
NP-Hard and NP-Complete Problems

Basic concepts

• Solvability of algorithms

– There are algorithms for which there is no known solution, for example, Turing’s Halting Problem

∗ Decision problem
∗ Given an arbitrary deterministic algorithm A and a finite input I
∗ Will A with input I ever terminate, or enter an infinite loop?
∗ Alan Turing proved that a general algorithm to solve the halting problem for all possible program-input pairs

cannot exist

– Halting problem cannot be solved by any computer, no matter how much time is provided

∗ In algorithmic terms, there is no algorithm of any complexity to solve this problem

• Efficient algorithms

– Efficiency measured in terms of speed

– For some problems, there is no known efficient solution

– Distinction between problems that can be solved in polynomial time and problems for which no polynomial time
algorithm is known

• Problems classified to belong to one of the two groups

1. Problems with solution times bound by a polynomial of a small degree

– Most searching and sorting algorithms
– Also called tractable algorithms
– For example, ordered search (O(lg n)), polynomial evaluation (O(n)), sorting (O(n log n))

2. Problems with best known algorithms not bound by a polynomial

– Hard, or intractable, problems
– Traveling salesperson (O(n22n)), knapsack (O(2n/2))
– None of the problems in this group has been solved by any polynomial time algorithm
– NP-complete problems
∗ No efficient algorithm for an NP-complete problem has ever been found; but nobody has been able to

prove that such as algorithm does not exist
– P 6= NP
∗ Famous open problem in Computer Science since 1971

• Theory of NP-completeness

– Show that many of the problems with no polynomial time algorithms are computationally related

– The group of problems is further subdivided into two classes

NP-complete. A problem that is NP-complete can be solved in polynomial time iff all other NP-complete
problems can also be solved in polynomial time

NP-hard. If an NP-hard problem can be solved in polynomial time then all NP-complete problems can also be
solved in polynomial time

– All NP-complete problems are NP-hard but some NP-hard problems are known not to be NP-complete

NP-complete ⊂ NP-hard

• P vs NP problems

– The problems in class P can be solved in O(Nk) time, for some constant k (polynomial time)



NP-Hard and NP-Complete Problems 2

– The problems in class NP can be verified in polynomial time

∗ If we are given a certificate of a solution, we can verify that the certificate is correct in polynomial time in the
size of input to the problem

– Some polynomial-time solvable problems look very similar to NP-complete problems

– Shortest vs longest simple path between vertices

∗ Shortest path from a single source in a directed graph G = (V,E) can be found in O(V E) time
∗ Finding the longest path between two vertices is NP-complete, even if the weight of each edge is 1

– Euler tour vs Hamiltonian cycle

∗ Euler tour of a connected directed graph G = (V,E) is a cycle that traverses each edge of G exactly once,
although it may visit a vertex more than once; it can be determined in O(E) time

∗ A Hamiltonian cycle of a directed graph G = (V,E) is a simple cycle that contains each vertex in V
· Determining whether a directed graph has a Hamiltonian cycle is NP-complete
· The solution is given by the sequence 〈v1, v2, . . . , v|V |〉 such that for each 1 ≤ i < |V |, (vi, vi+1) ∈ E
· The certificate would be the above sequence of vertices
· It is easy to check in polynomial time that the edges formed by the above sequence are in E, and so is the

edge v|V |, v1.

– 2-CNF satisfiability vs. 3-CNF satisfiability

∗ Boolean formula has variables that can take value true or false
∗ The variables are connected by operators ∧, ∨, and ¬
∗ A Boolean formula is satisfiable if there exists some assignment of values to its variables that cause it to

evaluate it to true
∗ A Boolean formula is in k-conjunctive normal form (k-CNF) if it is the AND of clauses of ORs of exactly k

variables or their negations
∗ 2-CNF: (x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) ∧ (¬x2 ∨ ¬x3)

· Satisfied by x1 = true, x2 = false, x3 = true

∗ We can determine in polynomial time whether a 2-CNF formula is satisfiable but satisfiability of a 3-CNF
formula is NP-complete

– P ⊆ NP
∗ Any problem in P can be solved in polynomial time even without the certificate
∗ The open question is whether or not P ⊂ NP

• Showing problems to be NP-complete

– A problem is NP-complete if it is in NP and is as “hard” as any problem in NP
– If anyNP-complete problem can be solved in polynomial time, then everyNP-complete problem has a polynomial

time algorithm

– Analyze an algorithm to show how hard it is (instead of how easy it is)

– Show that no efficient algorithm is likely to exist for the problem

∗ As a designer, if you can show a problem to be NP-complete, you provide the proof for its intractability
∗ You can spend your time to develop an approximation algorithm rather than searching for a fast algorithm that

can solve the problem exactly

– Proof in terms of Ω(n)

• Decision problems vs optimization problems

Definition 1 Any problem for which the answer is either zero or one is called a decision problem. An algorithm for a
decision problem is termed a decision algorithm.

