$\mathcal{NP}\text{-}\mathbf{Hard} \text{ and } \mathcal{NP}\text{-}\mathbf{Complete} \text{ Problems}$

Basic concepts

- Solvability of algorithms
 - There are algorithms for which there is no known solution, for example, Turing's Halting Problem
 - * Decision problem
 - * Given an arbitrary deterministic algorithm A and a finite input I
 - * Will A with input I ever terminate, or enter an infinite loop?
 - * Alan Turing proved that a general algorithm to solve the halting problem for *all* possible program-input pairs cannot exist
 - Halting problem cannot be solved by any computer, no matter how much time is provided
 - * In algorithmic terms, there is no algorithm of any complexity to solve this problem
- Efficient algorithms
 - Efficiency measured in terms of speed
 - For some problems, there is no known efficient solution
 - Distinction between problems that can be solved in polynomial time and problems for which no polynomial time algorithm is known
- Problems classified to belong to one of the two groups
 - 1. Problems with solution times bound by a polynomial of a small degree
 - Most searching and sorting algorithms
 - Also called tractable algorithms
 - For example, ordered search $(O(\lg n))$, polynomial evaluation (O(n)), sorting $(O(n \log n))$
 - 2. Problems with best known algorithms not bound by a polynomial
 - Hard, or intractable, problems
 - Traveling salesperson $(O(n^2 2^n))$, knapsack $(O(2^{n/2}))$
 - None of the problems in this group has been solved by any polynomial time algorithm
 - \mathcal{NP} -complete problems
 - * No efficient algorithm for an \mathcal{NP} -complete problem has ever been found; but nobody has been able to prove that such as algorithm does not exist
 - $\mathcal{P} \neq \mathcal{NP}$
 - * Famous open problem in Computer Science since 1971
- Theory of \mathcal{NP} -completeness
 - Show that many of the problems with no polynomial time algorithms are computationally related
 - The group of problems is further subdivided into two classes
 - \mathcal{NP} -complete. A problem that is \mathcal{NP} -complete can be solved in polynomial time iff all other \mathcal{NP} -complete problems can also be solved in polynomial time
 - \mathcal{NP} -hard. If an \mathcal{NP} -hard problem can be solved in polynomial time then all \mathcal{NP} -complete problems can also be solved in polynomial time
 - All \mathcal{NP} -complete problems are \mathcal{NP} -hard but some \mathcal{NP} -hard problems are known not to be \mathcal{NP} -complete

 \mathcal{NP} -complete $\subset \mathcal{NP}$ -hard

- \mathcal{P} vs \mathcal{NP} problems
 - The problems in class \mathcal{P} can be solved in $O(N^k)$ time, for some constant k (polynomial time)

