
Dynamic Programming

General method

• Works the same way as divide-and-conquer, by combining solutions to subproblems

– Divide-and-conquer partitions a problem into independentsubproblems

– Greedy method only works with the local information

• Dynamic programming is required to take into account the fact that the problems may not be partitioned intoindependent
subproblems

– The subproblem is solved only once and the answer saved in a table

∗ Applicable when the subproblems overlap, or subproblems share subsubproblems

– Solution to a problem can be viewed as the result of a sequenceof decisions

∗ Knapsack problem solution

· Decide the values ofxi, 0 ≤ i < n

· Make a decision onx0, thenx1, and so on

· An optimal sequence maximizes the objective function
∑

pixi under the constraints
∑

wixi ≤ m and
0 ≤ xi ≤ 1

∗ Shortest path problem

· Determine the shortest path from vertexi to vertexj by finding the second vertex in the path, then the
third, and so on, until vertexj is reached

· Optimal sequence of decisions is one with a path of least length

– Optimal sequence of decisions can be found by making the decisions one at a time and never making an erroneous
decision

∗ This is the idea followed in greedy algorithms

∗ Can be guaranteed by trying all possible decision sequencesbut the time and space costs will be prohibitive

∗ Shortest path problem

· Find shortest path from vertexi to vertexj

· LetAi be the set of vertices adjacent fromi

· The selection of vertex fromAi cannot be finalized without looking further ahead

· If we have to find a shortest path from a single source toall vertices inG, then at each step, a correct
decision can be made

– Dynamic programming drastically reduces the amount of enumeration by avoiding the enumeration of some deci-
sion sequences that cannot possibly be optimal; an optimal sequence of decisions is obtained by using theprinciple
of optimality

∗ Applicable when the subproblems are not entirely independent, they may have common subsubproblems

∗ Each subsubproblem is solved only once and the results used repeatedly

• The wordprogrammingin dynamic programming does not refer to coding but refers tobuilding tables of intermediate
results

• Typically used for optimization problems that may have manypossible solutions

– Anoptimal solution vstheoptimum solution

Definition 1 Theprinciple of optimality states that an optimal sequence of decisions has the property that whatever the
initial state and decision are, the remaining states must constitute an optimal decision sequence with regard to the state
resulting from the first decision.

Dynamic Programming 2

• Greedy method vs Dynamic programming

– In greedy method, only one decision sequence is ever generated

– In dynamic programming, many decision sequences may be generated

– Sequences containing suboptimal sequences cannot be optimal because of principle of optimality, and so, will not
be generated

– Shortest path problem

∗ Assume thati, i1, i2, . . . , ik, j is a shortest path fromi to j

∗ Starting with vertexi, a decision is made to go toi1
∗ Following this decision, the problem state is defined by vertex i1, and we need to find a path fromi1 to j

∗ The sequencei1, i2, . . . , ik, j must be a shortesti1 to j path

∗ If not, let i1, r1, r2, . . . , rq, j be a shortesti1 to j path

∗ Then,i, i1, r1, r2, . . . , rq, j is ani to j path that is shorter than the pathi, i1, i2, . . . , ik, j

∗ Hence, principle of optimality is applicable

• Development of solution broken into four steps:

1. Characterize the structure of an optimal solution

2. Recursively define the value of an optimal solution

3. Compute the value of an optimal solution in bottom-up fashion

4. Construct an optimal solution from computed information

• Computing thenth Fibonacci number

int fib (const int n)
{

if (n <= 0) return (0);
if (n == 1) return (1);
return (fib (n - 1) + fib (n - 2));

}

– This code is extremely inefficient; why?

