Dynamic Programming

General method

e Works the same way as divide-and-conquer, by combiningisolsito subproblems

— Divide-and-conquer partitions a problem into independebproblems
— Greedy method only works with the local information

e Dynamic programming is required to take into account thetfaat the problems may not be partitioned imtdependent
subproblems

— The subproblem is solved only once and the answer saved biea ta
x Applicable when the subproblems overlap, or subproblerasessubsubproblems
— Solution to a problem can be viewed as the result of a sequartaxisions
x Knapsack problem solution
- Decide the values of;, 0 < i < n
- Make a decision onyg, thenz;, and so on
- An optimal sequence maximizes the objective funcfigm,z; under the constraints_ w;xz; < m and
0<ux; <1
x Shortest path problem

- Determine the shortest path from verteto vertex; by finding the second vertex in the path, then the
third, and so on, until vertexis reached

- Optimal sequence of decisions is one with a path of leastlieng
— Optimal sequence of decisions can be found by making theidesione at a time and never making an erroneous
decision

x This is the idea followed in greedy algorithms

x Can be guaranteed by trying all possible decision sequédnutébe time and space costs will be prohibitive

x Shortest path problem
- Find shortest path from vertéxo vertex;
- Let A; be the set of vertices adjacent fram
- The selection of vertex from,; cannot be finalized without looking further ahead
- If we have to find a shortest path from a single sourcalkorertices inG, then at each step, a correct

decision can be made

— Dynamic programming drastically reduces the amount of esration by avoiding the enumeration of some deci-
sion sequences that cannot possibly be optimal; an opteqalesice of decisions is obtained by usingghaciple
of optimality

x Applicable when the subproblems are not entirely indepefydeey may have common subsubproblems
x Each subsubproblem is solved only once and the results apedtedly

e The wordprogrammingin dynamic programming does not refer to coding but refedsuitding tables of intermediate
results

e Typically used for optimization problems that may have mpagsible solutions
— Anoptimal solution vdhe optimum solution
Definition 1 Theprinciple of optimality states that an optimal sequence of decisions has the profiext whatever the

initial state and decision are, the remaining states musistitute an optimal decision sequence with regard to thiesta
resulting from the first decision.

Dynamic Programming 2

e Greedy method vs Dynamic programming

— In greedy method, only one decision sequence is ever gederat
— In dynamic programming, many decision sequences may beajede

— Sequences containing suboptimal sequences cannot beabptcause of principle of optimality, and so, will not
be generated

— Shortest path problem

x Assume that, i, 1s,...,1%, j is a shortest path fromto j

x Starting with vertex, a decision is made to go 9

x Following this decision, the problem state is defined byeseit, and we need to find a path frointo j
x The sequenca, is, .. ., i, j must be a shortest to j path

* Ifnot, letiy, ri,72,...,7¢,j be ashortest to j path

* Then,i, iy, ri,72,...,7¢, 7 IS ani to j path that is shorter than the patfi,, io, . . ., i, j

x Hence, principle of optimality is applicable

e Development of solution broken into four steps:

1. Characterize the structure of an optimal solution

2. Recursively define the value of an optimal solution

3. Compute the value of an optimal solution in bottom-up i@sh
4. Construct an optimal solution from computed information

e Computing thenth Fibonacci number

int fib (const int n)

{

if (n<=0) return (0);

if (n==1) return (1);

return (fib(n- 1) +fib(n-2));
}

— This code is extremely inefficient; why?

¢ An efficient code using an array of size

int fib (const int n)

{
if (n<=0) return (0);
if (n==121) return (1);
int * a = newint[n+l];
a[0] = O;
a[1] = 1;
for (int i (2); i <=n; i++)

a[i] = a[i-1] + a[i-2];

int tnp (a[n]);
delete[] a;
return tnp;

}

¢ If we want to save space as well, the following code is more@mate

Dynamic Programming 3

int fib (const int n)

{
if (n<=0) return (0);
if (n==1) return (1);
int fO(0), f12 (1), f;
for (int i (2); 1 <=n; i++)
{
f =f1 + f0;
fo = f1,;
fl="f;
}
return f;
}

