Background

- Humans can perceive thousands of colors, and only about a couple of dozen gray shades (cones/rods)
- Divide into two major areas: full color and pseudo color processing
 - Full color Image is acquired with a full-color sensor like TV camera or color scanner
 - Pseudo color Assign a color to a range of monochrome intensities
 - The availability of inexpensive and powerful hardware has resulted in the proliferation of applications based on full color processing
- 8-bit color vs 24-bit color
 - Color quantization
- Some of the gray scale image processing methods are directly applicable to color processing but others will need reformulation

Color fundamentals

- Color spectrum/prism
 - Figure 7.1
 - White light divided into different colors
 - Colors blend into each other smoothly (Figure 7.2)
- Color Perceptual result of light in the visible region of spectrum as incident on the retina
 - 400 nm to 700 nm
 - Visible light is a narrow band of frequencies in the electromagnetic spectrum (Figure 6.2)
 - White light is result of reflected light balanced across all visible wavelengths
 - Reflectance from a body in limited range of viible spectrum is perceived as color
 - * Green objects reflect light with wavelength in the 500-570nm range while absorbing other wavelengths
- · Characterization of light
 - Achromatic (no color) or monochromatic light characterized by intensity
 - Gray level as a scalar measure of intensity from black to white
- · Chromatic light
 - Spans the electromagnetic spectrum from approximately 400–700nm
 - Light source characterized by three quantities

Radiance Total amount of energy emitted by light source

- * Physical power of light energy, measured in watts
- * Directional quantity
- * Measures the quantity of radiation that passes through or emitted from a surface and falls within a given solid angle in a specified direction
- * Expressed in a spectral power distribution, often in 31 components, each representing a 10 nm band
- * Historically, also called intensity

Brightness Achromatic notion of intensity to describe color sensation

- * Attribute of a visual sensation according to which an area appears to emit more or less light
- * Subjective attribute of an object being observed
- * Cannot be measured quantitatively

Luminance Measure of amount of energy as *perceived* by an observer, measured in lumens or candelas per square meter

- * Light may contain a lot of energy in IR bands but that is not perceptible to the observer
- * More tractable version of brightness, defined by CIE
- * Radiant power weighted by a spectral sensitivity function that is characteristic of vision
- * Luminous efficiency peaks at 555nm
- * CIE luminance, denoted by Y, is the integral of spectral power distribution, using spectral sensitivity curve as a weighting function
- * Magnitude of luminance is proportional to physical power, but spectral composition is related to brightness sensitivity of human vision
- * Units of measurement for image processing
 - · Normalized to 1 or 100 with respect to a standard white reference
 - $\cdot Y = 1$ is the white reference of a studio broadcast monitor whose luminance is 80 cd/m^2
- Cones in the eye respond to three colors: red, green, blue
 - * 6 to 7 million cones in human eye
 - * 65% cones respond to red eye
 - * 33% cones respond to green light
 - * 2% cones respond to blue light, these being most sensitive
 - * Figure 7.3
 - * Red, green, and blue are known as primary colors
 - · In 1931, CIE designated specific wavelengths for primary colors
 - · Red 700nm
 - · Green 546.1nm
 - · Blue 435.8nm
 - · To generate all colors, we may have to vary the wavelengths of primary colors while mixing colors; so the three primary colors are neither fixed nor standard
 - · The curves in Figure 7.3 indicate that a single color may be called red, green, or blue
- Secondary colors
 - * Created by adding primary colors
 - * Cyan = Green + Blue
 - * Magenta = Red + Blue
 - * Yellow = Red + Green
 - * Mixing all three primary colors produces white
 - * Figure 7.4
 - * The secondary colors are primary colors of pigments, which have red, green, and blue as secondary colors
- How do we represent black? Absence of color.
 - * While printing, we need to print black on white
 - * Subtractive colors based on pigments
 - * Primary color of a pigment is defined as one that absorbs a primary color of light and transmits the other two
 - * Given by cyan, magenta, yellow (CMY)
 - * A secondary combined with its opposite primary produces black
- Color TV reception
 - * Characterized by additive nature of colors

- * Large array of triangular dot patterns of electron sensitive phosphor
- * Intensity of individual phosphors modulated by electron gun, one corresponding to each primary color
- * The same technology is used in the flat panel displays, using three subpixels to generate a color pixel
- * LCDs use properties of polarized light to block/pass light through LCD screen
 - · Active matrix display technology uses thin film transistors to provide proper signal to each pixel on screen
- Color characterized by three quantities

Hue Dominant color as perceived by an observer (red, orange, or yellow)