Definition 2 Any problem that involves the identification of an optimal (either minimum or maximum) value of a given
cost function is known as an optimization problem. An optimization algorithm is used to solve an optimization problem.



NP-Hard and NP-Complete Problems 3

– Optimization problems

∗ Each feasible solution has an associated value; the goal is to find a feasible solution with the best value
∗ SHORTEST PATH problem
· Given an undirected graph G and vertics u and v
· Find a path from u to v that uses the fewest edges
· Single-pair shortest-path problem in an undirected, unweighted graph

– Decision problems

∗ The problem gives an answer as “yes” or “no”
∗ Decision problem is assumed to be easier (or no harder) to solve compared to the optimization problem
∗ Decision problem can be solved in polynomial time if and only if the corresponding optimization problem can
· If the decision problem cannot be solved in polynomial time, the optimization problem cannot be solved

in polynomial time either

– NP-complete problems confined to the realm of decision problems

∗ Cast an optimization problem as a related decision problem by imposing a bound on the value to be optimized
∗ PATH problem as related to SHORTEST PATH problem
· Given a directed graph G, vertices u and v, and an integer k, is there a path from u to v with at most k

edges?
∗ Relationship between an optimization problem and its related decision problem
· Try to show that the optimization problem is “hard”
· Or that the decision problem is “easier” or “no harder”
· We can solve PATH by solving SHORTEST PATH and then comparing the number of edges to k
· If an optimization problem is easy, its decision problem is easy as well
· In NP-completeness, if we can provide evidence that a decision problem is hard, we can also provide

evidence that its related optimization problem is hard

– Reductions

∗ Showing that one problem is no harder or no easier than another also applicable when both problems are
decision problems

∗ NP-completeness proof – general steps
· Consider a decision problem A; we’ll like to solve it in polynomial time
· Instance: input to a particular problem; for example, in PATH, an instance is a particular graph G, two

particular variables u and v in G, and a particular integer k
· Suppose that we know how to solve a different decision problem B in polynomial time
· Suppose that we have a procedure that transforms any instance α of A into some instance β of B with

following characteristics:
Transformation take polynomial time
Both answers are the same; the answer for α is a “yes” iff the answer for β is a “yes”

∗ The above procedure is called a polynomial time reduction algorithm and provides us a way to solve problem
A in polynomial time
1. Given an instance α of A, use a polynomial-time reduction algorithm to transform it to an instance β of B
2. Run polynomial-time decision algorithm for B on instance β
3. Use the answer for β as the answer for α

∗ Using polynomial-time reductions to show that no polynomial-time algorithm can exist for a particular problem
B

· Suppose we have a decision problem A for which we already know that no polynomial-time algorithm can
exist
· Suppose that we have a polynomialtime reduction transforming instances of A to instances of B
· Simple proof that no polynomial-time algorithm can exist for B



NP-Hard and NP-Complete Problems 4

• Nondeterministic algorithms

– Deterministic algorithms

∗ Algorithms with uniquely defined results
∗ Predictable in terms of output for a certain input

– Nondeterministic algorithms are allowed to contain operations whose outcomes are limited to a given set of possi-
bilities instead of being uniquely defined

– Specified with the help of three new O(1) functions

1. choice ( S )

∗ Arbitrarily chooses one of the elements of set S
∗ x = choice(1,n) can result in x being assigned any of the integers in the range [1, n], in a completely

arbitrary manner
∗ No rule to specify how this choice is to be made

2. failure()
∗ Signals unsuccessful completion of a computation
∗ Cannot be used as a return value

3. success()
∗ Signals successful completion of a computation
∗ Cannot be used as a return value
∗ If there is a set of choices that leads to a successful completion, then one choice from this set must be made

– A nondeterministic algorithm terminates unsuccessfully iff there exist no set of choices leading to a success signal

– A machine capable of executing a nondeterministic algorithm as above is called a nondeterministic machine