The above solution is known @ttom-up dynamic programmingwe compute the smallest values first and build the
solution using the solution to smaller problems; most of i@ dynamic programming situations referttgp-down
dynamic programmingalso known asnemoizatiopas you will see next in knapsack problem

e Knapsack problem

— Recursive solution
x Each time you choose an item, you assume that you can opyifiradl a solution to pack the rest of the

knapsack
struct item
{
i nt si ze;
i nt val ;
b
i nt knapsack (const int capacity)
{
int t;
/1 Nis the nunber of itemtypes
for (int i (0), int max (0); i <N i++)
if ((int space = capacity - itens[i].size) >= 0)
{
Renove itens[i] fromitens;
if ((t = knapsack (space) + itens[i].val) > max)
max = t;
}
return (max);
}

— Dynamic programming solution
x Decide the valuesof;, 1 <i<n
+ Make a decision om;, then onz,, and so on

* An optimal sequence of decisions maximizes the objectimetfan p;x;, under the constrainls, w;z; < m
and0 < z; <1

int knapsack (const int capacity)
{
int maxi, t;
i f (maxknown[capacity])
return (maxknown[capacity]);
for (int i (0), int max (0); i <N i++)

Dynamic Programming 4

if ((int space = capacity - itens[i].size) >=0)
if ((t = knapsack (space) + items[i].val) > max)
{
max = t;
maxi = i;
}
maxknown[capaci ty] = nax;
i temknown[capacity] = itens[maxi];

return (max);

}
e 0/1 knapsack

— Same as regular knapsack problem except that fseare restricted to a value of O or 1 (take nothing or evenghi
for an item)

— Formally, an instance of knapsack problemap (I, j, y) is
Maximize Zlgigj DiT;
subject to Zlgigj w;z; <y
r;=00rl,l <i<j
and the knapsack problem is representeddbgp (1, n, m)
— Letys,yo,-- ., y, be an optimal sequence of 0/1 valuesferz,, . . ., z,, respectively

If 41 =0, thenys,ys, ..., y, Must constitute an optimal sequence for the prolterap (2, n, m)
If it is not an optimal subsequence, then y-, . . ., ¥, IS not an optimal sequence fknap (1, n, m)
If y; = 1, thenys, ys, ..., y, must constitute an optimal sequence for the protkeap (2, n, m- wl)
If it is not an optimal subsequence, then
- there is another 0/1 sequenge zs, . . ., z,, such thag?z2 w;z; < m — wp, and
Y imo PiZi >)iy Dili
Hence, the sequengg, 22, 23, . . ., z,, gives a sequence with greater value
Not possible due to principle of optimality QED

*
*
*
*

*

*

e General decision problem

— Let Sy be initial problem state

— Assume that you have to makedecisionsi;, 1 <i<n

— LetD;y = {rq,rq,...,7;} be the set of possible decision valuesder

— Let S; be the problem state following the choice of decisipnl < < j

— LetI’; be an optimal sequence of decisions with respect to the gmobtates;

— Then, by principle of optimality, an optimal sequence ofidiens with respect t®, is the best of decision se-
quences;, [';,1 <i<j

e Shortest path

— Which of the vertices i4; (whereA, C V is the set of vertices adjacentipshould be the second vertex on the
path?

— Let A; be the set of vertices adjacent to veriex

— For each vertex € A;, letT'y, be a shortest path fromto j

— Then, a shortestto j path is the shortest of the pathisT'y, | k € A;}.

— Dynamic programming solution for shortest path

x Let k be an intermediate vertex on a shortesst j pathi, iy, io, ..., k,p1,p2,-..,]
x The pathg, iy, ...,k andk, py,...,j must, respectively, be shortésb ik andk to j paths.

Dynamic Programming 5

* Let P; be the set of vertices adjacent to verjex € P; < (k,j) € E(G)

* For eachk € P;, letT', be a shortestto & path

« By principle of optimality, a shortestto k path is the shortest of path¥', j|k € P;
- Start at verte) and look at last decision made
- Last decision was to use one of the ed¢es)), k € P;

e Dynamic programming eliminates all recomputation in argursive program, by saving intermediate values in vargble
whose scope is designed to allow them to be visible in mone din local context

Property 1 Dynamic programming reduces the running time of a recurivetion to be at most the time required to
evaluate the function for all arguments less than or equahtgiven argument, treating the cost of a recursive call as
constant.

e Property 1 implies that the running time for the knapsacklm isO(N M)

e Dynamic programming becomes ineffective when the numbeossible function values that may be needed is so high
that we cannot afford to save or precompute all of them

e Dynamic programming solution to 0/1 knapsack

— The intermediate knapsack problémap(1, j, y) can be represented by
Maximize Zlgigj DiT;
subject to Zlgigj w;x; <y

— The original knapsack problem now isnap(0, n-1, m

— Letg;(y) be the value of an optimal solutionkmap(j + 1, n, y).

