Color Image Processing

Background

- Humans can perceive thousands of colors, and only about a couple of dozen gray shades (cones/rods)
- Divide into two major areas: full color and pseudo color processing
 - Full color – Image is acquired with a full-color sensor like TV camera or color scanner
 - Pseudo color – Assign a color to a range of monochrome intensities
- The availability of inexpensive and powerful hardware has resulted in the proliferation of applications based on full color processing
- 8-bit color vs 24-bit color
 - Color quantization
- Some of the gray scale image processing methods are directly applicable to color processing but others will need reformulation

Color fundamentals

- Color spectrum/prism
 - Figure 6.1
 - White light divided into different colors
 - Colors blend into each other smoothly (Figure 6.2)
- Color – Perceptual result of light in the visible region of spectrum as incident on the retina
 - 400 nm to 700 nm
 - Visible light is a narrow band of frequencies in the electromagnetic spectrum (Figure 6.2)
 - White light is result of reflected light balanced across all visible wavelengths
 - Reflectance from a body in limited range of visible spectrum is perceived as color
 * Green objects reflect light with wavelength in the 500-570nm range while absorbing other wavelengths
- Characterization of light
 - Achromatic (no color) or monochromatic light characterized by intensity
 - Gray level as a scalar measure of intensity from black to white
- Chromatic light
 - Spans the electromagnetic spectrum from approximately 400–700nm
 - Light source characterized by three quantities
 * Radiance Total amount of energy emitted by light source, measured in watts
 - Physical power of light energy
 - Measures the quantity of radiation that passes through or emitted from a surface and falls within a given solid angle in a specified direction
 - Expressed in a spectral power distribution, often in 31 components, each representing a 10 nm band
 * Brightness Achromatic notion of intensity to describe color sensation
 - Attribute of a visual sensation according to which an area appears to emit more or less light
 - Cannot be measured quantitatively
Luminance Measure of amount of energy as perceived by an observer, measured in lumens or candelas per square meter

* More tractable version of brightness, defined by CIE
* Radiant power weighted by a spectral sensitivity function that is characteristic of vision
* Luminous efficiency peaks at 555nm
* CIE luminance, denoted by Y, is the integral of spectral power distribution, using spectral sensitivity curve as a weighting function
* Magnitude of luminance is proportional to physical power, but spectral composition is related to brightness sensitivity of human vision
* Units of measurement for image processing
 - Normalized to 1 or 100 with respect to a standard white reference
 - $Y = 1$ is the white reference of a studio broadcast monitor whose luminance is 80 cd/m2

- Cones in the eye respond to three colors: red, green, blue
 * 6 to 7 million cones in human eye
 * 65% cones respond to red eye
 * 33% cones respond to green light
 * 2% cones respond to blue light, these being most sensitive
 * Figure 6-03
 * Red, green, and blue are known as primary colors
 - In 1931, CIE designated specific wavelengths for primary colors
 * Red – 700nm
 * Green – 546.1nm
 * Blue – 435.8nm
 - To generate all colors, we may have to vary the wavelengths of primary colors while mixing colors; so the three primary colors are neither fixed nor standard
 - The curves in Fig 6.3 indicate that a single color may be called red, green, or blue

- Secondary colors
 * Created by adding primary colors
 * Cyan = Green + Blue
 * Magenta = Red + Blue
 * Yellow = Red + Green
 * Mixing all three primary colors produces white
 * Fig 6-04
 * The secondary colors are primary colors of pigments, which have red, green, and blue as secondary colors

- How do we represent black? Absence of color.
 * While printing, we need to print black on white
 * Subtractive colors based on pigments
 * Primary color of a pigment is defined as one that absorbs a primary color of light and transmits the other two
 * Given by cyan, magenta, yellow (CMY)
 * A secondary combined with its opposite primary produces black

- Color TV reception
 * Characterized by additive nature of colors
 * Large array of triangular dot patterns of electron sensitive phosphor
 * Intensity of individual phosphors modulated by electron gun, one corresponding to each primary color
 * The same technology is used in the flat panel displays, using three subpixels to generate a color pixel

- Color characterized by three quantities
Hue Dominant color as perceived by an observer (red, orange, or yellow)

Saturation Relative purity of color; pure spectrum colors are fully saturated
 * Saturation is inversely proportional to the amount of white light added

Brightness Achromatic notion of intensity

- Chromaticity
 * Combination of hue and saturation
 * Allows a color to be expressed as its brightness and chromaticity