– Nondeterministic search of x in an unordered array A with n ≥ 1 elements

∗ Determine an index j such that A[j] = x or j = −1 if x 6∈ A

algorithm nd_search ( A, n, x )
{
// Non-deterministic search
// Input: A: Array to be searched
// Input: n: Number of elements in A
// Input: x: Item to be searched for
// Output: Returns -1 if item does not exist, index of item otherwise

int j = choice ( 0, n-1 );
if ( A[j] == x )
{

cout << j;
success();

}
cout << -1;
failure();

}

∗ By the definition of nondeterministic algorithm, the output is -1 iff there is no j such that A[j] = x

∗ Since A is not ordered, every deterministic search algorithm is of complexity Ω(n), whereas the nondetermin-
istic algorithm has the complexity as O(1)

– Nondeterministic sorting algorithm

// Sort n positive integers in nondecreasing order

algorithm nd_sort ( A, n )
{



NP-Hard and NP-Complete Problems 5

// Initialize B[]; B is used for convenience
// It is initialized to 0 though any value not in A[] will suffice

for ( i = 0; i < n; B[i++] = 0; );
for ( i = 0; i < n; i++ )
{

j = choice ( 0, n - 1 );

// Make sure that B[j] has not been used already

if ( B[j] != 0 ) failure();
B[j] = A[i];

}

// Verify order

for ( i = 0; i < n-1; i++ )
if ( B[i] > B[i+1] ) failure();

write ( B );
success();

}

– Complexity of nd_sort is Θ(n)

∗ Best-known deterministic sorting algorithm has a complexity of Ω(n lg n)

– Deterministic interpretation of nondeterministic algorithm

∗ Possible by allowing unbounded parallelism in computation
∗ Imagine making n copies of the search instance above, all running in parallel and searching at different index

values for x
· The first copy to reach success() terminates all other copies
· If a copy reaches failure(), only that copy is terminated

∗ In abstract terms, nondeterministic machine has the capability to recognize the correct solution from a set of
allowable choices, without making copies of the program

• Possible to construct nondeterministic algorithms for many different choice sequences leading to successful completions
(see nd_sort)

– If the numbers in A are not unique, many different permutations will result into sorted sequence

– We’ll limit ourselves to problems that result in a unique output, or decision algorithms

∗ A decision algorithm will output 0 or 1
∗ Implicit in the signals success() and failure()

– Output from a decision algorithm is uniquely defined by input parameters and algorithm specification

• An optimization problem may have many feasible solutions

– The problem is to find out the feasible solution with the best associated value

– NP-completeness applies directly not to optimization problems but to decision problems

• Example: Maximal clique

– Clique is a maximal complete subgraph of a graph G = (V,E)

– Size of a clique is the number of vertices in it

– Maximal clique problem is an optimization problem that has to determine the size of a largest clique in G



NP-Hard and NP-Complete Problems 6

– Corresponding decision problem is to determine whether G has a clique of size at least k for some given k

– Let us denote the deterministic decision algorithm for the clique decision problem as dclique(G, k)

– If |V | = n, the size of a maximal clique can be found by

for ( k = n; dclique ( G, k ) != 1; k-- );

– If time complexity of dclique is f(n), size of maximal clique can be found in time g(n) ≤ nf(n)

∗ Decision problem can be solved in time g(n)

– Maximal clique problem can be solved in polynomial time iff the clique decision problem can be solved in polyno-
mial time

• Example: 0/1 knapsack

– Is there a 0/1 assignment of values to xi, 1 ≤ i ≤ n, such that
∑
pixi ≥ r and

∑
wixi ≤ m, for given m and r,

and nonnegative pi and wi

– If the knapsack decision problem cannot be solved in deterministic polynomial time, then the optimization problem
cannot either

• Comment on uniform parameter n to measure complexity

– n ∈ N is length of input to algorithm, or input size

∗ All inputs are assumed to be integers
∗ Rational inputs can be specified by pairs of integers

– n is expressed in binary representation

∗ n = 1010 is expressed as n = 10102 with length 4
∗ Length of a positive integer k10 is given by blog2 kc+ 1 bits
∗ Length of 02 is 1
∗ Length of the input to an algorithm is the sum of lengths of the individual numbers being input
∗ Length of input in radix r for k10 is given by blogr kc+ 1

∗ Length of 10010 is log10 100 + 1 = 3

∗ Finding length of any input using radix r > 1

· logr k = log2 k/ log2 r

· Length is given by c(r)n where n is the length using binary representation and c(r) is a number fixed for r

