} \]
- Energy of various components in EM spectrum is given by
 \[E = h\nu \]
 where $h \approx 6.626 \times 10^{-34}$ watts seconds squared is Planck’s constant
 - Energy is contained in particles called photons
 - Wave-particle duality
- Units of measurements
 - Frequency is measured in Hertz (Hz)
 - Wavelength is measured in meters; also microns (μm or 10^{-6}m) and nanometers (10^{-9}m)
 - Energy is measured in electron-volt
• Photon
 – Massless particles whose stream in a sinusoidal wave pattern forms energy
 – Energy is directly proportional to frequency
 * Higher frequency energy particles carry more energy
 * Radio waves have less energy while gamma rays have more energy, making X rays and gamma rays more dangerous to living organisms

• Visible spectrum
 – 0.43\mu m (violet) to 0.79\mu m (red)
 – VIBGYOR regions
 – Colors are perceived because of light reflected from an object
 – Absorption vs reflectance of colors
 * An object appears white because it reflects all colors equally

• Achromatic or monochromatic light
 – No color in light
 – Amount of energy describes intensity
 * Quantified by gray level from black through various shades of gray to white
 – Monochrome images also called gray scale images

• Chromatic light
 – Spans the energy spectrum from 0.43 to 0.79 \mu m
 – Described by three basic quantities: radiance, luminance, brightness
 – Radiance
 * Total amount of energy flowing from a light source
 * Measured in Watts
 – Luminance
 * Amount of energy perceived by an observer from a light source
 * Measured in lumens (lm)
 – Brightness
 * Subjective descriptor of light perception
 * Achromatic notion of intensity
 * Key factor in describing color sensation
 – Light emitted from an old tungsten light bulb contains a lot of energy in the IR band; LED bulbs give the same amount of luminance with less energy consumption
 * A 26 watt CFL bulb has the same luminance as an old 100 watt tungsten bulb

Image sensing and acquisition

• Illumination source and absorption/reflectance of objects in the scene
 – Images generated by a combination of an “illumination” source and reflection/absorption of energy by the elements in “scene”
 – Illumination energy is reflected from or transmitted through objects
 – X-ray images
Three principal sensor arrangements

- Transform incoming energy into voltage by a combination of input electrical power and sensor material responsive to the type of energy being detected
- Output voltage waveform from sensor is digitized to get a discrete response

Image acquisition using a single sensor

- Exemplified by a photodiode
 - Outputs voltage waveform proportional to incident light
 - Selectivity can be improved by using filters
 - A green (pass) filter will allow only the green light to be sensed
- 2D image acquired by relative displacement of the sensor in both x and y directions
- Single sensor mounted on a axle to provide motion perpendicular to the motion of object being scanned; also called microdensitometer
- Slow and relatively antiquated

Image acquisition using sensor strips

- Strips in the form of in-line arrangement of sensors
- Imaging elements in one direction
- Used in flat-bed scanners and photocopy machines
- Basis for computerized axial tomography

Image acquisition using sensor arrays

- Individual sensors in the form of a 2D array
- CCD array in video cameras
- Response of each sensor is proportional to the integral of light energy projected onto the surface of sensor
- Noise reduction is achieved by integrating the input light signal over a certain amount of time
- Complete image can be obtained by focusing the energy pattern over the surface of array

Plenoptic function

- Gives direction of each ray of light from each object point to every possible observation point
- Given by a 5D function
 - Light ray passing all locations (x, y, z) in all directions (θ, ϕ)
 - θ and ϕ are two angles that uniquely specify the direction of a ray in 3D space
- Energy along a ray of light is measured by radiance; its value does not change along a ray traveling through free space
 - Plenoptic function is equal if evaluated at two location-directions $(x_1, y_1, z_1, \theta, \phi)$ and $(x_2, y_2, z_2, \theta, \phi)$ such that there is no blockage of light
 - Light-field
 - A 4D function of the radiance over position and direction
 - Two points (x_1, y_1) and (x_2, y_2), each on a different parallel plane
 - Collection of perspective images of one plane from a point on the other plane

Pinhole camera

- Light-proof box with a small hole (focal point) in one side
- Light enters the box from the hole and projects an inverted image on the opposite side of the box (image plane)
– Sampling the plenoptic function at the 3D location of the pinhole
– Line from focal point perpendicular to the image plane is optical axis
– Distance from focal point to image plane along optical axis is focal length

• A simple image formation model
 – Denote images by 2D function \(f(x, y) \)
 – \(x \) and \(y \) are spatial coordinates on a plane and \(f(x, y) \) is a positive scalar/vector quantity to represent the energy at that point
 – Image function values at each point are positive and finite
 \[0 \leq f(x, y) < \infty \]
 – \(f(x, y) \) is characterized by two components
 Illumination: Amount of source illumination incident on the scene being viewed; denoted \(i(x, y) \)
 Reflectance: Amount of illumination reflected by objects in the scene; denoted \(r(x, y) \)
 – The product of illumination and reflectance yields \(f(x, y) = i(x, y) \cdot r(x, y) \) such that \(0 \leq i(x, y) < \infty \) and \(0 \leq r(x, y) \leq 1 \)
 * Reflectance is bounded by 0 (total absorption) and 1 (total reflectance)
 * For images formed by transmission rather than reflection (X-rays), reflectivity function is replaced by transmissivity function with the same limits