- The problems in class \mathcal{NP} can be *verified* in polynomial time
 - * If we are given a *certificate* of a solution, we can verify that the certificate is correct in polynomial time in the size of input to the problem
- Some polynomial-time solvable problems look very similar to \mathcal{NP} -complete problems
- Shortest vs longest simple path between vertices
 - * Shortest path from a single source in a directed graph G = (V, E) can be found in O(VE) time
 - * Finding the longest path between two vertices is \mathcal{NP} -complete, even if the weight of each edge is 1
- Euler tour vs Hamiltonian cycle
 - * Euler tour of a connected directed graph G = (V, E) is a cycle that traverses each *edge* of G exactly once, although it may visit a vertex more than once; it can be determined in O(E) time
 - * A Hamiltonian cycle of a directed graph G = (V, E) is a simple cycle that contains each vertex in V
 - \cdot Determining whether a directed graph has a Hamiltonian cycle is \mathcal{NP} -complete
 - The solution is given by the sequence $\langle v_1, v_2, \dots, v_{|V|} \rangle$ such that for each $1 \leq i < |V|, (v_i, v_{i+1}) \in E$
 - $\cdot\,$ The certificate would be the above sequence of vertices
 - It is easy to check in polynomial time that the edges formed by the above sequence are in E, and so is the edge $v_{|V|}, v_1$.
- 2-CNF satisfiability vs. 3-CNF satisfiability
 - * Boolean formula has variables that can take value true or false
 - * The variables are connected by operators \land , \lor , and \neg
 - * A Boolean formula is *satisfiable* if there exists some assignment of values to its variables that cause it to evaluate it to true
 - * A Boolean formula is in *k*-conjunctive normal form (*k*-CNF) if it is the AND of clauses of ORs of exactly k variables or their negations
 - * 2-CNF: $(x_1 \lor \neg x_2) \land (\neg x_1 \lor x_3) \land (\neg x_2 \lor \neg x_3)$
 - Satisfied by $x_1 = \text{true}, x_2 = \text{false}, x_3 = \text{true}$
 - * We can determine in polynomial time whether a 2-CNF formula is satisfiable but satisfiability of a 3-CNF formula is \mathcal{NP} -complete
- $\mathcal{P} \subseteq \mathcal{NP}$
 - * Any problem in \mathcal{P} can be solved in polynomial time even without the certificate
 - * The open question is whether or not $\mathcal{P} \subset \mathcal{NP}$
- Showing problems to be \mathcal{NP} -complete
 - A problem is \mathcal{NP} -complete if it is in \mathcal{NP} and is as "hard" as any problem in \mathcal{NP}
 - If *any* NP-complete problem can be solved in polynomial time, then *every* NP-complete problem has a polynomial time algorithm
 - Analyze an algorithm to show how hard it is (instead of how easy it is)
 - Show that no efficient algorithm is likely to exist for the problem
 - * As a designer, if you can show a problem to be \mathcal{NP} -complete, you provide the proof for its intractability
 - * You can spend your time to develop an approximation algorithm rather than searching for a fast algorithm that can solve the problem exactly
 - Proof in terms of $\Omega(n)$
- Decision problems vs optimization problems

Definition 1 Any problem for which the answer is either zero or one is called a **decision problem**. An algorithm for a decision problem is termed a **decision algorithm**.

Definition 2 Any problem that involves the identification of an optimal (either minimum or maximum) value of a given cost function is known as an **optimization problem**. An **optimization algorithm** is used to solve an optimization problem.

- Optimization problems
 - * Each feasible solution has an associated value; the goal is to find a feasible solution with the best value
 - * SHORTEST PATH problem
 - \cdot Given an undirected graph G and vertics u and v
 - $\cdot \,$ Find a path from u to v that uses the fewest edges
 - · Single-pair shortest-path problem in an undirected, unweighted graph
- Decision problems
 - * The problem gives an answer as "yes" or "no"
 - * Decision problem is assumed to be easier (or no harder) to solve compared to the optimization problem
 - * Decision problem can be solved in polynomial time if and only if the corresponding optimization problem can
 - If the decision problem cannot be solved in polynomial time, the optimization problem cannot be solved in polynomial time either
- \mathcal{NP} -complete problems confined to the realm of decision problems
 - * Cast an optimization problem as a related decision problem by imposing a bound on the value to be optimized
 - * PATH problem as related to SHORTEST PATH problem
 - Given a directed graph G, vertices u and v, and an integer k, is there a path from u to v with at most k edges?
 - * Relationship between an optimization problem and its related decision problem
 - · Try to show that the optimization problem is "hard"
 - · Or that the decision problem is "easier" or "no harder"
 - $\cdot\,$ We can solve PATH by solving SHORTEST PATH and then comparing the number of edges to k
 - · If an optimization problem is easy, its decision problem is easy as well
 - In NP-completeness, if we can provide evidence that a decision problem is hard, we can also provide evidence that its related optimization problem is hard
- Reductions
 - * Showing that one problem is no harder or no easier than another also applicable when both problems are decision problems
 - * \mathcal{NP} -completeness proof general steps
 - \cdot Consider a decision problem A; we'll like to solve it in polynomial time
 - · Instance: input to a particular problem; for example, in PATH, an instance is a particular graph G, two particular variables u and v in G, and a particular integer k
 - \cdot Suppose that we know how to solve a different decision problem B in polynomial time
 - Suppose that we have a procedure that transforms any instance α of A into some instance β of B with following characteristics:
 - Transformation take polynomial time
 - Both answers are the same; the answer for α is a "yes" iff the answer for β is a "yes"
 - * The above procedure is called a polynomial time *reduction algorithm* and provides us a way to solve problem A in polynomial time
 - 1. Given an instance α of A, use a polynomial-time reduction algorithm to transform it to an instance β of B
 - 2. Run polynomial-time decision algorithm for B on instance β
 - 3. Use the answer for β as the answer for α
 - * Using polynomial-time reductions to show that no polynomial-time algorithm can exist for a particular problem B
 - $\cdot\,$ Suppose we have a decision problem A for which we already know that no polynomial-time algorithm can exist
 - \cdot Suppose that we have a polynomial time reduction transforming instances of A to instances of B
 - \cdot Simple proof that no polynomial-time algorithm can exist for B