– Input in radix 1 is in unary form

∗ 510 = 111111

∗ Length of a positive integer k is k
∗ Length of a unary input is exponentially related to the length of the corresponding r-ary input for radix r, r > 1

• Maximal clique, again

– Input can be provided as a sequence of edges and an integer k

– Each edge in E(G) is a pair of vertices, represented by numbers (i, j)

– Size of input for each edge (i, j) in binary representation is blog2 ic+ blog2 jc+ 2

– Input size of any instance is

n =
∑

(i, j) ∈ E(G)
i < j

(blog2 ic+ blog2 jc+ 2) + blog2 kc+ 1

k is the number to indicate the clique size

– If G has only one connected component, then n ≥ |V |



NP-Hard and NP-Complete Problems 7

– If this decision problem cannot be solved by an algorithm of complexity p(n) for some polynomial p(), then it
cannot be solved by an algorithm of complexity p(|V |)

• 0/1 knapsack

– Input size q (q > n) for knapsack decision problem is

q =
∑

1≤i≤n

(blog2 pic+ blog2 wic) + 2n+ blog2mc+ blog2 rc+ 2

– If the input is given in unary notation, then input size s =
∑
pi +

∑
wi +m+ r

– Knapsack decision and optimization problems can be solved in time p(s) for some polynomial p() (dynamic pro-
gramming algorithm)

– However, there is no known algorithm with complexity O(p(n)) for some polynomial p()

Definition 3 The time required by a nondeterministic algorithm performing on any given input is the minimum number
of steps needed to reach a successful completion if there exists a sequence of choices leading to such a completion. In
case successful completion is not possible, then the time required is O(1). A nondeterministic algorithm is of complexity
O(f(n)) if for all inputs of size n, n ≥ n0, that result in a successful completion, the time required is at most cf(n) for
some constants c and n0.

– Above definition assumes that each computation step is of a fixed cost

∗ Guaranteed by the finiteness of each word in word-oriented computers

– If a step is not of fixed cost, it is necessary to consider the cost of individual instructions

∗ Addition of two m-bit numbers takes O(m) time
∗ Multiplication of two m-bit numbers takes O(m2) time

– Consider the deterministic decision algorithm to get sum of subsets

algorithm sum_of_subsets ( A, n, m )
{
// Input: A is an array of integers
// Input: n is the size of the array
// Input: m gives the index of maximum bit in the word

s = 1 // s is an m+1 bit word
// bit 0 is always 1

for i = 1 to n
s |= ( s << A[i] ) // shift s left by A[i] bits

if bit m in s is 1
write ( "A subset sums to m" );

else
write ( "No subset sums to m" );

}

∗ Bits are numbered from 0 to m from right to left
∗ Bit i will be 0 if and only if no subsets of A[j], 1 ≤ j ≤ n sums to i
∗ Bit 0 is always 1 and bits are numbered 0, 1, 2, . . . ,m right to left
∗ Number of steps for this algorithm is O(n)

∗ Each step moves m+ 1 bits of data and would take O(m) time on a conventional computer
∗ Assuming one unit of time for each basic operation for a fixed word size, the complexity of deterministic

algorithm is O(nm)

• Knapsack decision problem



NP-Hard and NP-Complete Problems 8

– Non-deterministic polynomial time algorithm for knapsack problem

algorithm nd_knapsack ( p, w, n, m, r, x )
{
// Input: p: Array to indicate profit for each item
// Input: w: Array to indicate weight of each item
// Input: n: Number of items
// Input: m: Total capacity of the knapsack
// Input: r: Expected profit from the knapsack
// Output: x: Array to indicate whether corresponding item is carried or not

W = 0;
P = 0;
for ( i = 1; i <= n; i++ )
{

x[i] = choice ( 0, 1 );
W += x[i] * w[i];
P += x[i] * p[i];

}

if ( ( W > m ) || ( P < r ) )
failure();

else
success();

}

– The for loop selects or discards each of the n items

– It also recomputes the total weight and profit coresponding to the selection

– The if statement checks to see the feasibility of assignment and whether the profit is above a lower bound r

– The time complexity of the algorithm is O(n)

– If the input length is q in binary, time complexity is O(q)

• Maximal clique

– Nondeterministic algorithm for clique decision problem

– Begin by trying to form a set of k distinct vertices

– Test to see if they form a complete subgraph

• Satisfiability

– Let x1, x2, . . . denote a set of boolean variables

– Let x̄i denote the complement of xi
– A variable or its complement is called a literal

– A formula in propositional calculus is an expression that is constructed by connecting literals using the operations
and (∧) and or (∨)