• Intensity of monochrome image at any coordinate is called the gray level \(l \) of the image at that point
 – The range of \(l \) is given by
 \[L_{\text{min}} \leq l \leq L_{\text{max}} \]
 – The interval \([L_{\text{min}}, L_{\text{max}}]\) is called the gray scale
 – It is common to shift this interval to \([0, L - 1]\) where \(l = 0 \) is considered black and \(l = L - 1 \) is considered white, with intermediate values providing different shades of gray

Image sampling and quantization

• Sensors output a continuous voltage waveform whose amplitude and spatial behavior are related to the physical phenomenon being sensed
 – Need to convert continuous sampled data to discrete/digital form using sampling and quantization

• Basic concepts in sampling and quantization
 – Figure 2.16
 – Continuous image to be converted into digital form
 – Image continuous with respect to \(x \) and \(y \) coordinates as well as amplitude
 – Sampling: Digitizing the coordinate values (Figure 2.17)
* Image pixel \(I(x, y) \) modeled as the integration of the irradiance function over the area of the pixel and over all wavelengths after multiplying by the sensitivity function \(s(\lambda), 0 \leq s(\lambda) \leq 1 \)

\[
I(x, y) = \varphi \left(\int \int E(x', y', \lambda') s(\lambda') dx' dy' d\lambda' \right)
\]

– Quantization: Digitizing the amplitude values
 * Assigns a discrete gray level to every pixel
– Issues in sampling and quantization, related to sensors
 * Electrical noise
 * Limits on sampling accuracy
 * Number of quantization levels

• Representing digital images
 – Continuous image function of two variables \(x \) and \(y \) denoted by \(f(x, y) \)
 * Convert \(f(x, y) \) into a digital image by sampling and quantization
 * Sample the continuous image into a 2D array \(f(r, c) \) with \(M \) rows and \(N \) columns, using integer values for discrete coordinates \(r \) and \(c \): \(r = 0, 1, 2, \ldots, M - 1 \), and \(c = 0, 1, 2, \ldots, N - 1 \)
 * Matrix of real numbers, with \(M \) rows and \(N \) columns
 – Concepts/definitions
 Spatial domain: Section of the real plane spanned by the coordinates of an image
 Spatial coordinates: Discrete numbers to indicate the locations in the plane, given by a row number \(r \) and column number \(c \)
 – Image representation (Fig. 2.18)
 * As a 3D plot of \((x, y, z) \) where \(x \) and \(y \) are planar coordinates and \(z \) is the value of \(f \) at \((x, y) \)
 * As intensity of each point, as a real number in the interval \([0, 1]\)
 * As a set of numerical values in the form of a matrix (we’ll use this in our work)
 * We may even represent the matrix as a vector of size \(MN \times 1 \) by reading each row one at a time into the vector
 – Conventions
 * Origin at the top left corner
 * \(c \) increases from left to right
 * \(r \) increases from top to bottom
 * Each element of the matrix array is called a pixel, for picture element
 – Definition of sampling and quantization in formal mathematical terms
 * Let \(\mathbb{Z} \) and \(\mathbb{R} \) be the set of integers and real numbers
 * Sampling process is viewed as partitioning the \(xy \) plane into a grid
 * Coordinates of the center of each grid are a pair of elements from the Cartesian product \(\mathbb{Z}^2 \)
 * \(\mathbb{Z}^2 \) denotes the set of all ordered pairs of elements \((z_i, z_j) \) such that \(z_i, z_j \in \mathbb{Z} \)
 * \(f(r, c) \) is a digital image if
 * \((r, c) \in \mathbb{Z}^2 \), and
 * \(f \) is a function that assigns a gray scale value (real number) to each distinct pair of coordinates \((r, c) \)
 * If gray scale levels are integers, \(\mathbb{Z} \) replaces \(\mathbb{R} \); image is a 2D function with integer coordinates and amplitudes
 – Decision about the size and number of gray scales
 * No requirements for \(M \) and \(N \), except that they be positive integers
* Gray scale values are typically powers of 2 because of processing, storage, and sampling hardware considerations

\[L = 2^k \]

* Assume that discrete levels are equally spaced and in the interval \([0, L - 1]\) – dynamic range of the image
 * Dynamic range is the ratio of maximum measurable intensity to the minimum detectable intensity
 * Upper limit is determined by saturation and the lower limit is determined by noise
* Contrast – Difference in intensity between the highest and lowest intensity levels in the image
* Contrast ratio – Ratio of highest to lowest intensity in the image
* High dynamic range – gray levels span a significant portion of range
* High contrast – Appreciable number of pixels are distributed across the range