- Nondeterministic algorithms
 - Deterministic algorithms
 - * Algorithms with uniquely defined results
 - * Predictable in terms of output for a certain input
 - Nondeterministic algorithms are allowed to contain operations whose outcomes are limited to a given set of possibilities instead of being uniquely defined
 - Specified with the help of three new O(1) functions
 - 1. choice (S)
 - \ast Arbitrarily chooses one of the elements of set S
 - * x = choice(1, n) can result in x being assigned any of the integers in the range [1, n], in a completely arbitrary manner
 - * No rule to specify how this choice is to be made
 - 2. failure()
 - * Signals unsuccessful completion of a computation
 - * Cannot be used as a return value
 - 3. success()
 - * Signals successful completion of a computation
 - * Cannot be used as a return value
 - * If there is a set of choices that leads to a successful completion, then one choice from this set must be made
 - A nondeterministic algorithm terminates unsuccessfully iff there exist no set of choices leading to a success signal
 - A machine capable of executing a nondeterministic algorithm as above is called a nondeterministic machine
 - Nondeterministic search of x in an unordered array A with $n \ge 1$ elements
 - * Determine an index j such that A[j] = x or j = -1 if $x \notin A$

```
algorithm nd_search ( A, n, x )
{
// Non-deterministic search
// Input: A: Array to be searched
// Input: n: Number of elements in A
// Input: x: Item to be searched for
// Output: Returns -1 if item does not exist, index of item otherwise
int j = choice ( 0, n-1 );
if ( A[j] == x )
{
    cout << j;
    success();
    }
    cout << -1;
    failure();
}</pre>
```

- * By the definition of nondeterministic algorithm, the output is -1 iff there is no j such that A[j] = x
- * Since A is not ordered, every deterministic search algorithm is of complexity $\Omega(n)$, whereas the nondeterministic algorithm has the complexity as O(1)
- Nondeterministic sorting algorithm

```
// Sort n positive integers in nondecreasing order
algorithm nd_sort ( A, n )
{
```

}

```
// Initialize B[]; B is used for convenience
     // It is initialized to 0 though any value not in A[] will suffice
     for (i = 0; i < n; B[i++] = 0;);
     for (i = 0; i < n; i++)
          j = choice (0, n - 1);
          // Make sure that B[j] has not been used already
          if ( B[j] != 0 ) failure();
         B[j] = A[i];
     }
     // Verify order
     for (i = 0; i < n-1; i++)
          if (B[i] > B[i+1]) failure();
     write ( B );
     success();
- Complexity of nd sort is \Theta(n)
```

- * Best-known deterministic sorting algorithm has a complexity of $\Omega(n \lg n)$
- Deterministic interpretation of nondeterministic algorithm
 - * Possible by allowing unbounded parallelism in computation
 - * Imagine making n copies of the search instance above, all running in parallel and searching at different index values for x
 - The first copy to reach success () terminates all other copies
 - If a copy reaches failure (), only that copy is terminated
 - * In abstract terms, nondeterministic machine has the capability to recognize the correct solution from a set of allowable choices, without making copies of the program
- Possible to construct nondeterministic algorithms for many different choice sequences leading to successful completions (see nd_sort)
 - If the numbers in A are not unique, many different permutations will result into sorted sequence
 - We'll limit ourselves to problems that result in a unique output, or decision algorithms
 - * A decision algorithm will output 0 or 1
 - * Implicit in the signals success() and failure()
 - Output from a decision algorithm is uniquely defined by input parameters and algorithm specification
- An optimization problem may have many feasible solutions
 - The problem is to find out the feasible solution with the best associated value
 - \mathcal{NP} -completeness applies directly not to optimization problems but to decision problems
- Example: Maximal clique
 - Clique is a maximal complete subgraph of a graph G = (V, E)
 - Size of a clique is the number of vertices in it
 - Maximal clique problem is an optimization problem that has to determine the size of a largest clique in G

