$\mathcal{N} \mathcal{P}$-Hard and $\mathcal{N} \mathcal{P}$-Complete Problems

Basic concepts

- Solvability of algorithms
- There are algorithms for which there is no known solution, for example, Turing's Halting Problem
* Decision problem
* Given an arbitrary deterministic algorithm A and a finite input I
* Will A with input I ever terminate, or enter an infinite loop?
* Alan Turing proved that a general algorithm to solve the halting problem for all possible program-input pairs cannot exist
- Halting problem cannot be solved by any computer, no matter how much time is provided * In algorithmic terms, there is no algorithm of any complexity to solve this problem
- Efficient algorithms
- Efficiency measured in terms of speed
- For some problems, there is no known efficient solution
- Distinction between problems that can be solved in polynomial time and problems for which no polynomial time algorithm is known
- Problems classified to belong to one of the two groups

1. Problems with solution times bound by a polynomial of a small degree

- Most searching and sorting algorithms
- Also called tractable algorithms
- For example, ordered search $(O(\lg n))$, polynomial evaluation $(O(n))$, sorting $(O(n \log n))$

2. Problems with best known algorithms not bound by a polynomial

- Hard, or intractable, problems
- Traveling salesperson $\left(O\left(n^{2} 2^{n}\right)\right)$, knapsack $\left(O\left(2^{n / 2}\right)\right)$
- None of the problems in this group has been solved by any polynomial time algorithm
- $\mathcal{N} \mathcal{P}$-complete problems
* No efficient algorithm for an $\mathcal{N} \mathcal{P}$-complete problem has ever been found; but nobody has been able to prove that such as algorithm does not exist
- $\mathcal{P} \neq \mathcal{N} \mathcal{P}$
* Famous open problem in Computer Science since 1971
- Theory of $\mathcal{N} \mathcal{P}$-completeness
- Show that many of the problems with no polynomial time algorithms are computationally related
- The group of problems is further subdivided into two classes
$\mathcal{N} \mathcal{P}$-complete. A problem that is $\mathcal{N} \mathcal{P}$-complete can be solved in polynomial time iff all other $\mathcal{N} \mathcal{P}$-complete problems can also be solved in polynomial time
$\mathcal{N} \mathcal{P}$-hard. If an $\mathcal{N} \mathcal{P}$-hard problem can be solved in polynomial time then all $\mathcal{N} \mathcal{P}$-complete problems can also be solved in polynomial time
- All $\mathcal{N} \mathcal{P}$-complete problems are $\mathcal{N} \mathcal{P}$-hard but some $\mathcal{N} \mathcal{P}$-hard problems are known not to be $\mathcal{N} \mathcal{P}$-complete

$$
\mathcal{N} \mathcal{P} \text {-complete } \subset \mathcal{N} \mathcal{P} \text {-hard }
$$