- Number of bits required to store an image – \(M \times N \times k\)
 * For \(M = N\), this yields \(M^2 k\)
 * 8-bit image

- Linear vs coordinate indexing
 * Coordinate indexing refers to each pixel by its 2D coordinate \((x, y)\)
 * Linear index treats the entire image as a 1D array where the pixel rows are arranged one after the other

- Spatial and gray-level resolution
 * Spatial resolution determined by sampling
 * Smallest discernible detail in an image; proximity of image samples in the image plane
 * Stated as line pairs per unit distance, or dots per unit distance
 * Construct a chart with alternate black and white vertical lines, each of width \(W\) units
 * Width of each line pair is \(2W\), or \(1/2W\) lines pairs per unit distance
 * Dots per inch is common in the US
 * Important to measure spatial resolution in terms of spatial units, not just as the number of pixels
 * Lower resolution images are smaller
 * Gray-level (Intensity) resolution determined by number of gray scales
 * Also known as radiometric resolution
 * Smallest discernible change in gray level
 * Usually given by an integer that is a power of 2
 * Most common number is 8 bits (256 levels)
 * Subsampling
 * Figure 2.23
 * Possible by deleting every other row and column
 * Possible by averaging a pixel block
 * Resampling by pixel replication
 * Changing the number of gray levels (Fig 2-24)
 * False contouring – Effect caused by insufficient number of gray scale levels
 * Manifests itself in images with 16 or fewer intensity levels
 * Amount of detail in an image (Fig 2-25)
 * Frequency of an image
 * Isopreference curves (Fig 2-26)
 * Become vertical with increasing intensity resolution and horizontal with increasing spatial resolution
 * Only a few intensity levels are needed for the images with a large amount of detail
256 × 256 pixels

128 × 128 pixels

64 × 64 pixels

32 × 32 pixels

16 × 16 pixels

Upsampled to 256 × 256 pixels
– Spectral resolution
 * Bandwidth of the light frequencies captured by the sensor

– Temporal resolution
 * Important in video or image sequences
 * Interval between time samples at which images are captured

• Image interpolation
 – Basic tool used extensively in tasks such as zooming, shrinking, rotating and geometric corrections

– Process of using known data to estimate values at unknown locations

– Enlarge an image of size 500 \times 500 pixels by 1.5 times to 750 \times 750 pixels
 * Create an imaginary 750 \times 750 pixel grid with same pixel spacing as original
 * Shrink it so that it fits over the original image exactly
 * Assign the intensity of the nearest pixel in the 500 \times 500 pixel image to the pixel in the 750 \times 750 pixel image
 * After assignment, expand the grid to its original size
 * Method known as nearest neighbor interpolation

– Zooming and shrinking considered as image resampling methods
 * Zooming \Rightarrow oversampling
 * Shrinking \Rightarrow undersampling

– Zooming
 * Create new pixel locations
 * Assign gray levels to these pixel locations
 * Pixel replication
 - Special case of nearest neighbor interpolation
 - Applicable when size of image is increased by an integer number of times
 - New pixels are exact duplicates of the old ones
 * Nearest neighbor interpolation
 - Assign the gray scale level of nearest pixel to new pixel
 \[g(x, y) = f(\text{round}(x'), \text{round}(y')) \]
 - Fast but may produce severe distortion of straight edges, objectionable at high magnification levels
 - Better to do bilinear interpolation using a pixel neighborhood

* Bilinear interpolation
 - 2D extension of 1D interpolation
 - 1D interpolation is given by
 \[g(x) = (1 - \alpha)f(x_0) + \alpha f(x_0 + 1) \]
 where \(x_0 = \lfloor x \rfloor \) is the index of nearest pixel to the left and \(\alpha = x - x_0, 0 \leq \alpha < 1 \)
 - In 2D, use four nearest neighbors to estimate intensity at a given location
 - Let \((r, c)\) denote the coordinates of the location to which we want to assign an intensity value \(g(r, c) \)
 - Nearest pixel to the left is located at \(r_0, c_0 \) where \(r_0 = \lfloor r \rfloor \) and \(c_0 = \lfloor c \rfloor \)
 - Compute \(\alpha_r = r - r_0 \) and \(\alpha_c = c - c_0, 0 \leq \alpha_r, \alpha_c < 1 \)
 - Bilinear interpolation yields the intensity value as
 \[g(r, c) = \begin{align*}
 (1 - \alpha_r)(1 - \alpha_c)f(r_0, c_0) & + \\
 \alpha_r(1 - \alpha_c)f(r_0 + 1, c_0) & + \\
 (1 - \alpha_r)\alpha_c f(r_0, c_0 + 1) & + \\
 \alpha_r\alpha_c f(r_0 + 1, c_0 + 1)
 \end{align*} \]
Better results with a modest increase in computing