- Corresponding decision problem is to determine whether G has a clique of size at least k for some given k
- Let us denote the deterministic decision algorithm for the clique decision problem as dclique (G, k)
- If |V| = n, the size of a maximal clique can be found by
- for (k = n; dclique (G, k) != 1; k--);
- If time complexity of delique is f(n), size of maximal clique can be found in time $g(n) \le nf(n)$
 - * Decision problem can be solved in time g(n)
- Maximal clique problem can be solved in polynomial time iff the clique decision problem can be solved in polynomial time
- Example: 0/1 knapsack
 - Is there a 0/1 assignment of values to x_i , $1 \le i \le n$, such that $\sum p_i x_i \ge r$ and $\sum w_i x_i \le m$, for given m and r, and nonnegative p_i and w_i
 - If the knapsack decision problem cannot be solved in deterministic polynomial time, then the optimization problem cannot either
- Comment on uniform parameter n to measure complexity
 - $n \in \mathcal{N}$ is length of input to algorithm, or input size
 - * All inputs are assumed to be integers
 - * Rational inputs can be specified by pairs of integers
 - n is expressed in binary representation
 - * $n = 10_{10}$ is expressed as $n = 1010_2$ with length 4
 - * Length of a positive integer k_{10} is given by $\lfloor \log_2 k \rfloor + 1$ bits
 - * Length of 02 is 1
 - * Length of the input to an algorithm is the sum of lengths of the individual numbers being input
 - * Length of input in radix r for k_{10} is given by $\lfloor \log_r k \rfloor + 1$
 - * Length of 100_{10} is $\log_{10} 100 + 1 = 3$
 - * Finding length of any input using radix r > 1
 - $\cdot \log_r k = \log_2 k / \log_2 r$
 - · Length is given by c(r)n where n is the length using binary representation and c(r) is a number fixed for r
 - Input in radix 1 is in unary form
 - $* 5_{10} = 11111_1$
 - * Length of a positive integer k is k
 - * Length of a unary input is exponentially related to the length of the corresponding r-ary input for radix r, r > 1
- Maximal clique, again
 - Input can be provided as a sequence of edges and an integer k
 - Each edge in E(G) is a pair of vertices, represented by numbers (i, j)
 - Size of input for each edge (i, j) in binary representation is $\lfloor \log_2 i \rfloor + \lfloor \log_2 j \rfloor + 2$
 - Input size of any instance is

$$n = \sum_{\substack{(i,j) \in E(G) \\ i < j}} (\lfloor \log_2 i \rfloor + \lfloor \log_2 j \rfloor + 2) + \lfloor \log_2 k \rfloor + 1$$

k is the number to indicate the clique size

- If G has only one connected component, then $n \ge |V|$

- If this decision problem cannot be solved by an algorithm of complexity p(n) for some polynomial p(), then it cannot be solved by an algorithm of complexity p(|V|)
- 0/1 knapsack
 - Input size q (q > n) for knapsack decision problem is

$$q = \sum_{1 \le i \le n} (\lfloor \log_2 p_i \rfloor + \lfloor \log_2 w_i \rfloor) + 2n + \lfloor \log_2 m \rfloor + \lfloor \log_2 r \rfloor + 2$$

- If the input is given in unary notation, then input size $s = \sum p_i + \sum w_i + m + r$
- Knapsack decision and optimization problems can be solved in time p(s) for some polynomial p() (dynamic programming algorithm)
- However, there is no known algorithm with complexity O(p(n)) for some polynomial p()

Definition 3 The time required by a nondeterministic algorithm performing on any given input is the minimum number of steps needed to reach a successful completion if there exists a sequence of choices leading to such a completion. In case successful completion is not possible, then the time required is O(1). A nondeterministic algorithm is of complexity O(f(n)) if for all inputs of size $n, n \ge n_0$, that result in a successful completion, the time required is at most cf(n) for some constants c and n_0 .