- \mathcal{P} vs $\mathcal{N} \mathcal{P}$ problems
- The problems in class \mathcal{P} can be solved in $O\left(N^{k}\right)$ time, for some constant k (polynomial time)
- The problems in class $\mathcal{N P}$ can be verified in polynomial time
* If we are given a certificate of a solution, we can verify that the certificate is correct in polynomial time in the size of input to the problem
- Some polynomial-time solvable problems look very similar to $\mathcal{N} \mathcal{P}$-complete problems
- Shortest vs longest simple path between vertices
* Shortest path from a single source in a directed graph $G=(V, E)$ can be found in $O(V E)$ time
* Finding the longest path between two vertices is $\mathcal{N} \mathcal{P}$-complete, even if the weight of each edge is 1
- Euler tour vs Hamiltonian cycle
* Euler tour of a connected directed graph $G=(V, E)$ is a cycle that traverses each edge of G exactly once, although it may visit a vertex more than once; it can be determined in $O(E)$ time
* A Hamiltonian cycle of a directed graph $G=(V, E)$ is a simple cycle that contains each vertex in V
- Determining whether a directed graph has a Hamiltonian cycle is $\mathcal{N} \mathcal{P}$-complete
- The solution is given by the sequence $\left\langle v_{1}, v_{2}, \ldots, v_{|V|}\right\rangle$ such that for each $1 \leq i<|V|,\left(v_{i}, v_{i+1}\right) \in E$
. The certificate would be the above sequence of vertices
- It is easy to check in polynomial time that the edges formed by the above sequence are in E, and so is the edge $v_{|V|}, v_{1}$.
- 2-CNF satisfiability vs. 3-CNF satisfiability
* Boolean formula has variables that can take value true or false
* The variables are connected by operators \wedge, \vee, and \neg
* A Boolean formula is satisfiable if there exists some assignment of values to its variables that cause it to evaluate it to true
* A Boolean formula is in k-conjunctive normal form (k-CNF) if it is the AND of clauses of ors of exactly k variables or their negations
* 2-CNF: $\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{3}\right) \wedge\left(\neg x_{2} \vee \neg x_{3}\right)$
- Satisfied by $x_{1}=$ true, $x_{2}=$ false, $x_{3}=$ true
* We can determine in polynomial time whether a 2 -CNF formula is satisfiable but satisfiability of a 3-CNF formula is $\mathcal{N P}$-complete
$-\mathcal{P} \subseteq \mathcal{N} \mathcal{P}$
* Any problem in \mathcal{P} can be solved in polynomial time even without the certificate
* The open question is whether or not $\mathcal{P} \subset \mathcal{N} \mathcal{P}$
- Showing problems to be $\mathcal{N} \mathcal{P}$-complete
- A problem is $\mathcal{N} \mathcal{P}$-complete if it is in $\mathcal{N P}$ and is as "hard" as any problem in $\mathcal{N} \mathcal{P}$
- If any $\mathcal{N} \mathcal{P}$-complete problem can be solved in polynomial time, then every $\mathcal{N} \mathcal{P}$-complete problem has a polynomial time algorithm
- Analyze an algorithm to show how hard it is (instead of how easy it is)
- Show that no efficient algorithm is likely to exist for the problem
* As a designer, if you can show a problem to be $\mathcal{N} \mathcal{P}$-complete, you provide the proof for its intractability
* You can spend your time to develop an approximation algorithm rather than searching for a fast algorithm that can solve the problem exactly
- Proof in terms of $\Omega(n)$
- Decision problems vs optimization problems

Definition 1 Any problem for which the answer is either zero or one is called a decision problem. An algorithm for a decision problem is termed a decision algorithm.

Definition 2 Any problem that involves the identification of an optimal (either minimum or maximum) value of a given cost function is known as an optimization problem. An optimization algorithm is used to solve an optimization problem.

- Optimization problems

* Each feasible solution has an associated value; the goal is to find a feasible solution with the best value
* SHORTEST PATH problem
- Given an undirected graph G and vertics u and v
- Find a path from u to v that uses the fewest edges
- Single-pair shortest-path problem in an undirected, unweighted graph

- Decision problems

* The problem gives an answer as "yes" or "no"
* Decision problem is assumed to be easier (or no harder) to solve compared to the optimization problem
* Decision problem can be solved in polynomial time if and only if the corresponding optimization problem can
- If the decision problem cannot be solved in polynomial time, the optimization problem cannot be solved in polynomial time either
- $\mathcal{N} \mathcal{P}$-complete problems confined to the realm of decision problems
* Cast an optimization problem as a related decision problem by imposing a bound on the value to be optimized
* PATH problem as related to SHORTEST PATH problem
- Given a directed graph G, vertices u and v, and an integer k, is there a path from u to v with at most k edges?
* Relationship between an optimization problem and its related decision problem
- Try to show that the optimization problem is "hard"
- Or that the decision problem is "easier" or "no harder"
- We can solve PATH by solving SHORTEST PATH and then comparing the number of edges to k
- If an optimization problem is easy, its decision problem is easy as well
- In NP-completeness, if we can provide evidence that a decision problem is hard, we can also provide evidence that its related optimization problem is hard
- Reductions
* Showing that one problem is no harder or no easier than another also applicable when both problems are decision problems
* $\mathcal{N P}$-completeness proof - general steps
- Consider a decision problem A; we'll like to solve it in polynomial time
- Instance: input to a particular problem; for example, in PATH, an instance is a particular graph G, two particular variables u and v in G, and a particular integer k
- Suppose that we know how to solve a different decision problem B in polynomial time
- Suppose that we have a procedure that transforms any instance α of A into some instance β of B with following characteristics:
Transformation take polynomial time
Both answers are the same; the answer for α is a "yes" iff the answer for β is a "yes"
* The above procedure is called a polynomial time reduction algorithm and provides us a way to solve problem A in polynomial time