• An efficient code using an array of sizen

int fib (const int n)
{

if (n <= 0) return (0);
if (n == 1) return (1);
int * a = new int[n+1];
a[0] = 0;
a[1] = 1;
for (int i (2); i <= n; i++)

a[i] = a[i-1] + a[i-2];
int tmp (a[n]);
delete[] a;
return tmp;

}

• If we want to save space as well, the following code is more appropriate

Dynamic Programming 3

int fib (const int n)
{

if (n <= 0) return (0);
if (n == 1) return (1);
int f0 (0), f1 (1), f;
for (int i (2); i <= n; i++)
{

f = f1 + f0;
f0 = f1;
f1 = f;

}
return f;

}

The above solution is known asbottom-up dynamic programming– we compute the smallest values first and build the
solution using the solution to smaller problems; most of thereal dynamic programming situations refer totop-down
dynamic programming(also known asmemoization) as you will see next in knapsack problem

• Knapsack problem

– Recursive solution

∗ Each time you choose an item, you assume that you can optimally find a solution to pack the rest of the
knapsack

struct item
{

int size;
int val;

};

int knapsack (const int capacity)
{

int t;
// N is the number of item types
for (int i (0), int max (0); i < N; i++)

if ((int space = capacity - items[i].size) >= 0)
{

Remove items[i] from items;
if ((t = knapsack (space) + items[i].val) > max)

max = t;
}

return (max);
}

– Dynamic programming solution

∗ Decide the values ofxi, 1 ≤ i ≤ n

∗ Make a decision onx1, then onx2, and so on
∗ An optimal sequence of decisions maximizes the objective function

∑

pixi, under the constraints
∑

wixi ≤ m

and0 ≤ xi ≤ 1

int knapsack (const int capacity)
{

int maxi, t;
if (maxknown[capacity])

return (maxknown[capacity]);
for (int i (0), int max (0); i < N; i++)

Dynamic Programming 4

if ((int space = capacity - items[i].size) >= 0)
if ((t = knapsack (space) + items[i].val) > max)
{

max = t;
maxi = i;

}
maxknown[capacity] = max;
itemknown[capacity] = items[maxi];
return (max);

}

• 0/1 knapsack

– Same as regular knapsack problem except that thexi’s are restricted to a value of 0 or 1 (take nothing or everything
for an item)

– Formally, an instance of knapsack problemknap (l, j, y) is

Maximize
∑

l≤i≤j pixi

subject to
∑

l≤i≤j wixi ≤ y

xi = 0 or 1, l ≤ i ≤ j

and the knapsack problem is represented byknap (1, n, m)

– Let y1, y2, . . . , yn be an optimal sequence of 0/1 values forx1, x2, . . . , xn, respectively

∗ If y1 = 0, theny2, y3, . . . , yn must constitute an optimal sequence for the problemknap (2, n, m)

∗ If it is not an optimal subsequence, theny1, y2, . . . , yn is not an optimal sequence forknap (1, n, m)

∗ If y1 = 1, theny2, y3, . . . , yn must constitute an optimal sequence for the problemknap (2, n, m - w1)

∗ If it is not an optimal subsequence, then

· there is another 0/1 sequencez2, z3, . . . , zn such that
∑n

i=2
wizi ≤ m− w1, and

·
∑n

i=2
pizi >

∑n

i=2
piyi

∗ Hence, the sequencey1, z2, z3, . . . , zn gives a sequence with greater value

∗ Not possible due to principle of optimality QED

• General decision problem

– Let S0 be initial problem state

– Assume that you have to maken decisionsdi, 1 ≤ i ≤ n

– Let D1 = {r1, r2, . . . , rj} be the set of possible decision values ford1

– Let Si be the problem state following the choice of decisionri, 1 ≤ i ≤ j

– Let Γi be an optimal sequence of decisions with respect to the problem stateSi

– Then, by principle of optimality, an optimal sequence of decisions with respect toS0 is the best of decision se-
quencesri,Γi, 1 ≤ i ≤ j

• Shortest path

– Which of the vertices inAi (whereAi ⊂ V is the set of vertices adjacent toi) should be the second vertex on the
path?

– Let Ai be the set of vertices adjacent to vertexi

– For each vertexk ∈ Ai, letΓk be a shortest path fromk to j

– Then, a shortesti to j path is the shortest of the paths{i,Γk | k ∈ Ai}.