– Examples of formulas in propositional calculus

∗ (x1 ∧ x2) ∨ (x3 ∧ x̄4)

∗ (x3 ∨ x̄4) ∧ (x1 ∨ x̄2)

– Conjunctive normal form (CNF)

∗ A formula is in CNF iff it is represented as ∧ki=1ci, where ci are clauses represented as ∨lij ; lij are literals

– Disjunctive normal form (DNF)

∗ A formula is in DNF iff it is represented as ∨ki=1ci, where ci are clauses represented as ∧lij



NP-Hard and NP-Complete Problems 9

– Satisfiability problem is to determine whether a formula is true for some assignment of truth values to the variables

∗ CNF-satisfiability is the satisfiability problem for CNF formulas

– Polynomial time nondeterministic algorithm that terminates successfully iff a given propositional formulaE(x1, . . . , xn)
is satisfiable

∗ Nondeterministically choose one of the 2n possible assignments of truth values to (x1, . . . , xn)

∗ Verify that E(x1, . . . , xn) is true for that assignment
algorithm eval ( E, n )
{

// Determine whether the propositional formula E is satisfiable.
// Variable are x1, x2, ..., xn

// Choose a truth value assignment

for ( i = 1; i <= n; i++ )
x_i = choice ( true, false );

if ( E ( x1, ..., xn ) )
success();

else
failure();

}

∗ The nondeterministic time to choose the truth value is O(n)

∗ The deterministic evaluation of the assignment is also done in O(n) time

• The classes NP-hard and NP-complete

– Polynomial complexity

∗ An algorithm A is of polynomial complexity if there exists a polynomial p() such that the computation time of
A is O(p(n)) for every input of size n

Definition 4 P is the set of all decision problems solvable by deterministic algorithms in polynomial time. NP is
the set of all decision problems solvable by nondeterministic algorithms in polynomial time.

– Since deterministic algorithms are a special case of nondeterministic algorithms, P ⊆ NP
– An unsolved problem in computer science is: Is P = NP or is P 6= NP?

– Cook formulated the following question: Is there any single problem in NP such that if we showed it to be in P ,
then that would imply that P = NP? This led to Cook’s theorem as follows:

Theorem 1 Satisfiability is in P if and only if P = NP .

• Reducibility

– Show that one problem is no harder or no easier than another, even when both problems are decision problems

Definition 5 Let A and B be problems. Problem A reduces to B (written as A ∝ B) if and only if there is a way to
solve A by a deterministic polynomial time algorithm using a deterministic algorithm that solves B in polynomial
time.

∗ If we have a polynomial time algorithm for B, then we can solve A in polynomial time
∗ Reducibility is transitive
· A ∝ B ∧B ∝ C ⇒ A ∝ C

Definition 6 Given two sets A and B ∈ NNN and a set of functions FFF : NNN → NNN , closed under composition, A is
called reducible to B (A ∝ B) if and only if

∃f ∈ FFF | ∀x ∈NNN, x ∈ A ⇔ f(x) ∈ B



NP-Hard and NP-Complete Problems 10

– Procedure is called polynomial-time reduction algorithm and it provides us with a way to solve problem A in
polynomial time

∗ Also known as Turing reduction
∗ Given an instance α of A, use a polynomial-time reduction algorithm to transform it to an instance β of B
∗ Run the polynomial-time decision algorithm on instance β of B
∗ Use the answer of β as the answer for α
∗ Reduction from squaring to multiplication
· All we know is to add, subtract, and take squares
· Product of two numbers is computed by

2× a× b = (a+ b)2 − a2 − b2

· Reduction in the other direction: if we can multiply two numbers, we can square a number
∗ Computing (x+ 1)2 from x2

· For efficiency sake, we want to avoid multiplication
∗ Turing reductions compute the solution to one problem, assuming the other problem is easy to solve

– Polynomial-time many-one reduction

∗ Converts instances of a decision problem A into instances of a decision problem B

∗ Written as A ≤m B; A is many-one reducible to B
∗ If we have an algorithm N which solves instances of B, we can use it to solve instances of A in
· Time needed for N plus the time needed for reduction
· Maximum of space needed for N and the space needed for reduction

∗ Formally, suppose A and B are formal languages over the alphabets Σ and Γ

· A many-one reduction from A to B is a total computable function f : Σ∗ → Γ∗ with the property