1. Given an instance α of A, use a polynomial-time reduction algorithm to transform it to an instance β of B
2. Run polynomial-time decision algorithm for B on instance β
3. Use the answer for β as the answer for α

* Using polynomial-time reductions to show that no polynomial-time algorithm can exist for a particular problem B
- Suppose we have a decision problem A for which we already know that no polynomial-time algorithm can exist
- Suppose that we have a polynomialtime reduction transforming instances of A to instances of B
- Simple proof that no polynomial-time algorithm can exist for B
- Nondeterministic algorithms

- Deterministic algorithms

* Algorithms with uniquely defined results
* Predictable in terms of output for a certain input
- Nondeterministic algorithms are allowed to contain operations whose outcomes are limited to a given set of possibilities instead of being uniquely defined
- Specified with the help of three new $O(1)$ functions

1. choice (S)

* Arbitrarily chooses one of the elements of set S
* $\mathrm{x}=\operatorname{choice}(1, \mathrm{n})$ can result in x being assigned any of the integers in the range $[1, n]$, in a completely arbitrary manner
* No rule to specify how this choice is to be made

2. failure()

* Signals unsuccessful completion of a computation
* Cannot be used as a return value

3. success()

* Signals successful completion of a computation
* Cannot be used as a return value
* If there is a set of choices that leads to a successful completion, then one choice from this set must be made
- A nondeterministic algorithm terminates unsuccessfully iff there exist no set of choices leading to a success signal
- A machine capable of executing a nondeterministic algorithm as above is called a nondeterministic machine
- Nondeterministic search of x in an unordered array A with $n \geq 1$ elements
* Determine an index j such that $A[j]=x$ or $j=-1$ if $x \notin A$

```
algorithm nd_search ( A, n, x )
{
// Non-deterministic search
// Input: A: Array to be searched
// Input: n: Number of elements in A
// Input: x: Item to be searched for
// Output: Returns -1 if item does not exist, index of item otherwise
    int j = choice ( 0, n-1 );
    if (A[j] == x )
    {
        cout << j;
        success();
    }
    cout << -1;
    failure();
}
```

* By the definition of nondeterministic algorithm, the output is -1 iff there is no j such that $A[j]=x$
* Since A is not ordered, every deterministic search algorithm is of complexity $\Omega(n)$, whereas the nondeterministic algorithm has the complexity as $O(1)$
- Nondeterministic sorting algorithm

```
// Sort n positive integers in nondecreasing order
algorithm nd_sort ( A, n )
{
```

```
// Initialize B[]; B is used for convenience
// It is initialized to O though any value not in A[] will suffice
for ( i = 0; i < n; B[i++] = 0; );
for ( i = 0; i < n; i++ )
{
        j = choice ( 0, n - 1 );
        // Make sure that B[j] has not been used already
        if ( B[j] != 0 ) failure();
        B[j] = A[i];
}
// Verify order
for ( i = 0; i < n-1; i++ )
        if ( B[i] > B[i+1] ) failure();
write ( B );
success();
}
- Complexity of nd_sort is \(\Theta(n)\)
* Best-known deterministic sorting algorithm has a complexity of \(\Omega(n \lg n)\)
- Deterministic interpretation of nondeterministic algorithm
```

* Possible by allowing unbounded parallelism in computation
* Imagine making n copies of the search instance above, all running in parallel and searching at different index values for x
- The first copy to reach success () terminates all other copies
- If a copy reaches failure (), only that copy is terminated
* In abstract terms, nondeterministic machine has the capability to recognize the correct solution from a set of allowable choices, without making copies of the program
- Possible to construct nondeterministic algorithms for many different choice sequences leading to successful completions (see nd_sort)
- If the numbers in A are not unique, many different permutations will result into sorted sequence
- We'll limit ourselves to problems that result in a unique output, or decision algorithms
* A decision algorithm will output 0 or 1
* Implicit in the signals success () and failure ()
- Output from a decision algorithm is uniquely defined by input parameters and algorithm specification
- An optimization problem may have many feasible solutions
- The problem is to find out the feasible solution with the best associated value
- $\mathcal{N} \mathcal{P}$-completeness applies directly not to optimization problems but to decision problems
- Example: Maximal clique
- Clique is a maximal complete subgraph of a graph $G=(V, E)$
- Size of a clique is the number of vertices in it
- Maximal clique problem is an optimization problem that has to determine the size of a largest clique in G
- Corresponding decision problem is to determine whether G has a clique of size at least k for some given k
- Let us denote the deterministic decision algorithm for the clique decision problem as dclique (G, k)
- If $|V|=n$, the size of a maximal clique can be found by

```
for ( k = n; dclique ( G, k ) != 1; k-- );
```