- Bicubic interpolation
 - Use 16 nearest neighbors of a point
 - Intensity value for location \((r, c)\) is given by
 \[
 v(x, y) = \sum_{i=0}^{3} \sum_{j=0}^{3} c_{ij} x^i y^j
 \]
 where the 16 coefficients are determined from the 16 equations in 16 unknowns that can be written using the 16 nearest neighbors of point \((x, y)\)
 - Bicubic interpolation reduces to bilinear form by limiting the two summations from 0 to 1
 - Bicubic interpolation does a better job of preserving fine detail compared to bilinear
 - Standard used in commercial image editing programs

- Other techniques for interpolation are based on splines and wavelets

- Shrinking
 - Done similar to zooming
 - Equivalent to pixel replication is row-column deletion
 - Aliasing effects can be removed by slightly blurring the image before reducing it

- Example using Figure 2.27

Basic relationships between pixels

- Neighbors of a pixel \(p\)
 - 4-neighbors \(\left(N_4(p) \right) \)
 - Four vertical and horizontal neighbors for pixel \(p \) at coordinates \((r, c)\) are given by the pixels at coordinates
 \[
 N_4(p) = \{(r + 1, c), (r, c + 1), (r - 1, c), (r, c - 1)\}
 \]
 - Each 4-neighbor is at a unit distance from \(p \)
 - Some neighbors may be outside of the image if \(p \) is a boundary pixel
 - 8-neighbors \(\left(N_8(p) \right) \)
 - Non-uniform distance from \(p \)
 - Include \(N_4(p) \) as well as the pixels along the diagonal given by
 \[
 N_D(p) = \{(r + 1, c + 1), (r - 1, c + 1), (r - 1, c - 1), (r + 1, c - 1)\}
 \]
 - Effectively, we have
 \[
 N_8(p) = N_4(p) + N_D(p)
 \]

- Adjacency, connectivity, regions, boundaries
 - Pixels are connected if they are neighbors and their gray scales satisfy a specified criteria of similarity
 - Adjacency
 - Defined using a set of gray-scale values \(V \)
 - \(V = \{1\} \) if we refer to adjacency of pixels with value 1 in a binary image
 - In a gray scale image, the set \(V \) may contain more values
 - 4-adjacency
 - Two pixels \(p \) and \(q \) with values from \(V \) are 4-adjacent if \(q \in N_4(p) \)
 - 8-adjacency
 - Two pixels \(p \) and \(q \) with values from \(V \) are 8-adjacent if \(q \in N_8(p) \)
* m-adjacency (mixed adjacency)
 · Modification of 8-adjacency
 · Two pixels \(p \) and \(q \) with values from \(V \) are m-adjacent if
 1. \(q \in N_4(p) \), or
 2. \(q \in N_D(p) \) and the set \(N_4(p) \cap N_4(q) \) has no pixels whose values are from \(V \)
 · Eliminates the ambiguities arising from 8-adjacency (Fig 2-28)

-- Path
* A digital path or curve from pixel \(p(r, c) \) to \(q(r', c') \) is a set of adjacent pixels from \(p \) to \(q \), given by
 \[
 (r_0, c_0), (r_1, c_1), \ldots, (r_n, c_n)
 \]
where \((r, c) = (r_0, c_0) \) and \((r', c') = (r_n, c_n) \) and pixels at \((r_i, c_i) \) and \((r_{i-1}, c_{i-1}) \) are adjacent
* Length of the path is given by the number of pixels in such a path
* Closed path, if \((r_0, c_0) = (r_n, c_n) \)
* 4-, 8-, or m- paths depending on the type of adjacency defined

-- Connected pixels
* Let \(S \) represent a subset of pixels in an image
* Two pixels \(p \) and \(q \) are connected in \(S \) if there is a path between them consisting entirely of pixels in \(S \)
* For any pixel \(p \) in \(S \), the set of pixels connected to it in \(S \) form a connected component of \(S \)
* If there is only one connected component of \(S \), the set \(S \) is known as a connected set

-- Region
* Let \(R \) be a subset of pixels in the image
* \(R \) is a region of the image if \(R \) is a connected set
* Two regions \(R_i \) and \(R_j \) are adjacent if their union forms a connected set
* Regions that are not adjacent are disjoint
* Foreground and background
 · Let an image contain \(K \) disjoint regions \(R_k, k = 1, 2, \ldots, K \), none of which touch the image border
 · Let \(R_u \) be the union of all the \(K \) regions and let \((R_u)^c \) be its complement
 · All the pixels in \(R_u \) form the foreground in image
 · All the pixels in \((R_u)^c \) form the image background
* The boundary of a region \(R \) is the set of pixels in the region that have one or more neighbors that are not in \(R \)
 · The set of pixels within the region on the boundary are also called inner border
 · The corresponding pixels in the background are called outer border
 · This distinction will be important in border-following algorithms
 · If \(R \) is an entire rectangular image, its boundary is the set of pixels in the first and last rows and columns
 · An image has no neighbors beyond its borders