Saturation Relative purity of color; pure spectrum colors are fully saturated

* Saturation is inversely proportional to the amount of white light added

Brightness Achromatic notion of intensity

- Chromaticity
 - * Combination of hue and saturation
 - * Allows a color to be expressed as its brightness and chromaticity
- Tristimulus values
 - * Three types of cones in the eye require three components for each color, using appropriate spectral weighting functions
 - · Based on standard curves/functions defined by CIE Commission Internationale de L'Éclairage
 - · Curves specify the transformation of spectral power distribution for each color into three numbers
 - * Amount of red, green, and blue to express a color
 - * Denoted by X, Y, and Z
 - * Color specified by its tristimulus coefficients

$$x = \frac{X}{X + Y + Z}$$

$$y = \frac{Y}{X + Y + Z}$$

$$z = \frac{Z}{X + Y + Z}$$

- * Note that x + y + z = 1
- * Any wavelength of light in visible spectrum may be expressed by its tristimulus values from curves or tables compiled from experimental results
- Chromaticity diagram
 - * Figure 7.5
 - * Color given as a function of x and y
 - * The corresponding value of z is obtained by 1 (x + y)
 - * Points on the boundary are fully saturated colors
 - * Saturation at point of equal energy is 0
 - * Mainly useful for color mixing
 - Any straight line joining two points defines all the color variations obtained by combining the two colors additively
 - · Extension to three colors by using a triangle to connect three points
 - · Supports the assertion that not all colors can be obtained with three single, fixed primaries as some of them are outside the triangle
 - Figure 7.6 Color gamut
 Triangle encloses colors produced by RGB monitors
 Shaded region inside the gamut shows the colors printed by high quality printers

Color models

- · Also called color space or color system
- Allow the specification of colors in some standard way
- · Specification of a coordinate system and a subspace within that system
 - Each color represented by a single point
- Models oriented towards hardware (rendering and scanning) or software (reasoning and applications)
 - RGB for monitors/cameras
 - CMY and CMYK for printing
 - HSI for human-like reasoning and interpretation
- · RGB color model
 - Figure 7.7
 - Unit cube
 - * Based on Cartesian coordinate system
 - * All color values are assumed to be normalized to the range [0,1]
 - * Colors defined by vectors extending from origin; origin represents black
 - * RGB primaries are at the corners that are neighbors to the origin; other corners (at distance 2 from origin) represent secondary colors (CMY)
 - * Corner opposite to origin, given by point (1,1,1), represents white
 - * Different shades of gray are distributed along the cube diagonal from black to white corners
 - Pixel depth Number of bits used to represent each pixel in RGB space
 - * Depth of 24-bits when each color represented by 8 bits in the triplet to represent pixel
 - * Figure 6-08
 - Rendering an image
 - * Images consist of three component images, one for each primary color
 - * Figure 6-09
 - * Fuse the three color components together
 - Acquiring an image
 - * Figure 6-09, but in reverse
 - * Acquire individual color planes and put them together
 - Does not make sense to use all the possible 2^{24} colors in 24-bit space
 - * Safe colors
 - · Can be reproduced on a variety of devices
 - · Likely to be reproduced faithfully, reasonably independent of hardware capabilities
 - * Safe RGBcolors or safe browser colors
 - · Number of colors that can be reproduced faithfully in any system 256
 - · 40 of these colors are known to be processed differently by different OSs
 - · Number of colors common to most systems 216
 - * Safe RGB color values
 - · Formed from 6 possible values of each component as follows

Number System	Color Equivalents					
Hex	00	33	66	99	CC	FF
Decimal	00	51	102	153	204	255

- · Each successive color is 51 (0x33) more than its predecessor
- · Triplets give $6^3 = 216$ possible values
- · Figure 6-10
- · Not all possible 8-bit gray colors are included in the set of 216 colors
- · RGB safe-color cube Figure 6.11
- · Color safe cube has valid colors only on the surface
- · CMY and CMYK color models
 - Primary colors of pigments
 - Pigments subtract light rather than radiate light
 - * Illuminating a surface coated with cyan pigment absorbs red component of light
 - Devices that deposit color pigments on paper perform an RGB to CMY conversion internally by a simple operation

$$\left[\begin{array}{c} C\\ M\\ Y \end{array}\right] = \left[\begin{array}{c} 1\\1\\1 \end{array}\right] - \left[\begin{array}{c} R\\G\\B \end{array}\right]$$

- Equal contribution of cyan, magenta, and yellow should produce black but in practice, it produces muddy-looking black
 - * This may be also due to the fact that the CMY inks may not be pure
 - * A fourth color is added, yielding CMYK system
- Conversion from CMY to CMYK

$$K = \min(C, M, Y)$$

*K = 1 implies no color contribution, or

$$C = 0$$

$$M = 0$$

$$Y = 0$$

* If $K \neq 1$

$$C = (C - K)/(1 - K)$$

$$M = (M - K)/(1 - K)$$

$$Y = (Y - K)/(1 - K)$$

- Conversion from CMYK back to CMY

$$C = C \times (1 - K) + K$$

$$M = M \times (1 - K) + K$$

$$Y = Y \times (1 - K) + K$$

- Indexed or palette image
 - Uses a fixed number of colors within the color or gray component of an image
 - Image values are just indices in a table of color values
- HSI color model
 - Hue, saturation, intensity
 - RGB and CMY models
 - * Ideally suited for hardware implementation

- * RGB matches the human eye's perception for primary colors
- * RGB and CMY not suitable for describing colors for human interpretation
- * Dark or light or pastel colors
- * Humans do not think of color images as being composed of three primary images that form a single images
- Human description of images/colors
 - * In terms of hue, saturation, and brightness
- HSI model decouples intensity component from the color-carrying components (hue and saturation)
 - * Ideal tool for developing image processing algorithms
 - * Natural and intuitive to humans