- If time complexity of dclique is $f(n)$, size of maximal clique can be found in time $g(n) \leq n f(n)$
* Decision problem can be solved in time $g(n)$
- Maximal clique problem can be solved in polynomial time iff the clique decision problem can be solved in polynomial time
- Example: 0/1 knapsack
- Is there a $0 / 1$ assignment of values to $x_{i}, 1 \leq i \leq n$, such that $\sum p_{i} x_{i} \geq r$ and $\sum w_{i} x_{i} \leq m$, for given m and r, and nonnegative p_{i} and w_{i}
- If the knapsack decision problem cannot be solved in deterministic polynomial time, then the optimization problem cannot either
- Comment on uniform parameter n to measure complexity
- $n \in \mathcal{N}$ is length of input to algorithm, or input size
* All inputs are assumed to be integers
* Rational inputs can be specified by pairs of integers
- n is expressed in binary representation
* $n=10_{10}$ is expressed as $n=1010_{2}$ with length 4
* Length of a positive integer k_{10} is given by $\left\lfloor\log _{2} k\right\rfloor+1$ bits
* Length of 0_{2} is 1
* Length of the input to an algorithm is the sum of lengths of the individual numbers being input
* Length of input in radix r for k_{10} is given by $\left\lfloor\log _{r} k\right\rfloor+1$
* Length of 100_{10} is $\log _{10} 100+1=3$
* Finding length of any input using radix $r>1$
- $\log _{r} k=\log _{2} k / \log _{2} r$
- Length is given by $c(r) n$ where n is the length using binary representation and $c(r)$ is a number fixed for r
- Input in radix 1 is in unary form
* $5_{10}=11111_{1}$
* Length of a positive integer k is k
* Length of a unary input is exponentially related to the length of the corresponding r-ary input for radix $r, r>1$
- Maximal clique, again
- Input can be provided as a sequence of edges and an integer k
- Each edge in $E(G)$ is a pair of vertices, represented by numbers (i, j)
- Size of input for each edge (i, j) in binary representation is $\left\lfloor\log _{2} i\right\rfloor+\left\lfloor\log _{2} j\right\rfloor+2$
- Input size of any instance is

$$
n=\sum_{\substack{(i, j) \in E(G) \\ i<j}}\left(\left\lfloor\log _{2} i\right\rfloor+\left\lfloor\log _{2} j\right\rfloor+2\right)+\left\lfloor\log _{2} k\right\rfloor+1
$$

k is the number to indicate the clique size

- If G has only one connected component, then $n \geq|V|$
- If this decision problem cannot be solved by an algorithm of complexity $p(n)$ for some polynomial $p()$, then it cannot be solved by an algorithm of complexity $p(|V|)$
- 0/1 knapsack
- Input size $q(q>n)$ for knapsack decision problem is

$$
q=\sum_{1 \leq i \leq n}\left(\left\lfloor\log _{2} p_{i}\right\rfloor+\left\lfloor\log _{2} w_{i}\right\rfloor\right)+2 n+\left\lfloor\log _{2} m\right\rfloor+\left\lfloor\log _{2} r\right\rfloor+2
$$

- If the input is given in unary notation, then input size $s=\sum p_{i}+\sum w_{i}+m+r$
- Knapsack decision and optimization problems can be solved in time $p(s)$ for some polynomial $p()$ (dynamic programming algorithm)
- However, there is no known algorithm with complexity $O(p(n))$ for some polynomial $p()$

Definition 3 The time required by a nondeterministic algorithm performing on any given input is the minimum number of steps needed to reach a successful completion if there exists a sequence of choices leading to such a completion. In case successful completion is not possible, then the time required is $O(1)$. A nondeterministic algorithm is of complexity $O(f(n))$ if for all inputs of size $n, n \geq n_{0}$, that result in a successful completion, the time required is at most $c f(n)$ for some constants c and n_{0}.

