
Divide and Conquer

General method

Divide Split the input with n sample points into k subsets, 1 < k ≤ n, with no overlap between subsets

Conquer Solve each of the k subproblems, possibly by splitting recursively

• If the subproblems are small enough, solve those using a simple (non-recursive) method

• Also known as the bottoming out of recursion, or arrival at a base case

Combine the result of the k subproblems to solve the original problem

• Detecting a counterfeit coin

– Bag of 16 coins with one of them possibly counterfeit

– Counterfeit coins are lighter than genuine ones

– Determine if the bag contains a counterfeit coin

– Algorithm 1

∗ Compare a pair of coins; if one of them is counterfeit, it will be lighter
∗ Compare next pair, and so on
∗ You will find the counterfeit coin in at most 8 trials

– Algorithm 2: Divide and conquer

∗ Divide the 16 coin instance into two instances of 8 coins each
∗ Compare the weight of two sets; if same, no counterfeit coin; else divide the lighter instance into two of half

the original size and repeat
∗ Presence of counterfeit coin is determined in 1 trial
∗ Identification of coin happens in four trials

• Natural to express the solution as a recursive algorithm

• Control abstraction for recursive divide and conquer, with problem instance P

divide_and_conquer (P)
{

if (small (P)) // P is very small so that a solution is trivial
return solution (n);

divide the problem P into k instances P1, P2, ..., Pk;
return (combine (divide_and_conquer (P1),

divide_and_conquer (P2),
...
divide_and_conquer (Pk)));

}

• The solution to the above problem is described by the recurrence, assuming size of P denoted by n

Tn =

{
g(n) n is small
Tn1

+ Tn2
+ · · ·+ Tnk

+ f(n)

where f(n) is the time to divide n elements and to combine their solution

• Recursively decompose a large problem into a set of smaller problems

– Decomposition is directly reflected in analysis

Divide and Conquer 2

– Run-time determined by the size and number of subproblems to be solved in addition to the time required for
decomposition

– General complexity computation

Tn =

{
T1 n = 1
aTn/b + f(n) n > 1

where a and b are known constants; assume that n = bk

• Example, mergesort recurrence

Tn =

{
Θ(1) if n = 1
2Tn

2
+ Θ(n) if n > 1

Solution for the mergesort recurrence: Θ(n lg n)

• You can ignore extreme details like floor, ceiling, and boundary in recurrence description.

• Solving recurrence relations by substitution method

– Guess the form of solution and use mathematical induction to find constants

– Determine upper bound on the recurrence
Tn = 2Tbn2 c + n

Guess the solution as: Tn = O(n lg n)
Now, prove that Tn ≤ cn lg n for some c > 0
Assume that the bound holds for

⌊
n
2

⌋
Substituting into the recurrence

Tn ≤ 2(c
⌊n

2

⌋
lg(
⌊n

2

⌋
)) + n

≤ cn lg
(n

2

)
+ n

= cn lg n− cn lg 2 + n

= cn lg n− cn+ n

≤ cn lg n ∀c ≥ 1

Boundary condition: Let the only bound be T1 = 1

6 ∃c | T1 ≤ c1 lg 1 = 0

Problem overcome by the fact that asymptotic notation requires us to prove

Tn ≤ cn lg n for n ≥ n0

Include T2 and T3 as boundary conditions for the proof

T2 = 4 T3 = 5

Choose c such that T2 ≤ c2 lg 2 and T3 ≤ c3 lg 3
True for any c ≥ 2

– Making a good guess

∗ If a recurrence is similar to a known recurrence, it is reasonable to guess a similar solution

Tn = 2Tbn2 c + n

If n is large, difference between Tbn2 c and Tbn2 c+17 is relatively small
∗ Prove upper and lower bounds on a recurrence and reduce the range of uncertainty

Start with a lower bound of Tn = Ω(n) and an initial upper bound of Tn = O(n2). Gradually lower the upper
bound and raise the lower bound to get asymptotically tight solution of Tn = Θ(n lg n)

Divide and Conquer 3

– Pitfall

∗ Tn = 2Tbn2 c + n
Assume inductively that Tn ≤ cn implying that Tn = O(n)

Tn ≤ 2c
⌊n

2

⌋
+ n

≤ cn+ n

= O(n) ⇐ wrong

We haven’t proved the exact form of inductive hypothesis Tn ≤ cn
– Changing variables