- Intensity

- * Measure over some interval of the electromagnetic spectrum of the flow of power that is radiated from, or incident on, a surface
- * Linear light measure, expressed in units such as watts per square meter
- * Controlled on a CRT monitor by voltages presented, in a nonlinear manner for each color component
- * CRT voltages are not proportional to intensity
- * RGB color images can be viewed as three monochrome intensity images
- * Extracting intensity from RGB images
 - · Stand the RGB color cube on the black vertex, with white vertex directly above it (Figure 7.10a)
 - · Line joining the black and white vertices is now vertical
 - · Intensity of any color given by intersection of intensity axis and a plane perpendicular to it and intersecting with the color point in cube
 - · Saturation of color increases as a function of distance from intensity axis
 - · Saturation of points along intensity axis is zero (all points on intensity axis are gray)

- Hue

- * Color attribute that describes a pure color
- * Consider the plane defined by black, white, and cyan (Figure 7.10b)
- * Intensity axis is contained within this plane
- * All points contained in plane segment given by these three points have the same hue cyan
- * Rotating the plane about the intensity axis gives us different hues
- * HSI space is represented by a vertical intensity axis and the locus of color points that lie on planes perpendicular to the axis
 - · As planes move up and down on intensity axis, the boundaries of intersection of each plane with the faces of the cube have a triangular or hexagonal shape
- Above discussion leads us to conclude that we can convert a color from the RGB values to HSI space by working out the geometrical formulas (Figure 7.11)
 - * Primary colors are separated by 120°
 - * Secondary colors are 60° from the primaries
 - * Hue of a point is determined by an angle from a reference point
 - · By convention, reference point is taken as angle from red axis
 - · Hue increases counterclockwise from red axis
 - * Saturation is the length of vector from origin to the point
 - · Origin is given by intensity axis
- Figure 7.12 to describe HSI model
- Converting colors from RGB to HSI
 - Consider RGB values normalized to the range [0, 1]

- Given an RGB value, H is obtained as follows:

$$H = \left\{ \begin{array}{ll} \theta & \text{if } B \le G \\ 360 - \theta & \text{if } B > G \end{array} \right.$$

* It should be normalized to the range [0,1] by dividing the quantity computed above by 360

- θ is given by

$$\theta = \cos^{-1} \left\{ \frac{\frac{1}{2} \left[(R - G) + (R - B) \right]}{\left[(R - G)^2 + (R - B)(G - B) \right]^{1/2}} \right\}$$

- * θ is measured with respect to red axis of HSI space
- Saturation is given by

$$S = 1 - \frac{3}{(R+G+B)}[\min(R, G, B)]$$

- Intensity component is given by

$$I = \frac{1}{3}(R + G + B)$$

- Converting colors from HSI to RGB
 - Consider the values of HSI in the interval [0, 1]
 - H should be multiplied by 360 (or 2π) to recover the angle; further computation is based on the value of H
 - RG sector $0^{\circ} \le H < 120^{\circ}$

$$B = I(1-S)$$

$$R = I\left[1 + \frac{S\cos H}{\cos(60^{\circ} - H)}\right]$$

$$G = 3I - (R+B)$$

– GB sector – $120^{\circ} \le H < 240^{\circ}$

$$H' = H - 120^{\circ}$$

$$R = I(1 - S)$$

$$G = I\left[1 + \frac{S\cos H'}{\cos(60^{\circ} - H')}\right]$$

$$B = 3I - (R + G)$$

– BR sector – $0^{\circ} \le H < 360^{\circ}$

$$H' = H - 240^{\circ}$$

$$G = I(1 - S)$$

$$B = I\left[1 + \frac{S\cos H'}{\cos(60^{\circ} - H')}\right]$$

$$R = 3I - (G + B)$$

- Figure 7.13
 - HSI components of RGB cube, plotted separately
 - Discontinuity along the 45° line in the hue figure
 - * See the reason by going around the middle in Figure 7.8
 - Saturation image shows progressively darker values close to the white vertex of RGB cube
 - Intensity is simply the average of RGB values at the corresponding pixel

- Manipulating HSI component images
 - Figure 7.14 image composed of primary and secondary RGB colors and their HSI equivalents
 - * In hue, red region maps to black as its angle is 0°
 - * In b, c, and d parts of the image, the pixels are scaled to the range [0,1]
 - Individual colors changed by changing the hue image
 - Purity of colors changed by varying the saturation
 - Figure 7.15a Change blue and green pixels in Figure 7.14a to 0 (compare with Figure 7.14b)
 - Figure 7.15b Change saturation of cyan component in Figure 7.14c to half
 - Figure 7.15c Reduce the intensity of central white region in Figure 7.14d by half
 - Figure 7.15d Combine the three HSI components back into RGB image

HSV color space

- Projects the RGB color cube onto a non-linear chroma angle (H), a radial saturation percentage (S), and a luminance-inspired value (V)
- Similar to HSI color space
- Used to compare the hue channel in OpenCV