- Above definition assumes that each computation step is of a fixed cost
* Guaranteed by the finiteness of each word in word-oriented computers
- If a step is not of fixed cost, it is necessary to consider the cost of individual instructions
* Addition of two m-bit numbers takes $O(m)$ time
* Multiplication of two m-bit numbers takes $O\left(m^{2}\right)$ time
- Consider the deterministic decision algorithm to get sum of subsets

```
algorithm sum_of_subsets ( A, n, m )
{
// Input: A is an array of integers
// Input: n is the size of the array
// Input: m gives the index of maximum bit in the word
    s = 1 // s is an m+1 bit word
    // bit 0 is always 1
    for i = 1 to n
            s |= ( s << A[i] ) // shift s left by A[i] bits
    if bit m in s is l
        write ( "A subset sums to m" );
        else
        write ( "No subset sums to m" );
}
```

* Bits are numbered from 0 to m from right to left
* Bit i will be 0 if and only if no subsets of $A[j], 1 \leq j \leq n$ sums to i
* Bit 0 is always 1 and bits are numbered $0,1,2, \ldots, m$ right to left
* Number of steps for this algorithm is $O(n)$
* Each step moves $m+1$ bits of data and would take $O(m)$ time on a conventional computer
* Assuming one unit of time for each basic operation for a fixed word size, the complexity of deterministic algorithm is $O(n m)$
- Knapsack decision problem
- Non-deterministic polynomial time algorithm for knapsack problem

```
algorithm nd_knapsack ( p, w, n, m, r, x )
{
// Input: p: Array to indicate profit for each item
// Input: w: Array to indicate weight of each item
// Input: n: Number of items
// Input: m: Total capacity of the knapsack
// Input: r: Expected profit from the knapsack
// Output: x: Array to indicate whether corresponding item is carried or not
    W = 0;
    P = 0;
    for ( i = 1; i <= n; i++ )
    {
        x[i] = choice ( 0, 1 );
        W += x[i] * w[i];
        P += x[i] * p[i];
    }
    if ( ( W > m ) || ( P < r ) )
        failure();
    else
        success();
}
```

- The for loop selects or discards each of the n items
- It also recomputes the total weight and profit coresponding to the selection
- The if statement checks to see the feasibility of assignment and whether the profit is above a lower bound r
- The time complexity of the algorithm is $O(n)$
- If the input length is q in binary, time complexity is $O(q)$
- Maximal clique
- Nondeterministic algorithm for clique decision problem
- Begin by trying to form a set of k distinct vertices
- Test to see if they form a complete subgraph
- Satisfiability
- Let x_{1}, x_{2}, \ldots denote a set of boolean variables
- Let \bar{x}_{i} denote the complement of x_{i}
- A variable or its complement is called a literal
- A formula in propositional calculus is an expression that is constructed by connecting literals using the operations and (\wedge) and or (\vee)
- Examples of formulas in propositional calculus

$$
\begin{aligned}
& *\left(x_{1} \wedge x_{2}\right) \vee\left(x_{3} \wedge \overline{x_{4}}\right) \\
& *\left(x_{3} \vee \overline{x_{4}}\right) \wedge\left(x_{1} \vee \overline{x_{2}}\right)
\end{aligned}
$$

- Conjunctive normal form (CNF)
* A formula is in CNF iff it is represented as $\wedge_{i=1}^{k} c_{i}$, where c_{i} are clauses represented as $\vee l_{i j} ; l_{i j}$ are literals
- Disjunctive normal form (DNF)
* A formula is in DNF iff it is represented as $\vee_{i=1}^{k} c_{i}$, where c_{i} are clauses represented as $\wedge l_{i j}$
- Satisfiability problem is to determine whether a formula is true for some assignment of truth values to the variables * CNF-satisfiability is the satisfiability problem for CNF formulas
- Polynomial time nondeterministic algorithm that terminates successfully iff a given propositional formula $E\left(x_{1}, \ldots, x_{n}\right)$ is satisfiable
* Nondeterministically choose one of the 2^{n} possible assignments of truth values to $\left(x_{1}, \ldots, x_{n}\right)$
* Verify that $E\left(x_{1}, \ldots, x_{n}\right)$ is true for that assignment
algorithm eval (E, n)
\{
// Determine whether the propositional formula E is satisfiable.
// Variable are x1, x2, ..., xn
// Choose a truth value assignment
for (i = 1; i $<=n$; i++)
x_i = choice (true, false);
if (E (x1, ..., xn))
success();
else
failure();
\}
* The nondeterministic time to choose the truth value is $O(n)$
* The deterministic evaluation of the assignment is also done in $O(n)$ time
- The classes $\mathcal{N} \mathcal{P}$-hard and $\mathcal{N} \mathcal{P}$-complete
- Polynomial complexity
* An algorithm A is of polynomial complexity if there exists a polynomial $p()$ such that the computation time of A is $O(p(n))$ for every input of size n

Definition $4 \mathcal{P}$ is the set of all decision problems solvable by deterministic algorithms in polynomial time. $\mathcal{N} \mathcal{P}$ is the set of all decision problems solvable by nondeterministic algorithms in polynomial time.