- Above definition assumes that each computation step is of a fixed cost
 - * Guaranteed by the finiteness of each word in word-oriented computers
- If a step is not of fixed cost, it is necessary to consider the cost of individual instructions
 - * Addition of two *m*-bit numbers takes O(m) time
 - * Multiplication of two *m*-bit numbers takes $O(m^2)$ time
- Consider the deterministic decision algorithm to get sum of subsets

- * Bits are numbered from 0 to m from right to left
- * Bit *i* will be 0 if and only if no subsets of A[j], $1 \le j \le n$ sums to *i*
- * Bit 0 is always 1 and bits are numbered $0, 1, 2, \ldots, m$ right to left
- * Number of steps for this algorithm is O(n)
- * Each step moves m + 1 bits of data and would take O(m) time on a conventional computer
- * Assuming one unit of time for each basic operation for a fixed word size, the complexity of deterministic algorithm is O(nm)
- · Knapsack decision problem

- Non-deterministic polynomial time algorithm for knapsack problem

```
algorithm nd_knapsack ( p, w, n, m, r, x )
{
// Input: p: Array to indicate profit for each item
// Input: w: Array to indicate weight of each item
// Input: n: Number of items
// Input: m: Total capacity of the knapsack
// Input: r: Expected profit from the knapsack
// Output: x: Array to indicate whether corresponding item is carried or not
    W = 0;
   P = 0;
    for ( i = 1; i <= n; i++ )
    {
        x[i] = choice (0, 1);
        W += x[i] \star w[i];
        P += x[i] * p[i];
    }
    if ((W > m) || (P < r))
       failure();
    else
        success();
}
```

- The for loop selects or discards each of the n items
- It also recomputes the total weight and profit coresponding to the selection
- The if statement checks to see the feasibility of assignment and whether the profit is above a lower bound r
- The time complexity of the algorithm is O(n)
- If the input length is q in binary, time complexity is O(q)
- Maximal clique
 - Nondeterministic algorithm for clique decision problem
 - Begin by trying to form a set of k distinct vertices
 - Test to see if they form a complete subgraph
- Satisfiability
 - Let x_1, x_2, \ldots denote a set of boolean variables
 - Let $\bar{x_i}$ denote the complement of x_i
 - A variable or its complement is called a *literal*
 - A *formula* in propositional calculus is an expression that is constructed by connecting literals using the operations and (\wedge) and or (\vee)
 - Examples of formulas in propositional calculus
 - $* (x_1 \wedge x_2) \vee (x_3 \wedge \bar{x_4})$
 - $* (x_3 \vee \bar{x_4}) \land (x_1 \vee \bar{x_2})$
 - Conjunctive normal form (CNF)
 - * A formula is in CNF iff it is represented as $\wedge_{i=1}^{k} c_i$, where c_i are clauses represented as $\forall l_{ij}; l_{ij}$ are literals
 - Disjunctive normal form (DNF)
 - * A formula is in DNF iff it is represented as $\bigvee_{i=1}^{k} c_i$, where c_i are clauses represented as $\wedge l_{ij}$

- Satisfiability problem is to determine whether a formula is true for some assignment of truth values to the variables
 - * CNF-satisfiability is the satisfiability problem for CNF formulas
- Polynomial time nondeterministic algorithm that terminates successfully iff a given propositional formula $E(x_1, \ldots, x_n)$ is satisfiable
 - * Nondeterministically choose one of the 2^n possible assignments of truth values to (x_1, \ldots, x_n)

```
* Verify that E(x1,...,xn) is true for that assignment
algorithm eval ( E, n )
{
    // Determine whether the propositional formula E is satisfiable.
    // Variable are x1, x2, ..., xn
    // Choose a truth value assignment
    for ( i = 1; i <= n; i++ )
        x_i = choice ( true, false );
    if ( E ( x1, ..., xn ) )
        success();
    else
        failure();
}
* The nondeterministic time to choose the truth value is O(n)</pre>
```

- * The deterministic evaluation of the assignment is also done in O(n) time
- The classes \mathcal{NP} -hard and \mathcal{NP} -complete
 - Polynomial complexity
 - * An algorithm A is of polynomial complexity if there exists a polynomial p() such that the computation time of A is O(p(n)) for every input of size n

Definition 4 \mathcal{P} is the set of all decision problems solvable by deterministic algorithms in polynomial time. \mathcal{NP} is the set of all decision problems solvable by nondeterministic algorithms in polynomial time.