Pseudocolor image processing

- · Also known as indexed color or false color
- · Assign colors to gray values based on a fixed criteria
 - 216 index entries from 8-bit RGB color system as a $6 \times 6 \times 6$ cube in a direct color system
 - Gives an integer in the range 0 to 5 for each component of RGB
 - Requires less data to encode an image
 - Some graphics file formats, such as GIF and TIFF add an index colormap to the image with gamma-corrected RGB entries
- Used as an aid to human visualization and interpretation of gray-scale events in an image or sequence of images, such as visualizing population density or temperature in different areas on a map

$$g(x,y) = \begin{cases} \text{ OXFF0000} & \text{if } g(x,y) > 100 \\ \text{ OXFF00FF} & \text{if } 90 < g(x,y) \leq 100 \\ \text{ OXFFFF00} & \text{if } 80 < g(x,y) \leq 90 \\ \text{ OX00FF00} & \text{if } 70 < g(x,y) \leq 80 \\ \text{ OX00FFFF} & \text{if } 60 < g(x,y) \leq 70 \\ \text{ OX0000FF} & \text{otherwise} \end{cases}$$

- May have nothing to do with processing of true color images
- · Intensity slicing
 - Also called density slicing or color coding
 - Slicing planes parallel to horizontal plane in 3D space, with the intensity of image providing the third dimension on image plane
 - * Figure 7.16

- * Plane at $f(x,y) = l_i$ to slice the image function into two levels
- * Assign different colors to area on different sides of the slicing plane
- Relative appearance of the resulting image manipulated by moving the slicing plane up and down the gray-level axis
- Technique summary
 - * Gray scale representation [0, L-1]
 - * Black represented by l_0 , [f(x,y) = 0]
 - * White represented by $[l_{L-1}]$, [f(x,y) = L-1]
 - * Define P planes perpendicular to intensity axis at levels l_1, l_2, \ldots, l_P
 - * 0 < P < L 1
 - * P planes partition the gray scale into P+1 intervals as $I_1, I_2, \ldots, I_{P+1}$
 - * Make gray-level to color assignment as

$$f(x,y) = c_k$$
 if $f(x,y) \in I_k$

where c_k is the color associated with kth intensity interval I_k defined by partitioning planes at l = k - 1 and l = k

- Alternative mapping function to intensity slicing planes
 - * Figure 7.17
 - * Staircase form of mapping with multiple levels
- Figure 7.18 Picker Thyroid Phantom (radiation test pattern)
 - * Intensity slicing image into eight color regions
 - * Idea is to make it easy to distinguish between shades without assigning any semantic interpretation to the color
 - * Characteristics of intensity variations in grayscale image are more apparent by varying the number of colors and the span of intensity intervals
- Figure 7.19
 - * Full strength of X-rays passing through is assigned one color; everything else a different color
- Figure 7.20 Measurement of rainfall levels
- Current temperature map of US
- · Gray level to color transformations
 - Separate independent transformation of gray level inputs to three colors
 - Figure 7.21
 - Composite image with color content modulated by nature of transformation function
 - Piecewise linear functions of gray levels
 - Figure 7.22 Luggage through X-ray scanning system
 - * Image on right contains a block of simulated plastic explosives
 - * Figure 7.23 Transformation functions used
 - * Emphasize ranges in gray scale by changing sinusoidal frequencies
- Combining several monochrome images into a single color composite
 - Figure 7.24
 - Used in multispectral image processing, with different sensors producing individual monochrome images in different spectral bands
 - Figure 7.25
 - * Images of Washington, DC, and Potomac river in red, green, blue, and near IR bands

- * Image f generated by replacing the red component of image e by NIR image
 - · NIR strongly responsive to biomass component
- * Image f shows the difference between biomass (red) and man-made features such as concrete and asphalt (bluish green)
- Figure 7.26
 - * Jupiter moon Io, using images in several spectral regions by the spacecraft Galileo
 - Bright red depicts material recently ejected from an active volcano while surrounding yellow shows older sulfur deposits
- · Chroma key compositing or Chroma keying
 - Used in movies and TV broadcasting to separate foreground from background to blend multiple images
 - Make a color range in the foreground region transparent, and insert separately filmed background footage into the scene
 - Most common use is weather forecasting using green screen
 - * Green (or blue) color used more often because they are distinct from human skin tones
 - * The camera is most sensitive to the green light
 - * Notice that the weatherman will never appear in a green tie or any other green-colored dress
 - Produce a mask by thresholding the amount of green color

$$M(x,y) = \left\{ \begin{array}{ll} 1 & \text{if } I_G(x,y) > \tau \\ 0 & \text{otherwise} \end{array} \right.$$

- Example of memes with Melania Trump during Republican National Convention

Basics of full-color image processing

- Two major categories of processing
 - 1. Process each component of image (RGB or HSI) individually and then form a composite processed color image
 - Each component can be processed using gray-scale processing techniques
 - 2. Work with color pixels directly, treating each pixel as a vector

Color vector
$$\mathbf{c} = \begin{bmatrix} c_R \\ c_G \\ c_B \end{bmatrix} = \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

- Since each pixel is a function of coordinates (x, y), we have

$$\mathbf{c}(x,y) = \begin{bmatrix} c_R(x,y) \\ c_G(x,y) \\ c_B(x,y) \end{bmatrix} = \begin{bmatrix} R(x,y) \\ G(x,y) \\ B(x,y) \end{bmatrix}$$