- Since deterministic algorithms are a special case of nondeterministic algorithms, $\mathcal{P} \subseteq \mathcal{N} \mathcal{P}$
- An unsolved problem in computer science is: Is $\mathcal{P}=\mathcal{N} \mathcal{P}$ or is $\mathcal{P} \neq \mathcal{N} \mathcal{P}$?
- Cook formulated the following question: Is there any single problem in $\mathcal{N} \mathcal{P}$ such that if we showed it to be in \mathcal{P}, then that would imply that $\mathcal{P}=\mathcal{N} \mathcal{P}$? This led to Cook's theorem as follows:

Theorem 1 Satisfiability is in \mathcal{P} if and only if $\mathcal{P}=\mathcal{N} \mathcal{P}$.

- Reducibility
- Show that one problem is no harder or no easier than another, even when both problems are decision problems

Definition 5 Let A and B be problems. Problem A reduces to B (written as $A \propto B$) if and only if there is a way to solve A by a deterministic polynomial time algorithm using a deterministic algorithm that solves B in polynomial time.

* If we have a polynomial time algorithm for B, then we can solve A in polynomial time
* Reducibility is transitive

$$
\cdot A \propto B \wedge B \propto C \Rightarrow A \propto C
$$

Definition 6 Given two sets A and $B \in N$ and a set of functions $\boldsymbol{F}: N \rightarrow N$, closed under composition, A is called reducible to $B(A \propto B)$ if and only if

$$
\exists f \in \boldsymbol{F} \mid \forall x \in \boldsymbol{N}, x \in A \Leftrightarrow f(x) \in B
$$

- Procedure is called polynomial-time reduction algorithm and it provides us with a way to solve problem A in polynomial time
* Also known as Turing reduction
* Given an instance α of A, use a polynomial-time reduction algorithm to transform it to an instance β of B
* Run the polynomial-time decision algorithm on instance β of B
* Use the answer of β as the answer for α
* Reduction from squaring to multiplication
- All we know is to add, subtract, and take squares
- Product of two numbers is computed by

$$
2 \times a \times b=(a+b)^{2}-a^{2}-b^{2}
$$

- Reduction in the other direction: if we can multiply two numbers, we can square a number
* Computing $(x+1)^{2}$ from x^{2}
- For efficiency sake, we want to avoid multiplication
* Turing reductions compute the solution to one problem, assuming the other problem is easy to solve
- Polynomial-time many-one reduction
* Converts instances of a decision problem A into instances of a decision problem B
* Written as $A \leq_{m} B ; A$ is many-one reducible to B
* If we have an algorithm N which solves instances of B, we can use it to solve instances of A in
- Time needed for N plus the time needed for reduction
- Maximum of space needed for N and the space needed for reduction
* Formally, suppose A and B are formal languages over the alphabets Σ and Γ
. A many-one reduction from A to B is a total computable function $f: \Sigma^{*} \rightarrow \Gamma^{*}$ with the property

$$
\omega \in A \Leftrightarrow f(\omega) \in B, \quad \forall \omega \in \Sigma^{*}
$$

- If such an f exists, A is many-one reducible to B
* A class of languages \boldsymbol{C} is closed under many-one reducibility if there exists no reduction from a language in C to a language outside C
- If a class is closed under many-one reducibility, then many-one reduction can be used to show that a problem is in \boldsymbol{C} by reducing a problem in C to it
- Let $S \subset P(N)$ (power set of natural numbers), and \leq be a reduction, then S is called closed under \leq if