* go(m) is the value of an optimal solution tmap(1, n, m)
* The possible decisions far are 0 and 1D, = {0,1})
x From the principle of optimality, it follows that

go(m) = max{gi(m), g1(m — w1) + p1}

— Letys,ys,.- .., y, be an optimal solution tknap(1, n, m).
* Foreachj,1 <j <mn,yi,...,y;, andy;i1,...,y, must be optimal solutions to the problekisap(1, j,
S wiy;) andknap(j +1, n,,m—Y_ wy,;) respectively
* This observation allows us to generalize the previous fangt() to

9i(y) = max{gi11(y), gi+1(y — Wiy1) + Piv1}

* The recursion is solved by using (y) = 0 for y > 0 andg,(y) = —co fory < 0

* Fromg,(y), we can obtainy,_1(y) using the above recurrence; then, using:(y), we can findg,—2(y),
and so on; finally, we can determipg(m)

— Example
x n=3w=1{2,3,4},p={1,2,5},m =6
* We have to computgy (6)

90(6) = max(g1(6),91(4) +1)
91(6) = max(g2(6), g2(3) +2)
92(6) = max(gs(6),g5(2) +5)
= max(0,935(2) +5)
max(0,0 + 5)

Dynamic Programming 6

5
92(3) = max(gs(3),93(3 —4) +5)
= max(0, —00)
= 0
g1(6) = max(5,2)
= 5
91(4) = max(g2(4),92(4 - 3) +2)
92(4) = max(g3(4),93(4—4) +5)
= max(0,0+5)
= 5
92(1) = max(gs(1),93(1 —4)+5)
= max(0, —00)
= 0
g1(4) = max(5,2)
= 5
go(6) = max(5,5+1)
6
— The sequence of decisions, zo, . .., x, leads to

9;(y) = max({g;-1(y), 9j-1(y — w;) + p;}
whereg;(y) is the value of an optimal solution tmap(1, j , y)
e 0/1 knapsack

— Looking backwards at the sequence of decisionss, . . . , z,,, we see that

fi(y) = max{f; 1(y), fi—1(y — w;) +p;}

wheref;(y) is the value of an optimal solution tmap(1, j , y)
— Value of an optimal solution tknap(1, n, m) is f,(m)
— Solve by beginning withfy(y) = 0 forall y, y > 0, andfy(y) = —ocoforally,y < 0
— Successively obtaiffi;, fo, ..., fn

— The soluion method may indicate that one has to look at alliptesdecision sequences to get an optimal sequence
using dynamic programming
x Using principle of optimality, suboptimal decision seqoesare discarded

x Although total number of decision sequences are exporiémtibe number of decisions, dynamic program-
ming algorithms often have polynomial complexity

x Also, optimal solutions to subproblems are retained tochvecomputing their value

Traveling Salesperson Problem

e Given a directed grap@ = (V, E) with edge costs;;

¢;; is defined such that; > 0 for all i andj andc;; = oo if (i,7) € E.
e |V =nandn >1

e Tour

Dynamic Programming 7

— Atour of G is a directed cycle that includes every verteXxinand no vertex occurs more than once except for the
starting vertex

— Costof a tour is the sum of the cost of edges on the tour
— Traveling salesperson problem is to find a tour of minimunt cos

e Comments

— 0/1 knapsack is a subset selection problem
— Traveling salesperson is a permutation problem
— Permutation problems are harder to solve

x n! different permutations of objects
x 2" different subsets of objects
x nl > 2"

e Greedy algorithm

— Start with vertex;; call it v;
— Visit the vertexv; that isnearesto v;, or can be reached from with least cost
— Repeat the above starting at vertgxXcall it as newy;) taking care never to visit a vertex already visited

e Dynamic programming algorithm

— Regard the tour to be a simple path that starts and ends akvert

— Every tour consists of an eddg, k) for somek € V — {1} and a path from vertek to vertex 1