- Each component of the vector is a *spatial* variable in x and y
- For an $M \times N$ image, there are MN vectors $\mathbf{c}(x,y)$ for $x=0,1,2,\ldots,M-1$ and $y=0,1,2,\ldots,N-1$
- As the data in a pixel contains two or more components, we need a third dimension to represent the pixel, leading to the term *voxel*, or *volumetric pixel*
- The two methods may or may not produce equivalent results
 - Scalar versus vector operations
 - * The process used should be applicable to both scalars and vectors

- * The operation on each component of the vector must be independent of the other components
- Neighborhood processing may be an example where we get similar or different results (Figure 7.27)
 - * Averaging the images separately in individual planes and averaging the vectors will give the same result

Color transformations

- Process the components of a color image within the context of a single color model, without converting components to different color space
- Think of an application that needs to brighten a picture
 - Can we achieve this by adding a constant quantity to each of the three RGB channels?
 - This will not only increase the intensity of each pixel but also hue and saturation
 - A better solution will be to manipulate the luminance I to recompute a valid RGB image with the same hue and saturation
- Formulation
 - Model color transformations using the expression

$$g_i(x,y) = T_i[f_i(x,y)]$$
 $i = 1, 2, ..., n$

n is the number of component images or channels, T_i is the set of transformation (or color mapping functions) over a spatial neighborhood of (x, y)

- For RGB images, each f(x, y) component is a triplet in the chosen color space (Figure 7.27)
- The subscript i for T indicates that each component may have a different transform
- Figure 7.28 Various color components of an image
 - * The transform T_i may be applied to any component of the image
- Must consider the cost of converting from one color space to another when looking at the operations
- Modifying intensity of an image in different color spaces, using the transform

$$g(x,y) = kf(x,y)$$

* In HSI color space, converting a pixel h, s, i to h', s', i'

$$h' = h$$

$$s' = s$$

$$i' = ki$$

* In RGB color space, converting a pixel r, g, b to r', g', b'

$$\left[\begin{array}{c} r'\\g'\\b'\end{array}\right] = k \cdot \left[\begin{array}{c} r\\g\\b\end{array}\right]$$

* In CMY color space

$$c' = kc + (1 - k)$$

$$m' = km + (1 - k)$$

$$y' = ky + (1 - k)$$

* In CMYK space

$$g_i(x,y) = \begin{cases} f_i(x,y) & i = 1, 2, 3\\ kf_i(x,y) + (1-k) & i = 4 \end{cases}$$

- Simple operation in HSI but cost to convert to HSI may not be justifiable
 - * Figure 7.29, using k = 0.7
- Application of transform to each component is independent of other components
- Color complements
 - Hues directly opposite one another on the color circle
 - * Figure 7.30
 - Analogous to gray scale negatives
 - Can be used to enhance details buried in dark regions of an image
 - Figure 7.31
 - * May not have the same saturation in negative image in HSI
 - * Figure shows saturation component unaltered
- · Color slicing
 - Used to highlight a specific range of colors in an image to separate objects from surroundings
 - Display just the colors of interest, or use the regions defined by specified colors for further processing
 - More complex than gray-level slicing, due to multiple dimensions for each pixel
 - * Practical color-slicing approaches require each pixel's transformed components to be a function of all components of the original pixel
 - Dependent on the color space chosen; I prefer HSI
 - Mapping unwanted colors (outside of specified range) to a neutral color
 - * Use a cube (or hypercube) of width W to enclose the reference color with components (a_1, a_2, \dots, a_n)
 - * Transformation is given by

$$s_i = \left\{ \begin{array}{ll} 0.5 & \text{if } \left[|r_j - a_j| > \frac{W}{2} \right]_{\text{any } 1 \leq j \leq n} & i = 1, 2, \dots, n \\ r_i & \text{otherwise} \end{array} \right.$$

* If the color of interest is specified by a sphere of radius R_0 , the transformation is

$$s_i = \begin{cases} 0.5 & \text{if } \sum_{j=1}^{n} (r_j - a_j)^2 > R_0^2 \\ r_i & \text{otherwise} \end{cases}$$
 $i = 1, 2, \dots, n$

- * Figure 7.32 Separate the strawberries in Figure 7.29a
 - · Select RGB color (0.6863, 0.1608, 0.1922)
 - W = 0.2549, R = 0.1765
- · Color balancing
 - Process to compensate for incandescent lighting
 - You can perform color balancing by multiplying each channel with a different scale factor, or by mapping the pixels to XYZ color space, changing the nominal white point, and mapping back to RGB

Tone and color corrections

- Used for photo enhancement and color reproduction
 - Tonal range of an image
 - * Also called key-type
 - * Gives general distribution of color intensities

- * High key, middle key, and low key images
- * Distribute intensities equally between highlights and shadows
- Device independent color model from CIE relating the color gamuts
- Use a color profile to map each device to color model
- CIE L*a*b* system
 - Most common model for color management systems
 - Components given by the following equations

$$L* = 116 \cdot h\left(\frac{Y}{Y_W}\right) - 16$$

$$a* = 500 \left[h\left(\frac{X}{X_W}\right) - h\left(\frac{Y}{Y_W}\right) \right]$$

$$b* = 200 \left[h\left(\frac{Y}{Y_W}\right) - h\left(\frac{Z}{Z_W}\right) \right]$$

where

$$h(q) = \begin{cases} q^{\frac{1}{3}} & \text{if } q > 0.008856\\ 7.787q + \frac{16}{116} & \text{otherwise} \end{cases}$$