-- Edge
* Gray level discontinuity at a point
* Formed by pixels with derivative values that exceed a preset threshold

• Path length
 -- Number of pixels on the path; each successive pixel has to be adjacent to the previous pixel
 -- Path described by two types of moves
 * Isothetic moves: Horizontal or vertical moves; movement between 4-neighbors; Number of isothetic moves denoted by \(n_o \)
 * Diagonal moves: Movement between diagonal neighbors; number of diagonal moves denoted by \(n_d \)
 -- The path typically given by m-adjacency; for a path given by 4-adjacency, \(n_d = 0 \)
• Distance measures
 - Distance useful to measure the perimeter of a region or the size of an object
 - Properties of distance measure D, with pixels $p(r, c)$, $q(r', c')$, and $z(r'', c'')$
 * $D(p, q) \geq 0$; $D(p, q) = 0 \iff p = q$
 * $D(p, q) = D(q, p)$
 * $D(p, z) \leq D(p, q) + D(q, z)$
 * A function satisfying only the first two conditions is called *semi-metric*
 • The quadratic distance function $||p - q||^2 = (r - r')^2 + (c - c')^2$ is semi-metric
 - $p = (1, 0)$, $q = (3, 0)$, $r = (2, 0)$
 - $d(p, q) = 4$, $d(q, r) = 1$, $d(p, r) = 1$; $d(p, q) > d(p, r) + d(r, q)$
 - Euclidean distance

 $D_e(p, q) = \sqrt{(r - r')^2 + (c - c')^2}$

 Also represented as $||p - q||$
 * If the number of isothetic moves and diagonal moves are given by n_o and n_d, respectively, the Euclidean distance is given by

 $n_o + n_d \sqrt{2}$
 * The above is known as Freeman formula
 * A practical application of this is to measure the coastline in a map
 * Another measure for this distance is given by Pythagorean theorem as

 $\sqrt{n_o^2 + (n_o + n_d)^2}$
 * Freeman formula overestimates the length of a curve while Pythagorean theorem underestimates it
 - City-block distance (D_4 distance)

 $D_4(p, q) = |r - r'| + |c - c'|$

 Pixels with $D_4 = 1$ are 4-neighbors
 - Chessboard distance (D_8 distance)

 $D_8(p, q) = \max(|r - r'|, |c - c'|)$

 Pixels with $D_8 = 1$ are 8-neighbors
 - D_4 and D_8 distances are independent of any path between points as they are based on just the position of points
 - D_4 always overestimates D_e while D_8 always underestimates D_e; they provide bounds given by

 $0.7D_e < D_8 \leq D_e \leq D_4 < 1.42D_e$
 - D_m distances are based on m-adjacency and depend on the shortest m path between the points
 - Distance metrics are related to the vector norm
 * L^p-norm of a vector $v \in \mathbb{R}^n$ is defined as

 $||v||_p = \left(\sum_{i=1}^{n} |v_i|^p \right)^{\frac{1}{p}}$

 where v_i is the i^{th} element of v
 * Most common values of p are 1, 2, and ∞
 - L^1-norm or absolute value: $||v||_1 = |v_1| + \cdots + |v_n|$; Manhattan distance
 - L^2 norm or Euclidean value: $||v||_2 = \sqrt{v_1^2 + \cdots + v_n^2}$; Euclidean distance
 - L^∞ norm or maximum value: $||v||_\infty = \max |v_1|, \cdots, |v_n|$; chessboard distance
Mathematical tools for digital image processing

- Array vs matrix operations
 - An array operation on images is carried on a per pixel basis
 - Need to make a distinction between array and matrix operations
 - Consider the following 2×2 images
 $$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$$
 - Array product of these two images is
 $$\begin{bmatrix} a_{11} a_{12} \\ a_{21} a_{22} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11} b_{11} & a_{12} b_{12} \\ a_{21} b_{11} & a_{22} b_{22} \end{bmatrix}$$
 - Matrix product is given by
 $$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{bmatrix}$$
 - Assume array operations in this course, unless stated otherwise