– Dynamic programming solution for shortest path

∗ Let k be an intermediate vertex on a shortesti to j pathi, i1, i2, . . . , k, p1, p2, . . . , j
∗ The pathsi, i1, . . . , k andk, p1, . . . , j must, respectively, be shortesti to k andk to j paths.

Dynamic Programming 5

∗ Let Pj be the set of vertices adjacent to vertexj; k ∈ Pj ⇔ 〈k, j〉 ∈ E(G)

∗ For eachk ∈ Pj , letΓk be a shortesti to k path

∗ By principle of optimality, a shortesti to k path is the shortest of paths{Γk, j|k ∈ Pj

· Start at vertexj and look at last decision made

· Last decision was to use one of the edges〈k, j〉, k ∈ Pj

• Dynamic programming eliminates all recomputation in any recursive program, by saving intermediate values in variables
whose scope is designed to allow them to be visible in more than one local context

Property 1 Dynamic programming reduces the running time of a recursivefunction to be at most the time required to
evaluate the function for all arguments less than or equal tothe given argument, treating the cost of a recursive call as
constant.

• Property 1 implies that the running time for the knapsack problem isO(NM)

• Dynamic programming becomes ineffective when the number ofpossible function values that may be needed is so high
that we cannot afford to save or precompute all of them

• Dynamic programming solution to 0/1 knapsack

– The intermediate knapsack problemknap(l,j,y) can be represented by

Maximize
∑

l≤i≤j pixi

subject to
∑

l≤i≤j wixi ≤ y

xi ∈ {0, 1}, l ≤ i ≤ j

– The original knapsack problem now is:knap(0,n-1,m)

– Let gj(y) be the value of an optimal solution toknap(j + 1, n, y).

∗ g0(m) is the value of an optimal solution toknap(1, n, m)

∗ The possible decisions forx1 are 0 and 1 (D1 = {0, 1})

∗ From the principle of optimality, it follows that

g0(m) = max{g1(m), g1(m− w1) + p1}

– Let y1, y2, . . . , yn be an optimal solution toknap(1, n, m).

∗ For eachj, 1 ≤ j ≤ n, y1, . . . , yj, andyj+1, . . . , yn must be optimal solutions to the problemsknap(1, j,
∑j

i=1
wiyi) andknap(j+1, n,, m−

∑j

i=1
wiyi) respectively

∗ This observation allows us to generalize the previous function g() to

gi(y) = max{gi+1(y), gi+1(y − wi+1) + pi+1}

∗ The recursion is solved by usinggn(y) = 0 for y ≥ 0 andgn(y) = −∞ for y < 0

∗ From gn(y), we can obtaingn−1(y) using the above recurrence; then, usinggn−1(y), we can findgn−2(y),
and so on; finally, we can determineg0(m)

– Example

∗ n = 3, w = {2, 3, 4}, p = {1, 2, 5},m = 6

∗ We have to computeg0(6)

g0(6) = max(g1(6), g1(4) + 1)

g1(6) = max(g2(6), g2(3) + 2)

g2(6) = max(g3(6), g3(2) + 5)

= max(0, g3(2) + 5)

= max(0, 0 + 5)

Dynamic Programming 6

= 5

g2(3) = max(g3(3), g3(3− 4) + 5)

= max(0,−∞)

= 0

g1(6) = max(5, 2)

= 5

g1(4) = max(g2(4), g2(4− 3) + 2)

g2(4) = max(g3(4), g3(4− 4) + 5)

= max(0, 0 + 5)

= 5

g2(1) = max(g3(1), g3(1− 4) + 5)

= max(0,−∞)

= 0

g1(4) = max(5, 2)

= 5

g0(6) = max(5, 5 + 1)

= 6

– The sequence of decisionsx1, x2, . . . , xn leads to

gj(y) = max({gj−1(y), gj−1(y − wj) + pj}

wheregj(y) is the value of an optimal solution toknap(1,j,y)