- X_W , Y_W , and Z_W are values for reference white, called D_{65} which is defined by x=0.3127 and y=0.3290 in the CIE chromaticity diagram
- -X, Y, Z are computed from RGB values as

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} 0.412453 & 0.357580 & 0.180423 \\ 0.212671 & 0.715160 & 0.072169 \\ 0.019334 & 0.119193 & 0.950227 \end{bmatrix} \begin{bmatrix} R_{709} \\ G_{709} \\ B_{709} \end{bmatrix}$$

- * Rec. 709 RGB corresponds to D_{65} white point
- L*a*b* is calorimetric (colors perceived as matching are encoded identically), perceptually uniform (color differences among various hues are perceived uniformly), and device independent
- Not directly displayable on any device but its gamut covers the entire visible spectrum
- L*a*b* decouples intensity from color, making it useful for image manipulation (hue and contrast editing) and image compression applications
 - * L* represents lightness or intensity
 - * a* gives red minus green
 - * b* gives green minus blue
- Allows tonal and color imbalances to be corrected interactively and independently
 - * Tonal range refers to general distribution of key intensities in an image
 - · Adjust image brightness and contrast to provide maximum detail over a range of intensities
 - · The colors themselves are not changed
- Figure 7.33
 - * Typical RGB transformations to correct three common tonal imbalances flat, light, and dark images
 - * Keys in the images are visually evident; they may be computed using histograms of color components
- Color balancing
 - Objectively performed using a color spectrometer
 - Can also be assessed visually using skin tones (Figure 7.34)

- Adjusting color components
 - * Every action affects the overall color balance of the image
 - * Perception of a color is affected by surrounding colors
 - Use color wheel (Figure 7.30) to increase the proportion of a color by decreasing the amount of complementary color
 - * May also increase the proportion of a color by raising the contribution of its adjacent colors

Histogram processing

- · Provides an automated way to perform enhancement
- Histogram equalization
 - Adapt the grayscale technique to multiple components
 - Applying grayscale techniques to different colors independently yields erroneous colors
 - Spread the intensities uniformly leaving the hues unchanged
 - Figure 7.35 histogram equalization followed by saturation adjustment in HSI color space

Compositing

- Used for special effects in movies; blend live action with graphics
- · Method to blend two layers into one another
- Dissolving
 - Simplest effect
 - Given two images I_1 and I_2 of the same saize
 - Their weighted combination is given by

$$I'(x,y) = w_1 I_1(x,y) + w_2 I_2(x,y)$$

- w_1 and w_2 are scalar weights with the condition that $w_1 + w_2 = 1$
- Changing w_1 slowly from 1 to 0, with w_2 computed as $1-w_1$ slowly dissolves the first image into the second
- · Compositing with binary masks
 - Let the two images be accompanied by binary masks M_1 and M_2 to define the support of pixels
 - * M(x,y) = 1 if I(x,y) is valid
 - * M(x,y) = 0 if I(x,y) is invalid
 - * The main idea is to work just with the valid pixels
 - Binary masks allows for four cases for any given pixel in two images
 - $M_1(x,y) = M_2(x,y) = 0 \Rightarrow$ output pixel mask M'(x,y) = 0, or both inputs are invalid; value of input pixels is irrelevant
 - $M_1(x,y) = 0, M_2(x,y) = 1 \implies$ output pixel mask can be 0 (invalid) or 1 (valid); set output pixel to the only valid input $I_2(x,y)$
 - $M_1(x,y) = 1, M_2(x,y) = 0 \Rightarrow$ output pixel mask can be 0 (invalid) or 1 (valid); set output pixel to the only valid input $I_1(x,y)$
 - $M_1(x,y) = 1, M_2(x,y) = 1$ leads to three choices: output pixel can be selected from $I_1(x,y)$ or $I_2(x,y)$ or neither

- The binary masks give us 1 choice for the first, 2 choices for the second and third, and three choices for the fourth case
 - * This leads to $1 \cdot 2 \cdot 2 \cdot 3 = 12$ possible ways to combine two images with binary masks
 - * The 12 compositing operators are known as *Porter-Duff* operators
 - · With I_1 and I_2 as the input images and I' as the output image, the operators can be summarized as

Operator	Output $I'(x,y)$	Mask $M'(x,y)$
clear	0	0
$\mathtt{copy}\ I_1$	$I_1(x,y)$	$M_1(x,y)$
$\mathtt{copy}\ I_2$	$I_2(x,y)$	$M_2(x,y)$
I_1 over I_2	$(I_1 \wedge M_1) \vee (I_2 \wedge M_2 \wedge \neg M_1)$	$M_1 \vee M_2$
I_1 in I_2	I_1	$M_1 \wedge \neg M_2$
I_1 out I_2	I_1	$M_1 \wedge \neg M_2$