$$
\forall s \in S \forall A \in N \quad A \leq S \Leftrightarrow A \in S
$$

- Most well-studied complexity classes are closed under some type of many-one reducibility, including \mathcal{P} and $\mathcal{N P}$
* Square to multiplication reduction, again
- Add the restriction that we can only use square function one time, and only at the end
- Even if we are allowed to use all the basic arithmetic operations, including multiplication, no reduction exists in general, because we may have to compute an irrational number like $\sqrt{2}$ from rational numbers
- Going in the other direction, however, we can certainly square a number with just one multiplication, only at the end
- Using this limited form of reduction, we have shown the unsurprising result that multiplication is harder in general than squaring
* Many-one reductions map instances of one problem to instances of another
- Many-one reduction is weaker than Turing reduction
- Weaker reductions are more effective at separating problems, but they have less power, making reductions harder to design
- Use polynomial-time reductions in opposite way to show that a problem is $\mathcal{N} \mathcal{P}$-complete
* Use polynomial-time reduction to show that no polynomial-time algorithm can exist for problem B
* $A \subset N$ is called hard for S if

$$
\forall s \in S \quad s \leq A
$$

$A \subset N$ is called complete for S if A is hard for S and A is in S

* Proof by contradiction
- Assume that a known problem A is hard to solve
- Given a new problem B, similar to A
- Assume that B is solvable in polynomial time
- Show that every instance of problem A can be solved in polynomial time by reducing it to problem B
- Contradiction
- Cannot assume that there is absolutely no polynomial-time algorithm for A

Definition 7 A problem A is $\mathcal{N P}$-hard if and only if satisfiability reduces to A (satisfiability $\propto A$). A problem A is $\mathcal{N} \mathcal{P}$-complete if and only if A is $\mathcal{N} \mathcal{P}$-hard and $A \in \mathcal{N} \mathcal{P}$.

- There are $\mathcal{N} \mathcal{P}$-hard problems that are not $\mathcal{N} \mathcal{P}$-complete
- Only a decision problem can be $\mathcal{N} \mathcal{P}$-complete
- An optimization problem may be $\mathcal{N} \mathcal{P}$-hard; cannot be $\mathcal{N} \mathcal{P}$-complete
- If A is a decision problem and B is an optimization problem, it is quite possible that $A \propto B$
* Knapsack decision problem can be reduced to the knapsack optimization problem
* Clique decision problem reduces to clique optimization problem
- There are some $\mathcal{N} \mathcal{P}$-hard decision problems that are not $\mathcal{N} \mathcal{P}$-complete
- Example: Halting problem for deterministic algorithms
* $\mathcal{N} \mathcal{P}$-hard decision problem, but not $\mathcal{N} \mathcal{P}$-complete
* Determine for an arbitrary deterministic algorithm A and input I, whether A with input I ever terminates
* Well known that halting problem is undecidable; there exists no algorithm of any complexity to solve halting problem
- It clearly cannot be in $\mathcal{N} \mathcal{P}$
* To show that "satisfiability \propto halting problem", construct an algorithm A whose input is a propositional formula X
- If X has n variables, A tries out all the 2^{n} possible truth assignments and verifies whether X is satisfiable
- If X is satisfiable, it stops; otherwise, A enters an infinite loop
- Hence, A halts on input X iff X is satisfiable
* If we had a polynomial time algorithm for halting problem, then we could solve the satisfiability problem in polynomial time using A and X as input to the algorithm for halting problem
* Hence, halting problem is an $\mathcal{N} \mathcal{P}$-hard problem that is not in $\mathcal{N} \mathcal{P}$

Definition 8 Two problems A and B are said to be polynomially equivalent if and only if $A \propto B$ and $B \propto A$.

- To show that a problem B is $\mathcal{N} \mathcal{P}$-hard, it is adequate to show that $A \propto B$, where A is some problem already known to be $\mathcal{N} \mathcal{P}$-hard
- Since \propto is a transitive relation, it follows that if satisfiability $\propto A$ and $A \propto B$, then satisfiability $\propto B$
- To show that an $\mathcal{N} \mathcal{P}$-hard decision problem is $\mathcal{N} \mathcal{P}$-complete, we have just to exhibit a polynomial time nondeterministic algorithm for it

Polynomial time

- Problems that can be solved in polynomial time are regarded as tractable problems

1. Consider a problem that is solved in time $O\left(n^{100}\right)$

- It is polynomial time but sounds intractable
- In practice, there are few problems that require such a high degree polynomial

2. For many reasonable models of computation, a problem that can be solved in polynomial time in one model can be solved in polynomial time in another
3. The class of polynomial-time solvable problems has nice closure properties

- Polynomials are closed under addition, multiplication, and composition
- If the output of one polynomial-time algorithm is fed into the input of another, the composite algorithm is polynomial