• 0/1 knapsack

– Looking backwards at the sequence of decisionsx1, x2, . . . , xn, we see that

fj(y) = max{fj−1(y), fj−1(y − wj) + pj}

wherefj(y) is the value of an optimal solution toknap(1,j,y)

– Value of an optimal solution toknap(1,n,m) is fn(m)

– Solve by beginning withf0(y) = 0 for all y, y ≥ 0, andf0(y) = −∞ for all y, y < 0

– Successively obtainf1, f2, . . . , fn

– The soluion method may indicate that one has to look at all possible decision sequences to get an optimal sequence
using dynamic programming

∗ Using principle of optimality, suboptimal decision sequences are discarded
∗ Although total number of decision sequences are exponential in the number of decisions, dynamic program-

ming algorithms often have polynomial complexity

∗ Also, optimal solutions to subproblems are retained to avoid recomputing their value

Traveling Salesperson Problem

• Given a directed graphG = (V,E) with edge costscij

• cij is defined such thatcij > 0 for all i andj andcij = ∞ if 〈i, j〉 6∈ E.

• |V | = n andn > 1

• Tour

Dynamic Programming 7

– A tour of G is a directed cycle that includes every vertex inV , and no vertex occurs more than once except for the
starting vertex

– Costof a tour is the sum of the cost of edges on the tour

– Traveling salesperson problem is to find a tour of minimum cost

• Comments

– 0/1 knapsack is a subset selection problem

– Traveling salesperson is a permutation problem

– Permutation problems are harder to solve

∗ n! different permutations ofn objects

∗ 2n different subsets ofn objects

∗ n! > 2n

• Greedy algorithm

– Start with vertexv1; call it vi

– Visit the vertexvj that isnearestto vi, or can be reached fromvi with least cost

– Repeat the above starting at vertexvj (call it as newvi) taking care never to visit a vertex already visited

• Dynamic programming algorithm

– Regard the tour to be a simple path that starts and ends at vertex 1

– Every tour consists of an edge〈1, k〉 for somek ∈ V − {1} and a path from vertexk to vertex 1

– The path from vertexk to vertex 1 goes through each vertex inV − {1, k} exactly once

– If the tour is optimal, then the path fromk to 1 must be a shortestk to 1 path going through all vertices inV −{1, k}

– Let g(i, S) be the length of a shortest path starting at vertexi, going through all vertices inS, and terminating at
vertex 1

– g(1, V − {1}) is the length of an optimal salesperson tour

– From the principal of optimality

g(1, V − {1}) = min
2≤k≤n

{c1k + g(k, V − {1, k})} (1)

– Generalizing (fori 6∈ S)
g(i, S) = min

j∈S
{cij + g(j, S − {j})} (2)

– Equation 1 may be solved forg(1, V − {1}) if we knowg(k, V − {1, k}) for all values ofk

– Theg values may be obtained by using Equation 2

∗ g(i, φ) = ci,1, 1 ≤ i ≤ n

∗ We can use Equation 2 to obtaing(i, S) for all S of size 1

∗ Then we can obtaing(i, S) for S with |S| = 2

∗ When|S| < n− 1, the values ofi andS for whichg(i, S) is needed are such thati 6= 1, 1 6∈ S, andi 6∈ S

• Solving traveling salesperson problem with dynamic programming – example

– Consider the directed graph presented below

0 10 15 20
5 0 9 10
6 13 0 12
8 8 9 0

Dynamic Programming 8

– Solving for 2, 3, 4
g(2, φ) = c21 = 5
g(3, φ) = c31 = 6
g(4, φ) = c41 = 8

– Using Equation 2, we get

g(2, {3}) = c23 + g(3, φ) = 15 g(2, {4}) = 18
g(3, {2}) = 18 g(3, {4}) = 20
g(4, {2}) = 13 g(4, {3}) = 15

– Next, we computeg(i, S) with |S| = 2, i 6= 1, 1 6∈ S, andi 6∈ S

g(2, {3, 4}) = min{c23 + g(3, {4}), c24 + g(4, {3})} = 25
g(3, {2, 4}) = min{c32 + g(2, {4}), c34 + g(4, {2})} = 25
g(4, {2, 3}) = min{c42 + g(2, {3}), c43 + g(3, {2})} = 23