ω ∈ A ⇔ f(ω) ∈ B, ∀ω ∈ Σ∗

· If such an f exists, A is many-one reducible to B
∗ A class of languages CCC is closed under many-one reducibility if there exists no reduction from a language in
CCC to a language outsideCCC
· If a class is closed under many-one reducibility, then many-one reduction can be used to show that a

problem is inCCC by reducing a problem inCCC to it
· Let S ⊂ P (NNN) (power set of natural numbers), and ≤ be a reduction, then S is called closed under ≤ if

∀s ∈ S ∀A ∈NNN A ≤ S ⇔ A ∈ S

· Most well-studied complexity classes are closed under some type of many-one reducibility, including P
and NP

∗ Square to multiplication reduction, again
· Add the restriction that we can only use square function one time, and only at the end
· Even if we are allowed to use all the basic arithmetic operations, including multiplication, no reduction

exists in general, because we may have to compute an irrational number like
√

2 from rational numbers
· Going in the other direction, however, we can certainly square a number with just one multiplication, only

at the end
· Using this limited form of reduction, we have shown the unsurprising result that multiplication is harder in

general than squaring
∗ Many-one reductions map instances of one problem to instances of another
· Many-one reduction is weaker than Turing reduction
· Weaker reductions are more effective at separating problems, but they have less power, making reductions

harder to design

– Use polynomial-time reductions in opposite way to show that a problem is NP-complete



NP-Hard and NP-Complete Problems 11

∗ Use polynomial-time reduction to show that no polynomial-time algorithm can exist for problem B

∗ A ⊂NNN is called hard for S if
∀s ∈ S s ≤ A

A ⊂NNN is called complete for S if A is hard for S and A is in S
∗ Proof by contradiction
· Assume that a known problem A is hard to solve
· Given a new problem B, similar to A
· Assume that B is solvable in polynomial time
· Show that every instance of problem A can be solved in polynomial time by reducing it to problem B

· Contradiction

– Cannot assume that there is absolutely no polynomial-time algorithm for A

Definition 7 A problem A is NP-hard if and only if satisfiability reduces to A (satisfiability ∝ A). A problem A is
NP-complete if and only if A is NP-hard and A ∈ NP .

– There are NP-hard problems that are not NP-complete

– Only a decision problem can be NP-complete

– An optimization problem may be NP-hard; cannot be NP-complete

– If A is a decision problem and B is an optimization problem, it is quite possible that A ∝ B
∗ Knapsack decision problem can be reduced to the knapsack optimization problem
∗ Clique decision problem reduces to clique optimization problem

– There are some NP-hard decision problems that are not NP-complete

– Example: Halting problem for deterministic algorithms

∗ NP-hard decision problem, but not NP-complete
∗ Determine for an arbitrary deterministic algorithm A and input I , whether A with input I ever terminates
∗ Well known that halting problem is undecidable; there exists no algorithm of any complexity to solve halting

problem
· It clearly cannot be in NP

∗ To show that “satisfiability∝ halting problem”, construct an algorithmAwhose input is a propositional formula
X

· If X has n variables, A tries out all the 2n possible truth assignments and verifies whether X is satisfiable
· If X is satisfiable, it stops; otherwise, A enters an infinite loop
· Hence, A halts on input X iff X is satisfiable

∗ If we had a polynomial time algorithm for halting problem, then we could solve the satisfiability problem in
polynomial time using A and X as input to the algorithm for halting problem

∗ Hence, halting problem is an NP-hard problem that is not in NP

Definition 8 Two problems A and B are said to be polynomially equivalent if and only if A ∝ B and B ∝ A.

– To show that a problemB isNP-hard, it is adequate to show thatA ∝ B, whereA is some problem already known
to be NP-hard

– Since ∝ is a transitive relation, it follows that if satisfiability ∝ A and A ∝ B, then satisfiability ∝ B
– To show that an NP-hard decision problem is NP-complete, we have just to exhibit a polynomial time nondeter-

ministic algorithm for it

Polynomial time

• Problems that can be solved in polynomial time are regarded as tractable problems



NP-Hard and NP-Complete Problems 12

1. Consider a problem that is solved in time O(n100)

– It is polynomial time but sounds intractable
– In practice, there are few problems that require such a high degree polynomial

2. For many reasonable models of computation, a problem that can be solved in polynomial time in one model can be
solved in polynomial time in another

3. The class of polynomial-time solvable problems has nice closure properties

– Polynomials are closed under addition, multiplication, and composition
– If the output of one polynomial-time algorithm is fed into the input of another, the composite algorithm is

polynomial