— The path from verteX to vertex 1 goes through each verteXin- {1, k} exactly once

— Ifthe tour is optimal, then the path froatto 1 must be a shortestto 1 path going through all verticesin— {1, k}

— Let g(4,5) be the length of a shortest path starting at veftegoing through all vertices ii¥, and terminating at
vertex 1

— ¢g(1,V — {1}) is the length of an optimal salesperson tour
— From the principal of optimality

g(1,V —{1}) :2ggn{61k+g(k,‘/—{1,k})} 1)
— Generalizing (for € S)
9(i, 5) = rjneig{cij +9(5, 5 —{i}H} (2)

— Equation 1 may be solved fg(1, V' — {1}) if we knowg(k,V — {1, k}) for all values ofk
— Theg values may be obtained by using Equation 2
* g(i,¢) =ci1, 1 <i<n
* We can use Equation 2 to obtajfi, .S) for all S of size 1
* Then we can obtaip(i, S) for S with |.S| = 2
x When|S| < n — 1, the values of andS for which ¢(i, S) is needed are such tha# 1,1 ¢ S, andi ¢ S

e Solving traveling salesperson problem with dynamic prograng — example
— Consider the directed graph presented below

0 10 15 20
5 0 9 10
6 13 0 12
8 8 9 O

Dynamic Programming 8

— Solving for 2, 3, 4

9(2,9) = e = 5
9(37 ¢) = (€31 = 6
9(4,6) = en = 8
— Using Equation 2, we get
9(3,{2}) = 18 9(3,{4}) = 20
9(4,{2}) = 13 9(4,{3}) = 15
— Next, we compute (i, S) with |S| =2,i £ 1,1 ¢ S,andi ¢ S
9(2,{3,4}) = min{cos +9(3,{4}), cas +9(4,{3})} = 25
9(37{234}) = Inin{ng +g(2,{4}),034+g(4,{2})} = 25
9(4,{2,3}) =min{caz +9(2,{3}), cas +9(3,{2})} = 23
— Finally, from Equation 1, we obtain
9(17{21374}) = min{CIQ +g(27{314})7cl3+g(31{274})acl4+g(47 {213})}
= min{35, 40,43}
= 35
— Optimal tour
* Has cost 35

O S A R SR SR N

A tour of this length may be constructed if we retain with ea¢h S) the value ofj that minimizes the right
hand side of Equation 2

Let this value be called (i, .S)

Then,J(1,{2,3,4}) =2

Thus the tour starts from 1 and goes to 2

The remaining tour may be obtained frait2, {3,4})
Now, J(2,{3,4}) =4

Thus the next edge i, 4)

The remaining tour is fog(4, {3})

J(4,{3})=3

The optimal touris 1, 2,4, 3,1

e Analysis of traveling salesperson

— Let N be the number of (¢, S)s that have to be computed before Equation 1 may be used toutegip, V —{1})
— For each value ofS], there arex — 1 choices of;

— The number of distinct set$ of sizek not including 1 and is < " ; 2 >

— Hence,

n—2

NZZ(n—k—l)(ngz)z(n—1)2“—2

k=0

— An algorithm that finds an optimal tour using Equations 1 andlRrequire ©(n22") time as the computation of
g(i,S) with |S| = k requiresk — 1 comparisons when solving Equation 2

— Better than enumerating all different tours to find the best one

— The most serious drawback of the dynamic programming swlusi the space needé®(n2™))

*

This can be too large even for modest values .of

Dynamic Programming 9

Assembly line scheduling

e Manufacturing problem with two assembly lines

— Chassis enters an assembly line

— Parts added to chassis at each station

— Finished product exits the assembly line

— Each assembly linehas exactly: stations =S;1, ..., Si,

x Corresponding stations perform exactly the same functinmiay take different amount of time
* Assembly time required at statidf); is denoted by,

— Shown in following figure

StationS; 1 StationS; » StationS; 3 StationS; ,—1 StationS ,,

h @ TSy - @ ‘)
NVA /NN
@/ © e

Assembly line 1

Chassis o Completed
enters auto exits
(=) (22))
Assembly line 2 ((a2, @ 2.3 o .@,)
StatlonSm Statlonb'g,g Stat|0n5273 Statlonb'g,n_l Statlonb‘gm