– Finally, from Equation 1, we obtain

g(1, {2, 3, 4}) = min{c12 + g(2, {3, 4}), c13 + g(3, {2, 4}), c14 + g(4, {2, 3})}

= min{35, 40, 43}

= 35

– Optimal tour

∗ Has cost 35
∗ A tour of this length may be constructed if we retain with eachg(i, S) the value ofj that minimizes the right

hand side of Equation 2
∗ Let this value be calledJ(i, S)
∗ Then,J(1, {2, 3, 4}) = 2

∗ Thus the tour starts from 1 and goes to 2
∗ The remaining tour may be obtained fromg(2, {3, 4})

∗ Now,J(2, {3, 4}) = 4

∗ Thus the next edge is〈2, 4〉
∗ The remaining tour is forg(4, {3})
∗ J(4, {3}) = 3

∗ The optimal tour is 1, 2, 4, 3, 1

• Analysis of traveling salesperson

– LetN be the number ofg(i, S)s that have to be computed before Equation 1 may be used to computeg(1, V −{1})

– For each value of|S|, there aren− 1 choices ofi

– The number of distinct setsS of sizek not including 1 andi is

(

n− 2
k

)

– Hence,

N =

n−2
∑

k=0

(n− k − 1)

(

n− 2
k

)

= (n− 1)2n−2

– An algorithm that finds an optimal tour using Equations 1 and 2will requireΘ(n22n) time as the computation of
g(i, S) with |S| = k requiresk − 1 comparisons when solving Equation 2

– Better than enumerating alln! different tours to find the best one

– The most serious drawback of the dynamic programming solution is the space needed(O(n2n))

∗ This can be too large even for modest values ofn.

Dynamic Programming 9

Assembly line scheduling

• Manufacturing problem with two assembly lines

– Chassis enters an assembly line

– Parts added to chassis at each station

– Finished product exits the assembly line

– Each assembly linei has exactlyn stations –Si1, . . . , Sin

∗ Corresponding stations perform exactly the same function but may take different amount of time

∗ Assembly time required at stationSij is denoted byaij

– Shown in following figure

Chassis
enters

✒✑
✓✏
e1

✒✑
✓✏
e2

�
��✒

❅
❅❅❘

✒✑
✓✏
a1,1

✒✑
✓✏
a2,1

StationS1,1

StationS2,1

�
��✒

❅
❅❅❘

Assembly line 1

Assembly line 2

❆
❆
❆❯

✁
✁
✁✕

✒✑
✓✏
t1,1

✒✑
✓✏
t2,1

❆
❆
❆
❆
❆
❆
❆
❆❯

✁
✁
✁
✁
✁
✁
✁
✁✕
✒✑
✓✏
a1,2

✒✑
✓✏
a2,2

StationS1,2

StationS2,2

✲

✲

❆
❆
❆❯

✁
✁
✁✕

✒✑
✓✏
t1,2

✒✑
✓✏
t2,2

❆
❆
❆
❆
❆
❆
❆
❆❯

✁
✁
✁
✁
✁
✁
✁
✁✕
✒✑
✓✏
a1,3

✒✑
✓✏
a2,3

StationS1,3

StationS2,3

✲

✲

✲

✲

· · ·

· · ·

· · ·

✲

✲

✒✑
✓✏
a1,n−1

✒✑
✓✏
a2,n−1

StationS1,n−1

StationS2,n−1

❆
❆
❆❯

✁
✁
✁✕ ❆

❆
❆❯

✁
✁
✁✕

✒✑
✓✏
t1,n−1

✒✑
✓✏
t2,n−1

❆
❆
❆
❆
❆
❆
❆
❆❯

✁
✁
✁
✁
✁
✁
✁
✁✕
✒✑
✓✏
a1,n

✒✑
✓✏
a2,n

StationS1,n

StationS2,n

✲

✲

❅
❅❅❘

�
��✒

✒✑
✓✏
x1

✒✑
✓✏
x2

❅
❅❅❘

�
��✒

Completed
auto exits

✓
✒

✏
✑

✓
✒

✏
✑

– Entry time for assembly linei denoted byei

– Exit time for assembly linei denoted byxi

• Chassis can go from one station to another

– Within the same assembly line in negligible time, or at no cost

– To the other assembly line at some cost

∗ Cost to go from one assembly line to another after having gonethrough stationSij is tij