- Linear vs nonlinear operations
 - Consider a general operator H that produces an output image $g(r,c)$ for a given input image $f(r,c)$
 $$g(r,c) = H[f(r,c)]$$
 - H is a linear operator if
 $$H[a_i f_i(r,c) + a_j f_j(r,c)] = a_i H[f_i(r,c)] + a_j H[f_j(r,c)]$$
 $$= a_i g_i(r,c) + a_j g_j(r,c)$$
 where a_i and a_j arbitrary constants, and f_i and f_j are two images of the same size
 - Linear operators have the following properties
 - **Additivity** Output of linear operator on the sum of two images is same as the sum of output of linear operator applied to those images individually
 - **Homogeneity** Output of linear operation to constant times an image is the same as constant times the output of linear operation to the images
 - Let H be the summation operator, then, we have
 $$\sum [a_i f_i(r,c) + a_j f_j(r,c)] = \sum a_i f_i(r,c) + \sum a_j f_j(r,c)$$
 $$= a_i \sum f_i(r,c) + a_j \sum f_j(r,c)$$
 $$= a_i g_i(r,c) + a_j g_j(r,c)$$
 showing that summation operator is linear
 - Now consider the max operation to get the maximum value of any pixel in the images, and the following two images
 $$\begin{bmatrix} 0 & 2 \\ 2 & 3 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 6 & 5 \\ 4 & 7 \end{bmatrix}$$
 Let $a_1 = 1$ and $a_2 = -1$
* The left hand side of the equation evaluates to
\[
\max \left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + (-1) \begin{pmatrix} 6 \\ 4 \\ 7 \end{pmatrix} \right\} = \max \left\{ \begin{pmatrix} -6 \\ -2 \\ -3 \end{pmatrix} \right\} = -2
\]

* The right hand side evaluates to
\[
(1) \max \left\{ \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} \right\} + (-1) \max \left\{ \begin{pmatrix} 6 \\ 4 \\ 7 \end{pmatrix} \right\} = 3 + (-1)7 = -4
\]

• Arithmetic operations

 – Array operations between corresponding pixel pairs
 \[
 s(r, c) = f(r, c) + g(r, c)
 d(r, c) = f(r, c) - g(r, c)
 p(r, c) = f(r, c) \times g(r, c)
 v(r, c) = f(r, c) \div g(r, c)
 \]

 – Example: Addition of noisy images for noise reduction
 * Let \(g(r, c) \) denote a corrupted image formed by the addition of uncorrelated noise \(\eta(r, c) \) to a noiseless image \(f(r, c) \)
 \[
 g(r, c) = f(r, c) + \eta(r, c)
 \]
 * Form an average image by averaging \(K \) different noisy images
 \[
 \bar{g}(r, c) = \frac{1}{K} \sum_{i=1}^{K} g_i(r, c)
 \]
 * Since the noise is uncorrelated, the expected value is
 \[
 E\{\bar{g}(r, c)\} = f(r, c)
 \]
 * The variances are related by
 \[
 \sigma_{\bar{g}(r, c)}^2 = \frac{1}{K} \sigma_{\eta(r, c)}^2
 \]
 * The standard deviation at any point in the average image is
 \[
 \sigma_{\bar{g}(r, c)} = \frac{1}{\sqrt{K}} \sigma_{\eta(r, c)}
 \]
 * As \(K \) increases, the variance at each location \((r, c)\) decreases
 * In practice, the images \(g_i(r, c) \) must be registered for expected addition to approach \(f(r, c) \)
 * Image averaging as above is important in astronomy where images under low light level cause sensor noise to render single images virtually useless for analysis
 · Figure 2.29
 * Addition provides a discrete version of continuous integration

 – Image subtraction to enhance differences
 * Figure 2.31
 * Change detection via image subtraction
 * Mask mode radiography
 \[
 g(r, c) = f(r, c) - h(r, c)
 \]
- \(h(x, y) \) is the mask or X-ray image of a patient’s body captured by intensified TV camera, located opposite an X-ray source
- Inject an X-ray contrast medium into a patient’s bloodstream, taking a series of live images, and subtracting the mask from the live stream
- Areas that are different between \(f(r, c) \) and \(h(r, c) \) appear in the output stream as enhanced detail
- Over time, the process shows the propagation of contrast medium through various arteries
- Figure 2.32

- Image multiplication for shading correction
 * Let the sensor produce an image \(g(r, c) \) that is product of a perfect image \(f(r, c) \) with a shading function \(h(r, c) \)
 * If \(h \) is known, we can obtain \(f(r, c) \) by dividing \(g \) by \(h \)
 * We can obtain an approximation to \(h \) by imaging a target of constant intensity
 * Figure 2.33

- Image multiplication for masking or ROI operations
 * Figure 2.34

- Pixel saturation
 * Most image representations used by us are in the range \([0, 255]\)
 * Addition and subtraction may yield values in the range \([-255, 510]\)
 * Change the minimum value of each pixel to 0
 \[f_m = f - \min(f) \]
 * Scale the image in the range \([0, K]\) by
 \[f_s = K\frac{f_m}{\max(f_m)} \]
 * The discussion is applicable to images in ImageMagick that are in the range \([0, \text{MAXRGB}]\)