∗ Consider the recurrence
Tn = 2Tb

√
nc + lg n

Let m = lg n.
T2m = 2T

2
m
2

+m

Rename Sm = T2m

Sm = 2Sm
2

+m

Solution for the recurrence: Sm = m lgm
Change back from Sm to Tn

Tn = T2m = Sm = O(m lgm) = O(lg n lg lg n)

• Solving recurrence relations by iteration method

– No guessing but more algebra

– Expand the recurrence and express it as summation dependent on only n and initial conditions

– Recurrence
Tn = 3Tbn4 c + n

Tn = n+ 3Tbn4 c

= n+ 3(
⌊n

4

⌋
+ 3Tb n

16 c)

= n+ 3(bn
4
c+ 3(b n

16
c+ 3Tb n

64 c))

= n+ 3bn
4
c+ 9b n

16
c+ 27Tb n

64 c

ith term is given by 3ib n4i c
Bound n = 1 when b n4i c = 1 or i > log4 n
Bound b n4i c ≤

n
4i

Decreasing geometric series

Tn ≤ n+
3

4
n+

9

16
n+

27

64
n+ · · ·+ 3log4 nΘ(1)

≤ n

∞∑
i=0

(
3

4

)i
+ Θ(nlog43) 3log4 n = nlog43

= 4n+ o(n) log43 < 1⇒ Θ(nlog43 = o(n)

= O(n)

Focus on

∗ Number of iterations to reach boundary condition

Divide and Conquer 4

∗ Sum of terms arising from each level of iteration

– Recursion trees

∗ Recurrence
Tn = 2Tn

2
+ n2

Assume n to be an exact power of 2.

Tn = n2 + 2Tn
2

= n2 + 2

((n
2

)2
+ 2Tn

4

)
= n2 +

n2

2
+ 4

((n
4

)2
+ 2Tn

8

)
= n2 +

n2

2
+
n2

4
+ 8

((n
8

)2
+ 2T n

16

)
= n2 +

n2

2
+
n2

4
+
n2

8
+ · · ·

= n2(1 +
1

2
+

1

4
+

1

8
+ · · ·)

= Θ(n2)

The values above decrease geometrically by a constant factor.
∗ Recurrence

Tn = Tn
3

+ T 2n
3

+ n

Longest path from root to a leaf

n→
(

2

3

)
n→

(
2

3

)2

n→ · · · 1

(
2
3

)k
n = 1 when k = log 3

2
n, k being the height of the tree

Upper bound to the solution to the recurrence – n log 3
2
n, or O(n log n)

• The Master Method

– Suitable for recurrences of the form
Tn = aTn

b
+ f(n)

where a ≥ 1 and b > 1 are constants, and
f(n) is an asymptotically positive function

– For mergesort, a = 2, b = 2, and f(n) = Θ(n)

– Master Theorem

Theorem 1 Let a ≥ 1 and b > 1 be constants, let f(n) be a function, and let Tn be defined on the nonnegative
integers by the recurrence

Tn = aTn
b

+ f(n)

where we interpret nb to mean either
⌊
n
b

⌋
or
⌈
n
b

⌉
. Then Tn can be bounded asymptotically as follows

1. If f(n) = O(nlogb a−ε) for some constant ε > 0, then Tn = Θ(nlogb a)

2. If f(n) = Θ(nlogb a), then Tn = Θ(nlogb a lg n)

3. If f(n) = Ω(nlogb a+ε) for some constant ε > 0, and if af
(
n
b

)
≤ cf(n) for some constant c < 1 and all

sufficiently large n, then Tn = Θ(f(n))

∗ In all three cases, compare f(n) with nlogb a

∗ Solution determined by the larger of the two
· Case 1: nlogb a > f(n)

Solution Tn = Θ(nlogb a)

Divide and Conquer 5

· Case 2: nlogb a ≈ f(n)
Multiply by a logarithmic factor
Solution Tn = Θ(nlogb a lg n) = Θ(f(n) lg n)

· Case 3: f(n) > nlogb a

Solution Tn = Θ(f(n))

∗ In case 1, f(n) must be asymptotically smaller than nlogb a by a factor of nε for some constant ε > 0

∗ In case 3, fn must be polynomially larger than nlogb a and satisfy the “regularity” condition that af(nb) ≤ cf(n)