• Problem is to schedule the assembly line such that the selection of stations from each assembly line minimizes the overall
assembly cost

– Need to determine the stations to choose from assembly line 1and 2 to minimize the assembly time

– In the following example, choose stations 1, 3, 6 from line 1 and 2, 4, 5 from line 2

Dynamic Programming 10

• Brute force solution

– Enumerate all possibilities for stations

– Compute how long does each one take, and pick the best

– Problem hard because there are2n ways to choose the stations

– Time required is given byΩ(2n) which is infeasible for large

• Dynamic programming solution: Step 1: Structure of fastestway through factory, or structure of optimal solution

– Fastest possible way for a chassis to get from starting pointthrough stationS1,j

– Only one possible way to go from starting point through stationS1,1

– Two ways to arrive at each stationSi,j , j > 1

1. Station on same line, from stationSi,j−1

2. Station on other line, from stationSi′,j−1, i′ 6= i, at a costti′,j−1

– Assume that fastest way through stationS1,j is through stationS1,j−1

∗ The chassis must have taken the fastest way from starting point to stationS1,j−1

∗ If there were a faster way to get through stationS1,j−1, we could substitute this faster way to get through
stationS1,j – contradiction

– Assume that fastest way through stationS1,j is through stationS2,j−1

∗ The chassis must have taken the fastest way from starting point to stationS2,j−1

∗ If there were a faster way to get through stationS2,j−1, we could substitute this faster way to get through
stationS1,j – contradiction

Dynamic Programming 11

– Optimal substructure

∗ Optimal solution to a problem contains the optimal solutionto the subproblems within it

∗ Fastest way to a station requires that the chassis must have taken the fastest way to the previous station in the
line

∗ To find the fastest way to a stationSi,j , solve the subproblem to compute the fastest way to the two previous
stations –Si,j−1 andSi′,j−1

• Step 2: A recursive solution

– Define the value of an optimal solution recursively in terms of optimal solution to subproblems

∗ Subproblems will be defined as the problem of finding the fastest way through stationj on both lines, for
j = 1, 2, . . . , n

– Let fi[j] be the fastest possible time to get a chassis from starting point through stationSi,j

– Let f∗ be the fastest time to get the chassis all the way through the factory

f∗ = min(f1[n] + x1, f2[n] + x2)

– Time to go through the first station in each line is given by

f1[1] = e1 + a1,1

f2[1] = e2 + a2,1

– Computefi[j] for j = 2, 3, . . . , n andi = 1, 2

– Adding the recursive step, it is easy to see that

f1[j] = min(f1[j − 1] + a1,j , f2[j − 1] + t2,j−1 + a1,j)

f2[j] = min(f2[j − 1] + a2,j , f1[j − 1] + t1,j−1 + a2,j)

– Defineli[j] to keep track of line number whose stationj − 1 is used to get to stationSi,j

∗ No need to definel1[j] because no station precedes station 1 on either line

– Definel∗ to be the line whose stationn is used as the last station to get through the assembly line

– Starting withl∗ = 1, use stationS1,6

– l1[6] = 2 ⇒ stationS2,5

– l2[5] = 2 ⇒ S2,4

– l2[4] = 1 ⇒ S1,3

– l1[3] = 2 ⇒ S2,2

– l2[2] = 1 ⇒ S1,1

• Step 3: Computing the fastest times

– Simple to write recursive algorithm but its running time is exponential inn

– Computefi[j] values in increasing order of station numbers

∗ Leads toΘ(n) time