- Set and logical operations

 - Basic set operations
 * Let \(A \) be a set composed of ordered pairs of real numbers
 * If \(a = (a_1, a_2) \) is an element of \(A \), we say \(a \in A \)
 * If \(a \) is not an element of \(A \), we have \(a \notin A \)
 * The set with no elements in called null or empty set and is denoted by \(\emptyset \)
 * Set is specified by the contents of two braces: \{ · \}
 * \(C = \{ w | w = -d, d \in D \} \)
 * Elements of sets could be coordinates of pixels (ordered pairs) representing regions (objects) in an image
 * If every element of \(A \) is also an element of \(B \), then, \(A \subseteq B \)
 * Union of two sets \(A \) and \(B \) is denoted by \(C = A \cup B \)
 * Intersection of two sets \(A \) and \(B \) is denoted by \(D = A \cap B \)
 * Two sets \(A \) and \(B \) are disjoint or mutually exclusive if they have no common elements, or \(A \cap B = \emptyset \)
 * Set universe \(U \) is the set of all elements in a given application
 - If you are working with the set of real numbers, the set universe is the real line containing all real numbers
 - In image processing, the universe is typically the rectangle containing all pixels in an image
 * Complement of a set is the set of elements not in \(A \)
 \[A^c = \{ w | w \notin A \} \]
 * Difference of two sets \(A \) and \(B \), denoted \(A - B \), is defined as
 \[A - B = \{ w | w \in A, w \notin B \} = A \cap B^c \]
* \(A^c\) can be defined in terms of universe as
\[A^c = U - A\]

* Figure 2.35 for operations with binary images

* Operations with gray scale images

* Above set operations were described with the assumptions that all pixels have one of the two intensity levels – black or white – giving us binary images

* Gray scale image pixels can be represented as a set of 3-tuples \((r, c, m)\) where \(m\) is the magnitude and \(r, c\) are row and column number of pixels

* Define complement of \(A\) as \(A^c = \{(r, c, K - m) | (r, c, m) \in A\}\), and \(K\) is the maximum gray scale value

* Now, the negative of an image is given by its complement

* Union of two gray-scale sets is given by
\[A \cup B = \left\{ \max_m (a, b) | a \in A, b \in B \right\}\]

* Figure 2.36

* Part (c) is result of union of the figure in part (a) with a constant image where all pixels are 3 times the average intensity in part (a)

* Logical operations

* Foreground (1-valued) and background (0-valued) sets of pixels

* Regions or objects can be defined as composed of foreground pixels

* Consider two regions \(A\) and \(B\) composed of foreground pixels

* \(\lor, \land, \text{ and } \neg\) logical operations

* \(\neg A\) is the set of pixels in the image that are not in region \(A\) (background pixels and foreground pixels from regions other than \(A\))

* Figure 2.37

* Fuzzy sets

* Sets with no clear-cut or crisp boundaries

* Classifying people as young and old

* Let \(U\) be the set of all people and \(A \subseteq U\) be the subset of young people

* Membership function to assign a value 0 or 1 to every person in \(U\); if the value is 1, the person is member of \(A\), otherwise he is not

* Want to provide flexibility on the border where a person may be young or not young using a gradual transition

* Allows age to be an imprecise concepts, such as 40% young

* Spatial operations

* Performed directly on the pixels of a given image

* Single pixel operations or Point transformations

* Simplest operation to alter the value of individual pixels based on intensity, with no change in its location

* Expressed as a transform function of the form

\[s = T(z)\]

where \(z\) is the intensity of a pixel in the original image and \(s\) is the intensity of the corresponding pixel in the processed image

* Negative, or complement, of an image
- Neighborhood operations
 - Let S_{rc} denote the set of coordinates of a neighborhood centered at a point (r, c) in an image f
 - Neighborhood processing generates a corresponding pixel at the same coordinates (r, c) by processing all the pixels in S_{rc}
 - Average value of pixels, centered at (r, c) where S_{rc} is delimited by a rectangle of size $m \times n$
 \[
g(r, c) = \frac{1}{mn} \sum_{(r', c') \in S_{rc}} f(r', c')\]
 - Local blurring to eliminate small details, using a neighborhood of size 11×11 pixels

- Geometric spatial transformations and image registration
 - Modify the spatial relationship between pixels in an image
 - Also called rubber-sheet transformations
 - Consists of two basic operations
 1. A spatial transformation of coordinates
 2. Intensity interpolation that assigns intensity values to spatially transformed pixels
 - Flipping and flopping
 - The simplest geometric transformations
 - Flipping involves rotating the image by 180° around horizontal axis
 \[
 \text{for } \{ \ r = 0; r < \text{num}_\text{rows}; r++ \} \\
 \text{for } \{ \ c = 0; c < \text{num}_\text{cols}; c++ \} \\
 \text{img_out}[r][c] = \text{img}[\text{num}_\text{rows}-r-1][c];
 \]
 - Flopping involves rotating the image by 180° around vertical axis
 \[
 \text{for } \{ \ c = 0; c < \text{num}_\text{cols}; c++ \} \\
 \text{for } \{ \ r = 0; r < \text{num}_\text{rows}; r++ \} \\
 \text{img_out}[r][c] = \text{img}[r][\text{num}_\text{cols}-c-1];
 \]
 - The transform can be expressed as
 \[
 (r, c) = T\{(r', c')\}
 \]
 where (r', c') are pixel coordinates in original image and (r, c) are corresponding pixel coordinates in the transformed image
 - The transformation $(r, c) = T\{(r', c')\} = (r'/2, c'/2)$ shrinks the original image to half its size in both directions
 - Affine transform to scale, rotate, translate, or shear a set of coordinate points depending on the value chosen for the elements of matrix T
 \[
 \begin{bmatrix}
 r & c & 1 \\
 \end{bmatrix} = \begin{bmatrix}
 r' & c' & 1 \\
 \end{bmatrix} \begin{bmatrix}
 t_{11} & t_{12} & 0 \\
 t_{21} & t_{22} & 0 \\
 t_{31} & t_{32} & 1 \\
 \end{bmatrix}
 \]
 - Table 2.3 and Figure 2.40
 - Matrix representation allows us to concatenate together a sequence of operations
 - Above transformations allow us to relocate pixels in an image
 - We may also have to change intensity values at the new locations, possibly by intensity interpolation (zooming)