- Tristimulus values
 * Three types of cones in the eye require three components for each color, using appropriate spectral weighting functions
 - Based on standard curves/functions defined by CIE – Commission Internationale de L’Eclairage
 - Curves specify the transformation of spectral power distribution for each color into three numbers
 * Amount of red, green, and blue to express a color
 * Denoted by X, Y, and Z
 * Color specified by its tristimulus coefficients

\[
\begin{align*}
x &= \frac{X}{X + Y + Z} \\
y &= \frac{Y}{X + Y + Z} \\
z &= \frac{Z}{X + Y + Z}
\end{align*}
\]

* Note that $x + y + z = 1$

- Chromaticity diagram
 * Figure 6-05
 * Color given as a function of x and y
 * The corresponding value of z is obtained by $1 - (x + y)$
 * Points on the boundary are fully saturated colors
 * Saturation at point of equal energy is 0
 * Mainly useful for color mixing
 - Any straight line joining two points defines all the color variations obtained by combining the two colors additively
 - Extension to three colors by using a triangle to connect three points
 - Supports the assertion that not all colors can be obtained with three single, fixed primaries as some of them are outside the triangle
 - Figure 6-06 – Color gamut

Color models

- Also called color space or color system
- Allow the specification of colors in some standard way
- Specification of a coordinate system and a subspace within that system
 - Each color represented by a single point
- Models oriented towards hardware (rendering and scanning) or software (reasoning and applications)
- RGB color model
– Figure 6-07

– Unit cube
 * Based on Cartesian coordinate system
 * All color values are assumed to be normalized to the range \([0,1]\)
 * Colors defined by vectors extending from origin; origin represents black
 * RGB primaries are at the corners that are neighbors to the origin; other corners (at distance 2 from origin) represent secondary colors (CMY)
 * Corner opposite to origin, given by point \((1,1,1)\), represents white
 * Different shades of gray are distributed along the cube diagonal from black to white corners

– Pixel depth – Number of bits used to represent each pixel in RGB space
 * Depth of 24-bits when each color represented by 8 bits in the triplet to represent pixel
 * Figure 6-08

– Rendering an image
 * Images consist of three component images, one for each primary color
 * Figure 6-09
 * Fuse the three color components together

– Acquiring an image
 * Figure 6-09, but in reverse
 * Acquire individual color planes and put them together

– Does not make sense to use all the possible \(2^{24}\) colors in 24-bit space
 * Safe colors
 * Can be reproduced on a variety of devices
 * Likely to be reproduced faithfully, reasonably independent of hardware capabilities
 * Safe RGB colors or safe browser colors
 * Number of colors that can be reproduced faithfully in any system – 256
 * 40 of these colors are known to be processed differently by different OSs
 * Number of colors common to most systems – 216
 * Safe RGB color values
 * Formed from 6 possible values of each component as follows
Number System	Color Equivalents
Hex	00 33 66 99 CC FF
Decimal	00 51 102 153 204 255
 * Each successive color is 51 (0x33) more than its predecessor
 * Triplets give \(6^3 = 216\) possible values
 * Figure 6-10
 * Not all possible 8-bit gray colors are included in the set of 216 colors
 * RGB safe-color cube – Figure 6.11
 * Color safe cube has valid colors only on the surface

• CMY and CMYK color models

 – Primary colors of pigments
 – Pigments subtract light rather than radiate light
 * Illuminating a surface coated with cyan pigment absorbs red component of light
 – Devices that deposit color pigments on paper perform an RGB to CMY conversion internally by a simple operation
 \[
 \begin{bmatrix}
 C \\
 M \\
 Y
 \end{bmatrix} =
 \begin{bmatrix}
 1 \\
 1 \\
 1
 \end{bmatrix}
 \begin{bmatrix}
 R \\
 G \\
 B
 \end{bmatrix}
 \]
Equal contribution of cyan, magenta, and yellow should produce black but in practice, it produces muddy-looking black.