- Since deterministic algorithms are a special case of nondeterministic algorithms, $\mathcal{P} \subseteq \mathcal{NP}$
- An unsolved problem in computer science is: Is $\mathcal{P} = \mathcal{NP}$ or is $\mathcal{P} \neq \mathcal{NP}$?
- Cook formulated the following question: Is there any single problem in \mathcal{NP} such that if we showed it to be in \mathcal{P} , then that would imply that $\mathcal{P} = \mathcal{NP}$? This led to Cook's theorem as follows:

Theorem 1 Satisfiability is in \mathcal{P} if and only if $\mathcal{P} = \mathcal{NP}$.

- Reducibility
 - Show that one problem is no harder or no easier than another, even when both problems are decision problems

Definition 5 Let A and B be problems. Problem A reduces to B (written as $A \propto B$) if and only if there is a way to solve A by a deterministic polynomial time algorithm using a deterministic algorithm that solves B in polynomial time.

- * If we have a polynomial time algorithm for B, then we can solve A in polynomial time
- * Reducibility is transitive
 - $\cdot A \propto B \wedge B \propto C \Rightarrow A \propto C$

Definition 6 Given two sets A and $B \in N$ and a set of functions $F : N \to N$, closed under composition, A is called *reducible* to $B (A \propto B)$ if and only if

$$\exists f \in \mathbf{F} \mid \forall x \in \mathbf{N}, \ x \in A \Leftrightarrow f(x) \in B$$

- Procedure is called polynomial-time *reduction algorithm* and it provides us with a way to solve problem A in polynomial time
 - * Also known as Turing reduction
 - * Given an instance α of A, use a polynomial-time reduction algorithm to transform it to an instance β of B
 - * Run the polynomial-time decision algorithm on instance β of B
 - * Use the answer of β as the answer for α
 - * Reduction from squaring to multiplication
 - $\cdot\,$ All we know is to add, subtract, and take squares
 - · Product of two numbers is computed by

$$2 \times a \times b = (a+b)^2 - a^2 - b^2$$

· Reduction in the other direction: if we can multiply two numbers, we can square a number

- * Computing $(x+1)^2$ from x^2
 - For efficiency sake, we want to avoid multiplication
- * Turing reductions compute the solution to one problem, assuming the other problem is easy to solve
- Polynomial-time many-one reduction
 - * Converts instances of a decision problem A into instances of a decision problem B
 - * Written as $A \leq_m B$; A is many-one reducible to B
 - * If we have an algorithm N which solves instances of B, we can use it to solve instances of A in
 - \cdot Time needed for N plus the time needed for reduction
 - $\cdot\,$ Maximum of space needed for N and the space needed for reduction
 - * Formally, suppose A and B are formal languages over the alphabets Σ and Γ
 - A many-one reduction from A to B is a total computable function $f: \Sigma^* \to \Gamma^*$ with the property

$$\omega \in A \Leftrightarrow f(\omega) \in B, \ \forall \omega \in \Sigma^*$$

- \cdot If such an f exists, A is many-one reducible to B
- * A class of languages C is *closed* under many-one reducibility if there exists no reduction from a language in C to a language outside C
 - · If a class is closed under many-one reducibility, then many-one reduction can be used to show that a problem is in C by reducing a problem in C to it
 - · Let $S \subset P(\mathbf{N})$ (power set of natural numbers), and \leq be a reduction, then S is called closed under \leq if

$$\forall s \in S \ \forall A \in \boldsymbol{N} \ A \leq S \ \Leftrightarrow \ A \in S$$