- Image registration
* Estimating the transformation function and use it to register the input and output images
* The image against which we perform registration is called the reference image
* Used when two images need to be aligned when two images of same object are taken at different time or with different sensors
* Tie points or control points
 · Corresponding points whose locations are known precisely in the input images
 · Can be applied manually or detected automatically by sophisticated algorithms
 · Some sensors may produce a set of known points, called reseau marks, directly on images to be used as guides for tie points
* Transformation function can be estimated based on modeling
 · Given a set of four tie points in an input image and a reference image
 · A simple model based on bilinear approximation gives

\[
x = c_1v + c_2w + c_3vw + c_4
\]
\[
y = c_5v + c_6w + c_7vw + c_8
\]

where \((v, w)\) and \((x, y)\) are coordinates of the points in the input and reference images, respectively
 · With four pairs of points, we can write eight equations and use them to solve for the eight unknown coefficients \(c_1, c_2, \ldots, c_8\)
 · The coefficients are the model to transform pixels of one image into locations of the other to achieve registration

- Vector and matrix operations
 - Used routinely in multispectral image processing
 - Each pixel in an RGB Image can be organized in the form of a column vector

\[
z = \begin{bmatrix}
z_1 \\
z_2 \\
z_3
\end{bmatrix}
\]

- An RGB image of size \(M \times N\) can be represented by three component images of this size each, or by a total of \(MN\) 3D vectors
- A general multispectral image with \(n\) component images will give us \(n\)-dimensional vectors
- The Euclidean distance \(D\) between a pixel vector \(z\) and an arbitrary point \(a\) in \(n\)-dimensional space is defined by the vector product

\[
D(z, a) = \sqrt{(z - a)^T(z - a)}
\]

\[
= \sqrt{(z_1 - a_1)^2 + (z_2 - a_2)^2 + \cdots + (z_n - a_n)^2}
\]

- \(D\) is sometime referred to as vector norm and may be denoted by \(||z - a||\)
- Pixel vectors are useful in linear transformations, represented as

\[
w = A(z - a)
\]

where \(A\) is an \(m \times n\) matrix and \(z\) and \(a\) are column vectors of size \(n \times 1\)

- Image transforms
 - All the operations so far work directly on the pixels in spatial domain
 - Some operations may be done by transforming the image into a transformation domain and applying the inverse transform to bring it back to spatial domain
– A 2D linear transform may be expressed in the general form as

\[T(u, v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) r(x, y, u, v) \]

where \(f(x, y) \) is the input image and \(r(x, y, u, v) \) is a forward transformation kernel; the equation is evaluated for \(u = 0, 1, 2, \ldots, M - 1 \) and \(v = 0, 1, 2, \ldots, N - 1 \)

– The image can be transformed back to spatial domain by applying the inverse transform as

\[f(x, y) = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} T(u, v) s(x, y, u, v) \]

– Figure 2.39

• Probabilistic methods

– We may treat intensity values as random quantities

– Let \(z_i = 0, 1, 2, \ldots, L - 1 \) be the values of all possible intensities in an \(M \times N \) image

– The probability \(p(z_k) \) of intensity level \(z_k \) in the image is given by

\[p(z_k) = \frac{n_k}{MN} \]

where \(n_k \) is the number of pixels at intensity level \(z_k \)

– Clearly

\[\sum_{k=0}^{L-1} p(z_k) = 1 \]

– The mean intensity of the image is given by

\[m = \sum_{k=0}^{L-1} z_k p(z_k) \]

– The variance of intensities is

\[\sigma^2 = \sum_{k=0}^{L-1} (z_k - m)^2 p(z_k) \]

* Variance is a measure of spread of values of \(z \) around the mean, so it is a useful measure of image contrast

– \(n \)th moment of random variable \(z \) about the mean is defined as

\[\mu_n(z) = \sum_{k=0}^{L-1} (z_k - m)^n p(z_k) \]

* \(\mu_0(z) = 1 \)
* \(\mu_1(z) = 0 \)
* \(\mu_2(z) = \sigma^2 \)
* Figure 2.41