- A fourth color is added, yielding CMYK system

Indexed or palette image

- Uses a fixed number of colors within the color or gray component of an image
- Image values are just indices in a table of color values

HSI color model

- Hue, saturation, intensity
- RGB and CMY models
 - Ideally suited for hardware implementation
 - RGB matches the human eye’s perception for primary colors
 - RGB and CMY not suitable for describing colors for human interpretation
 - Dark or light or pastel colors
 - Humans do not think of color images as being composed of three primary images that form a single image

Human description of images/colors

- In terms of hue, saturation, and brightness
- HSI model decouples intensity component from the color-carrying components (hue and saturation)
 - Ideal tool for developing image processing algorithms
 - Natural and intuitive to humans

Intensity

- Measure over some interval of the electromagnetic spectrum of the flow of power that is radiated from, or incident on, a surface
- Linear light measure, expressed in units such as watts per square meter
- Controlled on a CRT monitor by voltages presented, in a nonlinear manner for each color component
- CRT voltages are not proportional to intensity
- RGB color images can be viewed as three monochrome intensity images
- Extracting intensity from RGB images
 - Stand the RGB color cube on the black vertex, with white vertex directly above it (Figure 6.12a)
 - Line joining the black and white vertices is now vertical
 - Intensity of any color given by intersection of intensity axis and a plane perpendicular to it and intersecting with the color point in cube
 - Saturation of color increases as a function of distance from intensity axis
 - Saturation of points along intensity axis is zero (all points on intensity axis are gray)

Hue

- Color attribute that describes a pure color
- Consider the plane defined by black, white, and cyan (Figure 6.12b)
- Intensity axis is contained within this plane
- All points contained in plane segment given by these three points have the same hue – cyan
- Rotating the plane about the intensity axis gives us different hues
- HSI space is represented by a vertical intensity axis and the locus of color points that lie on planes perpendicular to the axis
 - As planes move up and down on intensity axis, the boundaries of intersection of each plane with the faces of the cube have a triangular or hexagonal shape

Above discussion leads us to conclude that we can convert a color from the RGB values to HSI space by working out the geometrical formulas (Figure 6.13)
* Primary colors are separated by 120°
* Secondary colors are 60° from the primaries
* Hue of a point is determined by an angle from a reference point
 · By convention, reference point is taken as angle from red axis
 · Hue increases counterclockwise from red axis
* Saturation is the length of vector from origin to the point
 · Origin is given by intensity axis

- Figure 6.14 to describe HSI model

- Converting colors from RGB to HSI
 - Consider RGB values normalized to the range [0, 1]
 - Given an RGB value, \(H \) is obtained as follows:

\[
H = \begin{cases}
\theta & \text{if } B \leq G \\
360 - \theta & \text{if } B > G
\end{cases}
\]

- It should be normalized to the range [0, 1] by dividing the quantity computed above by 360
- \(\theta \) is given by

\[
\theta = \cos^{-1}\left\{ \frac{1}{2} \frac{|(R - G) + (R - B)|}{(|R - G| + (R - B)(G - B))^{1/2}} \right\}
\]

- \(\theta \) is measured with respect to red axis of HSI space
 - Saturation is given by

\[
S = 1 - \frac{3}{(R + G + B)} \min(R, G, B)
\]

 - Intensity component is given by

\[
I = \frac{1}{3} (R + G + B)
\]

- Converting colors from HSI to RGB
 - Consider the values of HSI in the interval [0, 1]
 - \(H \) should be multiplied by 360 (or \(2\pi \)) to recover the angle; further computation is based on the value of \(H \)
 - RG sector \(-0^\circ \leq H < 120^\circ\)

\[
\begin{align*}
B &= I(1 - S) \\
R &= I \left[1 + \frac{S \cos H}{\cos(60^\circ - H)} \right] \\
G &= 3I - (R + B)
\end{align*}
\]

 - GB sector \(-120^\circ \leq H < 240^\circ\)

\[
\begin{align*}
H' &= H - 120^\circ \\
R &= I(1 - S) \\
G &= I \left[1 + \frac{S \cos H'}{\cos(60^\circ - H')} \right] \\
B &= 3I - (R + G)
\end{align*}
\]

 - BR sector \(-0^\circ \leq H < 360^\circ\)

\[
\begin{align*}
H' &= H - 240^\circ \\
G &= I(1 - S) \\
B &= I \left[1 + \frac{S \cos H'}{\cos(60^\circ - H')} \right] \\
R &= 3I - (G + B)
\end{align*}
\]
Figure 6.15
- HSI components of RGB cube, plotted separately
- Discontinuity along the 45° line in the hue figure
 * See the reason by going around the middle in Figure 6.8
- Saturation image shows progressively darker values close to the white vertex of RGB cube
- Intensity is simply the average of RGB values at the corresponding pixel