· Blend Modes

Smoothing and sharpening

- · Color image smoothing
 - Extend grayscale spatial filtering mask to color smoothing, dealing with component vectors
 - Let S_{xy} be the neighborhood centered at (x, y) in an RGB color image
 - Average of RGB components in the neighborhood is given by

$$\bar{\mathbf{c}}(x,y) = \frac{1}{K} \sum_{(s,t) \in S_{xy}} \mathbf{c}(s,t)$$

which is the same as

$$\bar{\mathbf{c}}(x,y) = \begin{bmatrix} \frac{1}{K} \sum_{(s,t) \in S_{xy}} R(s,t) \\ \frac{1}{K} \sum_{(s,t) \in S_{xy}} G(s,t) \\ \frac{1}{K} \sum_{(s,t) \in S_{xy}} B(s,t) \end{bmatrix}$$

- Same effect as smoothing each channel separately
- Figure 7.36 (RGB components), Figure 7.37 (HSI components)
 - * Figure 7.38a Smooth each component of RGB image independently
 - * Figure 7.38b Smooth only the intensity component of HSI
 - * Pixel colors do not change as they do with RGB smoothing
 - * Figure 7.38c Difference between the two smoothed out images
 - * More efficient to smooth in HSI; difference from RGB becomes more pronounced with increase in kernel size
- · Color image sharpening
 - Use Laplacian

$$\nabla^{2}[\mathbf{c}(x,y)] = \begin{bmatrix} \nabla^{2}R(x,y) \\ \nabla^{2}G(x,y) \\ \nabla^{2}B(x,y) \end{bmatrix}$$

- Figure 7.39
 - * a: Laplacian applied to RGB components independently
 - * b: Laplacian applied to just the intensity component of HSI
 - * c: Difference between the two sharpened images

- Segmentation partitions images into regions
- · Segmentation in HSI color space
 - Color is conveniently represented in hue component
 - Saturation is used as a masking image to isolate regions of interest in the hue component
 - Intensity image used less frequently as it has no color information
 - Example 7.14
 - * Segment the reddish region in lower left of Figure 7.40a
 - * Figure 7.40e: Binary mask by thresholding the saturation image with 10% of the maximum value in the image
 - * Figure 7.40f: Product of hue and thresholded saturation
 - * Figure 7.40g: Histogram of Figure 7.40f
- Segmentation in RGB vector space
 - Create an estimate of the average color to be segmented as vector a
 - Let z be an arbitrary point in the RGB color space
 - z is similar to a if the Euclidean distance between them is less than specified threshold D_0

$$D(\mathbf{z}, \mathbf{a}) = ||\mathbf{z} - \mathbf{a}||$$

$$= [(\mathbf{z} - \mathbf{a})^T (\mathbf{z} - \mathbf{a})]^{\frac{1}{2}}$$

$$= [(\mathbf{z}_R - \mathbf{a}_R)^2 + (\mathbf{z}_G - \mathbf{a}_G)^2 + (\mathbf{z}_B - \mathbf{a}_B)^2]^{\frac{1}{2}}$$

- Locus of points such that $D(\mathbf{z}, \mathbf{a}) < D_0$ is a solid sphere of radius D_0 (Figure 7.41a)
- Simple generalization provided by

$$D(\mathbf{z}, \mathbf{a}) = [(\mathbf{z} - \mathbf{a})^T \mathbf{C}^{-1} (\mathbf{z} - \mathbf{a})]^{\frac{1}{2}}$$

where C is the covariance matrix of samples chosen to represent color range to be segmented

- * Locus of points such that $D(\mathbf{z}, \mathbf{a}) \leq D_0$ is a solid ellpsoid with principal axis oriented in the direction of maximum data spread (Figure 7.41a)
- * When C = I, the ellipsoid reduces to sphere
- Distances are positive and monotonic
 - * We can work with square of the distance to avoid computationally expensive square roots
 - * Still, the computations are expensive for images of practical size
 - * Compromise by using a bounding box (Figure 7.41c)
 - * Box is centered on **a**, with dimensions along the color axes proportional to the standard deviation of the samples along each axis
 - * A given color point is segmented based on whether it is inside the box
- Example 7.15
 - * Figure 7.42
 - * Color to be segmented selected by rectangular region inside Figure 7.42a
 - * Compute mean vector **a** of the shades in the rectangle
 - * Compute the standard deviation of the red, green, and blue components

Color Edge Detection

- · Computing edges in individual component planes in the image
 - Edge detection by gradient operator for image sharpening

- * May not work with vector data for pixels
- * Working on separate color channels and combining the result may not work either
- * Figure 7.43
 - · Results may be acceptable but not accurate
- Define the gradient (magnitude and direction) of the vector \mathbf{c} at any point (x, y)
 - * For a scalar function f(x,y), gradient is a vector pointing in the direction of maximum rate of change of f at coordinates (x,y)
 - * Let r, g, and b be the unit vectors along the R, G, and B axes of RGB color space
 - * Define the vectors

$$\mathbf{u} = \frac{\partial R}{\partial x}\mathbf{r} + \frac{\partial G}{\partial x}\mathbf{g} + \frac{\partial B}{\partial x}\mathbf{b}$$
$$\mathbf{v} = \frac{\partial R}{\partial y}\mathbf{r} + \frac{\partial G}{\partial y}\mathbf{g} + \frac{\partial B}{\partial y}\mathbf{b}$$