- \cdot Most well-studied complexity classes are closed under some type of many-one reducibility, including ${\cal P}$ and ${\cal NP}$
- * Square to multiplication reduction, again
 - · Add the restriction that we can only use square function one time, and only at the end
 - · Even if we are allowed to use all the basic arithmetic operations, including multiplication, no reduction exists in general, because we may have to compute an irrational number like $\sqrt{2}$ from rational numbers
 - · Going in the other direction, however, we can certainly square a number with just one multiplication, only at the end
 - Using this limited form of reduction, we have shown the unsurprising result that multiplication is harder in general than squaring
- * Many-one reductions map instances of one problem to instances of another
 - \cdot Many-one reduction is weaker than Turing reduction
 - Weaker reductions are more effective at separating problems, but they have less power, making reductions harder to design
- Use polynomial-time reductions in opposite way to show that a problem is \mathcal{NP} -complete

- * Use polynomial-time reduction to show that no polynomial-time algorithm can exist for problem B
- * $A \subset \mathbf{N}$ is called *hard* for S if

$$\forall s \in S \ s \leq A$$

- $A \subset \mathbf{N}$ is called *complete* for S if A is hard for S and A is in S
- * Proof by contradiction
 - \cdot Assume that a known problem A is hard to solve
 - Given a new problem B, similar to A
 - \cdot Assume that *B* is solvable in polynomial time
 - \cdot Show that every instance of problem A can be solved in polynomial time by reducing it to problem B
 - \cdot Contradiction
- Cannot assume that there is absolutely no polynomial-time algorithm for A

Definition 7 A problem A is \mathcal{NP} -hard if and only if satisfiability reduces to A (satisfiability \propto A). A problem A is \mathcal{NP} -complete if and only if A is \mathcal{NP} -hard and $A \in \mathcal{NP}$.

- There are \mathcal{NP} -hard problems that are not \mathcal{NP} -complete
- Only a decision problem can be \mathcal{NP} -complete
- An optimization problem may be \mathcal{NP} -hard; cannot be \mathcal{NP} -complete
- If A is a decision problem and B is an optimization problem, it is quite possible that $A \propto B$
 - * Knapsack decision problem can be reduced to the knapsack optimization problem
 - * Clique decision problem reduces to clique optimization problem
- There are some \mathcal{NP} -hard decision problems that are not \mathcal{NP} -complete
- Example: Halting problem for deterministic algorithms
 - * \mathcal{NP} -hard decision problem, but not \mathcal{NP} -complete
 - * Determine for an arbitrary deterministic algorithm A and input I, whether A with input I ever terminates
 - * Well known that halting problem is undecidable; there exists no algorithm of any complexity to solve halting problem
 - · It clearly cannot be in \mathcal{NP}
 - * To show that "satisfiability \propto halting problem", construct an algorithm A whose input is a propositional formula X
 - · If X has n variables, A tries out all the 2^n possible truth assignments and verifies whether X is satisfiable
 - · If X is satisfiable, it stops; otherwise, A enters an infinite loop
 - \cdot Hence, A halts on input X iff X is satisfiable
 - * If we had a polynomial time algorithm for halting problem, then we could solve the satisfiability problem in polynomial time using A and X as input to the algorithm for halting problem
 - * Hence, halting problem is an \mathcal{NP} -hard problem that is not in \mathcal{NP}

Definition 8 Two problems A and B are said to be **polynomially equivalent** if and only if $A \propto B$ and $B \propto A$.

- To show that a problem B is NP-hard, it is adequate to show that $A \propto B$, where A is some problem already known to be NP-hard
- Since \propto is a transitive relation, it follows that if satisfiability $\propto A$ and $A \propto B$, then satisfiability $\propto B$
- To show that an \mathcal{NP} -hard decision problem is \mathcal{NP} -complete, we have just to exhibit a polynomial time nondeterministic algorithm for it

Polynomial time

• Problems that can be solved in polynomial time are regarded as tractable problems

- 1. Consider a problem that is solved in time $O(n^{100})$
 - It is polynomial time but sounds intractable
 - In practice, there are few problems that require such a high degree polynomial
- 2. For many reasonable models of computation, a problem that can be solved in polynomial time in one model can be solved in polynomial time in another
- 3. The class of polynomial-time solvable problems has nice closure properties
 - Polynomials are closed under addition, multiplication, and composition
 - If the output of one polynomial-time algorithm is fed into the input of another, the composite algorithm is polynomial