Manipulating HSI component images
- Figure 6.16 – image composed of primary and secondary RGB colors and their HSI equivalents
 * In hue, red region maps to black as its angle is 0°
 * In b, c, and d parts of the image, the pixels are scaled to the range [0,1]
- Individual colors changed by changing the hue image
- Purity of colors changed by varying the saturation
- Figure 6.17a – Change blue and green pixels in Figure 6.16a to 0 (compare with Figure 6.16b)
- Figure 6.17b – Change saturation of cyan component in Figure 6.16c to half
- Figure 6.17c – Reduce the intensity of central white region in Figure 6.16d by half
- Figure 6.17d – Combine the three HSI components back into RGB image

HSV color space
- Projects the RGB color cube onto a non-linear chroma angle (H), a radial saturation percentage (S), and a luminance-inspired value (V)
- Similar to HSI color space
- Used to compare the hue channel in OpenCV

Pseudocolor image processing
- Also known as indexed color
- Assign colors to gray values based on a fixed criteria
 - 216 index entries from 8-bit RGB color system as a $6 \times 6 \times 6$ cube in a direct color system
 - Gives an integer in the range 0 to 5 for each component of RGB
 - Requires less data to encode an image
 - Some graphics file formats, such as GIF and TIFF add an index colormap to the image with gamma-corrected RGB entries
- Used as an aid to human visualization and interpretation of gray-scale events in an image or sequence of images, such as visualizing population density in different areas on a map
- May have nothing to do with processing of true color images
- Intensity slicing
 - Also called density slicing or color coding
 - Slicing planes parallel to horizontal plane in 3D space, with the intensity of image providing the third dimension on image plane
Figure 6.18
* Plane at \(f(x, y) = l \) to slice the image function into two levels
* Assign different colors to area on different sides of the slicing plane
* Relative appearance of the resulting image manipulated by moving the slicing plane up and down the gray-level axis

Technique summary
* Gray scale representation – \([0, L - 1]\)
* Black represented by \(l_0, [f(x, y) = 0] \)
* White represented by \([l_{L-1}, f(x, y) = L - 1] \)
* Define \(P \) planes perpendicular to intensity axis at levels \(l_1, l_2, \ldots, l_P \)
* \(0 < P < L - 1 \)
* \(P \) planes partition the gray scale into \(P + 1 \) intervals as \(V_1, V_2, \ldots, V_{P+1} \)
* Make gray-level to color assignment as
 \[
 f(x, y) = c_k \quad \text{if} \quad f(x, y) \in V_k
 \]
 where \(c_k \) is the color associated with \(k \)th intensity interval \(V_k \) defined by partitioning planes at \(l = k - 1 \) and \(l = k \)

Alternative mapping function to intensity slicing planes
* Figure 6.19
* Staircase form of mapping with multiple levels

Figure 6.20 – Picker Thyroid Phantom (radiation test pattern)
* Intensity slicing image into eight color regions
* Idea is to make it easy to distinguish between shades without assigning any semantic interpretation to the color

Figure 6.21 – Cracks in weld seen through X-ray image
* Full strength of X-rays passing through is assigned one color; everything else a different color

Figure 6.22 – Measurement of rainfall levels

Gray level to color transformations
* Separate independent transformation of gray level inputs to three colors
 Figure 6.23
* Composite image with color content modulated by nature of transformation function
* Piecewise linear functions of gray levels
 Figure 6.24 – Luggage through X-ray scanning system
 * Image on right contains a block of simulated plastic explosives
 Figure 6.25 – Transformation functions used
 * Emphasize ranges in gray scale by changing sinusoidal frequencies

Combining several monochrome images into a single color composite
* Figure 6.26
* Used in multispectral image processing, with different sensors producing individual monochrome images in different spectral bands
 Figure 6.27
 * Images of Washington, DC, and Potomac river in red, green, blue, and near IR bands
 * Image \(f \) generated by replacing the red component of image \(e \) by NIR image
 * NIR strongly responsive to biomass component
* Image \(f \) shows the difference between biomass (red) and man-made features such as concrete and asphalt (bluish green)
 – Figure 6.28
* Jupiter moon Io, using images in several spectral regions by the spacecraft Galileo
* Bright red depicts material recently ejected from an active volcano while surrounding yellow shows older sulfur deposits