— Entry time for assembly linédenoted by;
— Exit time for assembly liné denoted byz;

e Chassis can go from one station to another

— Within the same assembly line in negligible time, or at na cos
— To the other assembly line at some cost
* Cost to go from one assembly line to another after having gomeigh statiord; is ¢;;
e Problem is to schedule the assembly line such that the gwlagftstations from each assembly line minimizes the overal
assembly cost
— Need to determine the stations to choose from assembly lamel P to minimize the assembly time
— In the following example, choose stations 1, 3, 6 from linend 8, 4, 5 from line 2

Dynamic Programming 10

station §;, station§;; station§,; station§,; station§,; station S, 4

assembly line |

completed
auto
exits

chassis
enters

assembly line 2

station §55 station S, station 8, sttion 5,

SR

station &, , station S, 5

L&)
J Il 22 3. 4 5 6 EJ 2. 3 g 5
fi1 [9Ti8]z0124132]35 - W [T
LU [12(16]22(25(30137] © k(7] f‘ 2l1l2l2| ' =!
(b)

Figure 15.2 (a) An instance of the assembly-line problem with costs e;, a; jo 07, j~ and x; indicated.
Tha._: Ew:ml)_,l' shaded path indicates the fastest way through the factory. (b) The values of) fx,
fi1J]. and I* for the instance in part (a). '

e Brute force solution

— Enumerate all possibilities for stations

— Compute how long does each one take, and pick the best

— Problem hard because there afeways to choose the stations
— Time required is given bf(2™) which is infeasible for large

e Dynamic programming solution: Step 1: Structure of fastest through factory, or structure of optimal solution

— Fastest possible way for a chassis to get from starting ploiatigh statiord ;
— Only one possible way to go from starting point through staf ;
— Two ways to arrive at each staticfi ;, j > 1
1. Station on same line, from statiéfh ;_,
2. Station on other line, from statid#y ;_1, ¢’ # ¢, ata cost; ;1
— Assume that fastest way through stati®n; is through statiorf; ;_;

* The chassis must have taken the fastest way from startimg fmostationS; ;i
* If there were a faster way to get through stati®n;_;, we could substitute this faster way to get through
stationS, ; — contradiction
— Assume that fastest way through stati®n; is through statiorb ;_;

* The chassis must have taken the fastest way from startimg fpo$tationS, ;_;
* If there were a faster way to get through stati®n; i, we could substitute this faster way to get through
stationS; ; — contradiction

Dynamic Programming 11

— Optimal substructure

« Optimal solution to a problem contains the optimal solutiothe subproblems within it
x Fastest way to a station requires that the chassis must hlee the fastest way to the previous station in the
line
* To find the fastest way to a statidf ;, solve the subproblem to compute the fastest way to the tewiquis
stations —Si7j_1 andSi/,j_l
e Step 2: Arecursive solution

— Define the value of an optimal solution recursively in terrhemtimal solution to subproblems

x Subproblems will be defined as the problem of finding the fstay through statiorj on both lines, for
i=12...,n

— Let f;[j] be the fastest possible time to get a chassis from startiimg fwough statiors; ;
— Let f* be the fastest time to get the chassis all the way throughatiterfy

7 =min(fi[n] + 21, f2[n] + 72)
— Time to go through the first station in each line is given by

fill] = en+aix
foll] = ex+ag

— Computef;[j] forj =2,3,...,nandi = 1,2
— Adding the recursive step, it is easy to see that

filil = min(fi[j — 1 +au, folj = 1 +t2,5-1 +a1,5)
flil = min(fo[j — 1] +az, fili — 1 +t1,j-1 +az5)

— Definel;[j] to keep track of line number whose statipr 1 is used to get to statio§;
+x No need to defing [j] because no station precedes station 1 on either line
— Definel* to be the line whose stationis used as the last station to get through the assembly line
— Starting withl* = 1, use statior ¢
— 11][6] = 2 = stationSs 5

— 2[5 =2= Sa4
—bd=1= 53
—L3]=2= 55,
- B[2]=1= 511

e Step 3: Computing the fastest times

— Simple to write recursive algorithm but its running time xpenential inn
— Computef;[j] values in increasing order of station numbers
* Leads toO(n) time