* The gradients are defined as the dot product of these vectors as

$$g_{xx} = \mathbf{u} \cdot \mathbf{u} = \mathbf{u}^T \mathbf{u} = \left| \frac{\partial R}{\partial x} \right|^2 + \left| \frac{\partial G}{\partial x} \right|^2 + \left| \frac{\partial B}{\partial x} \right|^2$$
$$g_{yy} = \mathbf{v} \cdot \mathbf{v} = \mathbf{v}^T \mathbf{v} = \left| \frac{\partial R}{\partial y} \right|^2 + \left| \frac{\partial G}{\partial y} \right|^2 + \left| \frac{\partial B}{\partial y} \right|^2$$
$$g_{xy} = \mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v} = \frac{\partial R}{\partial x} \frac{\partial R}{\partial y} + \frac{\partial G}{\partial x} \frac{\partial G}{\partial y} + \frac{\partial B}{\partial x} \frac{\partial B}{\partial y}$$

* Direction of maximum rate of change of c(x, y) is given by

$$\theta(x,y) = \frac{1}{2} \tan^{-1} \left[\frac{2g_{xy}}{g_{xx} - g_{yy}} \right]$$

* Value of the rate of change at (x, y) in the direction of $\theta(x, y)$ is given by

$$F_{\theta}(x,y) = \left\{ \frac{1}{2} \left[(g_{xx} + g_{yy}) + (g_{xx} - g_{yy}) \cos 2\theta(x,y) + 2g_{xy} \sin 2\theta(x,y) \right] \right\}^{\frac{1}{2}}$$

- * Since $tan(\alpha) = tan(\alpha \pm \pi)$, if θ_0 is a solution to the equation for θ above, so is $\theta_0 \pm \pi/2$
 - · Additionally, $F_{\theta} = F_{\theta+\pi}$
 - · The equation for θ gives two values 90° apart, or a pair of orthogonal directions
 - \cdot F is maximum along one direction and minimum along the other
- Example 7.16 Edge detection in RGB vector space
 - * FIgure 7.44

Image File Formats

- · Files used to store, archive, and exchange image data
 - Standardized file formats facilitate the exchange of images and allow different applications to read those images
- Criteria to select appropriate file format
 - Image type
 - * Binary, grayscale, or color images
 - * Document scans, floating point images
 - * Maximum image size for satellite images
 - Storage size and compression

- * Lossy or lossless compression
- Compatibility
 - * Exchange of image data with others and across applications
 - * Long-term machine readability of data
- Application domain
 - * Print, web, film, graphics, medicine, astronomy
- · Raster vs vector data
 - All images considered thus far have been raster images
 - Vector graphics represent geometric objects using continuous coordinates
 - * The objects are rasterized when they need to be displayed on a physical device
 - Used to encode geodata for navigation systems
- Tagged Image File Format (TIFF)
 - Supports grayscale, indexed, and true color images
 - A single file may contain a number of images with different properties
 - Provides a range of different compression methods (LZW, ZIP, CCITT, and JPEG), and color spaces
 - You can create new image types and information blocks by defining new tags
 - * Proprietary tags may not be always supported leading to "unsupported tag" error
 - * Web browsers do not natively support TIFF
- Graphics Interchange Format (GIF)
 - Originally designed by CompuServe in 1986
 - Provided early support for indexed color at various bit depths
 - Provided LZW compression, interlaced image loading, and ability to encode simple animations by storing a number of images in a single file for sequential display
 - Does not support true color images
 - Allows pixels to be encoded using fewer bits
 - Uses lossless color quantization and lossless LZW compression
- Portable Network Graphics (PNG)
 - Developed as a replacement for GIF because of licensing issues
 - Supports three different types of images
 - 1. True color, with up to 3×16 bpp
 - 2. Grayscale, with up to 16 bpp
 - 3. Indexed, with up to 256 colors
 - Also may include an α -channel for transparency with a maximum width of 16 bits
 - * α -channel of a GIF image is only 1 bit
 - Supports only one image per file, with maximum size as $2^{30} \times 2^{30}$ pixels
 - * Cannot support animation like GIF
 - Supports lossless compression by a variation of PKZIP but no lossy compression
- Joint Photographic Experts Group (JPEG)
 - Goal to achieve average data reduction of 1:16
 - Supports images with up to 256 color components

- Three steps in the core algorithm for RGB images
 - 1. Color conversion and down sampling
 - * Transform from RGB to YC_bC_r space; Y is brightness while the other two components are color
 - * Human visual system is less sensitive to rapid color change; compress color components more to achieve significant data reduction without a perceptive change in image quality
 - 2. Cosine transform and quantization in frequency space
 - * Image is divided into a regular grid of 8×8 blocks
 - * Compute frequency spectrum of each block using discrete cosine transform
 - * The 64 spectral components of each block are quantized into a quantization table
 - * Reduce high frequency compnents and recompute them during decompression
 - 3. Lossless compression
 - * Compress quantized spectral component data stream using arithmetic or Huffman encoding
- Not a good choice for images such as line drawings