Basics of full-color image processing

- Two major categories of processing
 1. Process each component of image (RGB or HSI) individually and then form a composite processed color image
 - Each component can be processed using gray-scale processing techniques
 2. Work with color pixels directly, treating each pixel as a vector

\[
\mathbf{c} = \begin{bmatrix}
 c_R \\
 c_G \\
 c_B
\end{bmatrix} = \begin{bmatrix}
 R \\
 G \\
 B
\end{bmatrix}
\]

- Since each pixel is a function of coordinates \((x, y)\), we have

\[
\mathbf{c}(x, y) = \begin{bmatrix}
 c_R(x, y) \\
 c_G(x, y) \\
 c_B(x, y)
\end{bmatrix} = \begin{bmatrix}
 R(x, y) \\
 G(x, y) \\
 B(x, y)
\end{bmatrix}
\]

- Each component of the vector is a spatial variable in \(x\) and \(y\)
- For an \(M \times N\) image, there are \(MN\) vectors \(\mathbf{c}(x, y)\) for \(x = 0, 1, 2, \ldots, M - 1\) and \(y = 0, 1, 2, \ldots, N - 1\)

- The two methods may or may not produce equivalent results
 - Scalar versus vector operations
 * The process used should be applicable to both scalars and vectors
 * The operation on each component of the vector must be independent of the other components
 - Neighborhood processing will be an example where we get different results (Figure 6.29)
 * Averaging the images separately in individual planes and averaging the vectors will give different results

Color transformations

- Process the components of a color image within the context of a single color model, without converting components to different color space
- Think of an application that needs to brighten a picture
 - Can we achieve this by adding a constant quantity to each of the three RGB channels?
 - This will not only increase the intensity of each pixel but also hue and saturation
 - A better solution will be to manipulate the luminance \(I\) to recompute a valid RGB image with the same hue and saturation
- Formulation
 - Model color transformations using the expression

\[
g(x, y) = T[f(x, y)]
\]

\(T\) is the operator over a spatial neighborhood of \((x, y)\)
– Each \(f(x, y)\) component is a triplet in the chosen color space (Figure 6.29)
– Figure 6.30 – Various color components of an image
– Must consider the cost of converting from one color space to another when looking at the operations
– Modifying intensity of an image in different color spaces, using the transform
 \[g(x, y) = kf(x, y) \]

* In HSI color space, converting a pixel \(h, s, i\) to \(h', s', i'\)
 \[h' = h \]
 \[s' = s \]
 \[i' = ki \]

* In RGB color space, converting a pixel \(r, g, b\) to \(r', g', b'\)
 \[
 \begin{bmatrix}
 r' \\
 g' \\
 b'
 \end{bmatrix}
 = k \cdot
 \begin{bmatrix}
 r \\
 g \\
 b
 \end{bmatrix}
 \]

* In CMY color space
 \[c' = kc + (1 - k) \]
 \[m' = km + (1 - k) \]
 \[y' = ky + (1 - k) \]

– Simple operation in HSI but cost to convert to HSI may not be justifiable
 * Figure 6.31, using \(k = 0.7\)

• Color complements
 – Hues directly opposite one another on the color circle
 * Figure 6.32
 – Analogous to gray scale negatives
 – Can be used to enhance details buried in dark regions of an image
 * Figure 6.33
 * May not have the same saturation in negative image in HSI
 * Figure shows saturation component unaltered

• Color slicing
 – Used to highlight a specific range of colors in an image to separate objects from surroundings
 – Display just the colors of interest, or use the regions defined by specified colors for further processing
 – More complex than gray-level slicing, due to multiple dimensions for each pixel
 – Dependent on the color space chosen; I prefer HSI
 – Using a cube of width \(W\) to enclose the reference color with components \((a_1, a_2, \ldots, a_n)\), the transformation is given by
 \[
 s_i = \begin{cases}
 0.5 & \text{if } \left| r_j - a_j \right| > \frac{W}{2} \text{ for any } 1 \leq j \leq n \\
 r_i & \text{otherwise}
 \end{cases} \quad i = 1, 2, \ldots, n
 \]
 – If the color of interest is specified by a sphere of radius \(R_0\), the transformation is
 \[
 s_i = \begin{cases}
 0.5 & \text{if } \sum_{j=1}^{n} (r_j - a_j)^2 > R_0^2 \\
 r_i & \text{otherwise}
 \end{cases} \quad i = 1, 2, \ldots, n
 \]
• Color balancing
 – Process to compensate for incandescent lighting
 – You can perform color balancing by multiplying each channel with a different scale factor, or by mapping the pixels to XYZ color space, changing the nominal white point, and mapping back to RGB

Tone and color corrections

• Used for photo enhancement and color reproduction
• Device independent color model from CIE relating the color gamuts
• Use a color profile to map each device to color model
• CIE L*a*b* system
 – Most common model for color management systems
 – Components given by the following equations

\[
L^* = 116 \cdot h\left(\frac{Y}{Y_W}\right) - 16
\]
\[
a^* = 500 \left[h\left(\frac{X}{X_W}\right) - h\left(\frac{Y}{Y_W}\right) \right]
\]
\[
b^* = 200 \left[h\left(\frac{Y}{Y_W}\right) - h\left(\frac{Z}{Z_W}\right) \right]
\]

where

\[
h(q) = \begin{cases}
q^\frac{1}{3} & \text{if } q > 0.008856 \\
7.787q + \frac{16}{116} & \text{otherwise}
\end{cases}
\]

– \(X_W, Y_W,\) and \(Z_W\) are values for reference white, called \(D_{65}\) which is defined by \(x = 0.3127\) and \(y = 0.3290\) in the CIE chromaticity diagram
– \(X, Y, Z\) are computed from rgb values as

\[
\begin{bmatrix}
X \\
Y \\
Z
\end{bmatrix} = \begin{bmatrix}
0.412453 & 0.357580 & 0.180423 \\
0.212671 & 0.715160 & 0.072169 \\
0.019334 & 0.119193 & 0.950227
\end{bmatrix} \begin{bmatrix}
R_{709} \\
G_{709} \\
B_{709}
\end{bmatrix}
\]

– Rec. 709 RGB corresponds to \(D_{65}\) white point
– \(L^*a^*b^*\) is calorimetric (colors perceived as matching are encoded identically), perceptually uniform (color differences among various hues are perceived uniformly), and device independent
– Not directly displayable on any device but its gamut covers the entire visible spectrum
– \(L^*a^*b^*\) decouples intensity from color, making it useful for image manipulation (hue and contrast editing) and image compression applications
 – \(L^*\) represents lightness or intensity
 – \(a^*\) gives red minus green
 – \(b^*\) gives green minus blue
– Allows tonal and color imbalances to be corrected interactively and independently
 – Tonal range refers to general distribution of key intensities in an image
 – Adjust image brightness and contrast to provide maximum detail over a range of intensities
 – The colors themselves are not changed
- Figure 6.35 (RGB) and 6.36 (CMYK)

- Color balancing
 - Objectively performed using a color spectrometer
 - Can also be assessed visually using skin tones
 - Adjusting color components
 * Every action affects the overall color balance of the image
 * Perception of a color is affected by surrounding colors
 * Use color wheel (Figure 6.32) to increase the proportion of a color by decreasing the amount of complementary color
 * May also increase the proportion of a color by raising the contribution of its adjacent colors

Histogram processing

- Provides an automated way to perform enhancement
- Histogram equalization
 - Adapt the grayscale technique to multiple components
 - Applying grayscale techniques to different colors independently yields erroneous colors
 - Spread the intensities uniformly leaving the hues unchanged
 - Figure 6.37

Smoothing and sharpening

- Color image smoothing
 - Extend spatial filtering mask to color smoothing, dealing with component vectors
 - Let S_{xy} be the neighborhood centered at (x, y)
 - Average of RGB components in the neighborhood is given by
 \[
 \bar{c}(x, y) = \frac{1}{K} \sum_{(s, t) \in S_{xy}} c(s, t)
 \]
 which is the same as
 \[
 \bar{c}(x, y) = \begin{bmatrix}
 \frac{1}{K} \sum_{(s, t) \in S_{xy}} R(s, t) \\
 \frac{1}{K} \sum_{(s, t) \in S_{xy}} G(s, t) \\
 \frac{1}{K} \sum_{(s, t) \in S_{xy}} B(s, t)
 \end{bmatrix}
 \]
 - Same effect as smoothing each channel separately
 - Figure 6.38, Figure 6.40a
 - Figure 6.39 (HSI components)
 * Figure 6.40b – Smooth only the intensity component
 * Pixel colors do not change as they do with RGB smoothing

- Color image sharpening
 - Use Laplacian
 \[
 \nabla^2 [c(x, y)] = \begin{bmatrix}
 \nabla^2 R(x, y) \\
 \nabla^2 G(x, y) \\
 \nabla^2 B(x, y)
 \end{bmatrix}
 \]
Image segmentation based on color

- Segmentation in HSI color space
 - Color is conveniently represented in hue image
 - Saturation is used as a masking image to isolate regions of interest in the hue image
 - Intensity image used less frequently as it has no color information
 - Example 6.14
 * Segment the reddish region in lower left of Figure 6.42a
 * Figure 6.42e: Binary mask by thresholding the saturation image with 10% of the maximum value in the image
 * Figure 6.42f: Product of hue and thresholded saturation
 * Figure 6.42g: Histogram of Figure 6.42f

- Segmentation in RGB vector space
 - Create an estimate of the average color to be segmented as vector \(\mathbf{a} \)
 - Let \(\mathbf{z} \) be an arbitrary point in the RGB color space
 - \(\mathbf{z} \) is similar to \(\mathbf{a} \) if the Euclidean distance between them is less than specified threshold \(D_0 \)

 \[
 D(\mathbf{z}, \mathbf{a}) = ||\mathbf{z} - \mathbf{a}||
 = \left[(\mathbf{z} - \mathbf{a})^T(\mathbf{z} - \mathbf{a}) \right]^{\frac{1}{2}}
 = \left[(z_R - a_R)^2 + (z_G - z_G)^2 + (z_B - a_B)^2 \right]^{\frac{1}{2}}

 - Figure 6.43
 - Example 6.15: Figure 6.44

Image File Formats

- Files used to store, archive, and exchange image data
 - Standardized file formats facilitate the exchange of images and allow different applications to read those images

- Criteria to select appropriate file format
 - Image type
 * Binary, grayscale, or color images
 * Document scans, floating point images
 * Maximum image size for satellite images
 - Storage size and compression
 * Lossy or lossless compression
 - Compatibility
 * Exchange of image data with others and across applications
 * Long-term machine readability of data
 - Application domain
 * Print, web, film, graphics, medicine, astronomy

- Raster vs vector data
– All images considered thus far have been raster images
– Vector graphics represent geometric objects using continuous coordinates
 * The objects are rasterized when they need to be displayed on a physical device
– Used to encode geodata for navigation systems

- Tagged Image File Format (TIFF)
 – Supports grayscale, indexed, and true color images
 – A single file may contain a number of images with different properties
 – Provides a range of different compression methods (LZW, ZIP, CCITT, and JPEG), and color spaces
 – You can create new image types and information blocks by defining new tags
 * Proprietary tags may not be always supported leading to “unsupported tag” error
 * Web browsers do not natively support TIFF

- Graphics Interchange Format (GIF)
 – Originally designed by CompuServe in 1986
 – Provided early support for indexed color at various bit depths
 – Provided LZW compression, interlaced image loading, and ability to encode simple animations by storing a number of images in a single file for sequential display
 – Does not support true color images
 – Allows pixels to be encoded using fewer bits
 – Uses lossless color quantization and lossless LZW compression

- Portable Network Graphics (PNG)
 – Developed as a replacement for GIF because of licensing issues
 – Supports three different types of images
 1. True color, with up to 3×16 bpp
 2. Grayscale, with up to 16 bpp
 3. Indexed, with up to 256 colors
 – Also may include an α-channel for transparency with a maximum width of 16 bits
 * α-channel of a GIF image is only 1 bit
 – Supports only one image per file, with maximum size as $2^{30} \times 2^{30}$ pixels
 * Cannot support animation like GIF
 – Supports lossless compression by a variation of PKZIP but no lossy compression

- Joint Photographic Experts Group (JPEG)
 – Goal to achieve average data reduction of 1:16
 – Supports images with up to 256 color components
 – Three steps in the core algorithm for RGB images
 1. Color conversion and down sampling
 * Transform from RGB to YCbCr space; Y is brightness while the other two components are color
 * Human visual system is less sensitive to rapid color change; compress color components more to achieve significant data reduction without a perceptive change in image quality
 2. Cosine transform and quantization in frequency space
 * Image is divided into a regular grid of 8×8 blocks
 * Compute frequency spectrum of each block using discrete cosine transform
The 64 spectral components of each block are quantized into a quantization table
- Reduce high frequency components and recompute them during decompression

3. Lossless compression
 - Compress quantized spectral component data stream using arithmetic or Huffman encoding
 - Not a good choice for images such as line drawings