– Using the master method

∗ Recurrence
Tn = 9Tn

3
+ n

a = 9, b = 3, f(n) = n
nlogb a = nlog3 9 = Θ(n2)
f(n) = O(nlog3 9−ε), where ε = 1
Apply case 1 of master theorem and conclude Tn = Θ(n2)

∗ Recurrence
Tn = T 2n

3
+ 1

a = 1, b = 3
2 , f(n) = 1

nlogb a = n
log 3

2
1

= n0 = 1
f(n) = Θ(nlogb a) = Θ(1)
Apply case 2 of master theorem and conclude Tn = Θ(lg n)

∗ Recurrence
Tn = 3Tn

4
+ n lg n

a = 3, b = 4, f(n) = n lg n
nlogb a = nlog4 3 = O(n0.793)
f(n) = Ω(nlog4 3+ε), where ε ≈ 0.2
Apply case 3, if regularity condition holds for f(n)
For large n, af(nb) = 3n4 lg(n4) ≤ 3

4n lg n = cf(n) for c = 3
4

Therefore, Tn = Θ(n lg n)

∗ Recurrence
Tn = 2Tn

2
+ n lg n

Recurrence has proper form – a = 2, b = 2, f(n) = n lg n and nlogb a = n
f(n) = n lg n is asymptotically larger than nlogb = n but not polynomially larger
Ratio f(n)

nlogba
= n lgn

n = lg n is asymptotically less than nε for any positive constant ε
Recurrence falls between case 2 and case 3

• Technicalities in recurrences

– Simplify the solution by ignoring certain details

∗ Consider mergesort; if n is odd, we end up with subproblems of size bn/2c and dn/2e
∗ Technically correct definition of mergesort recurrence is

Tn =

{
Θ(1) if n = 1
Tbn2 c + Tdn2 e + Θ(n) if n > 1

– We may also choose to ignore boundary conditions

∗ Running time of a constant-size input is a constant
∗ For sufficiently small n, we can describe the run-time as

Tn = Θ(1)

∗ As a convenience, we may omit boundary conditions from recurrence

Divide and Conquer 6

∗ We can describe the recurrence for mergesort as

Tn = 2Tn
2

+ Θ(n)

∗ Omitting the value of T1 changes the exact solution for the recurrence, but not by more than a constant factor;
it has no effect on the order of growth

Binary search

• Input characterized by an array ai, 0 ≤ i < n

– Elements in a are sorted in nondecreasing order

– Problem to determine whether an element k is present in a

∗ If it is present, return its index j such that aj = k

∗ If the element is not present, return −1

• Instance of problem given by
P = (n, al, . . . , ar, k)

where al, . . . , ar are n elements in the list to be searched for k

• Assume small (P) is true if r == l

– There is only one element to be tested

– In this case, solution (P) returns i if ai = x; otherwise it returns −1

– g(1) = Θ(1)

• If r − l ≥ 1, compute m = (l + r)/2 leading to three cases

1. am = k

– Problem is immediately solved

2. am < k

– Discard the elements whose index is smaller than m
– Search for k in a[m+ 1..r]

3. am > k

– Discard the elements whose index is larger than m
– Search for k in a[l..m− 1]

• Case 2 and 3 result in only one subproblem; division takes Θ(1) time

– Answer to the remaining subproblem is also the answer to the original problem; no need to combine the solutions

• Problem initially invoked by bin_search (a, 1, n, k);

• Recursive Algorithm

// Given an array a[l..r] of elements in nondecreasing order, 0 <= l <= r,
// determine whether k is present, and if so, return i such that k = a[i];
// else return -1
Algorithm bin_search (a, l, r, k)
{

if (r == l) // Small problem instance
{

if (k == a[r])

Divide and Conquer 7

return (r);
else

return (-1);
}

// Reduce problem to smaller instances

m = (r + l) / 2;
if (k == a[m])

return (m);

if (k < a[m])
return (bin_search (a, l, m - 1, k));

else
return (bin_search (a, m + 1, r, k));

}

• Iterative version

// Given an array a[0..n-1] of elements in nondecreasing order, n >= 0,
// determine whether k is present, and if so, return i such that k = a[i];
// else return -1
Algorithm bin_search (a, n, k)
{

low = 0;
high = n-1;
while (low <= high)
{

mid = (low + high) / 2;
if (k < a[mid])

high = mid - 1;
else

if (k > a[mid])
low = mid + 1;

else
return (mid);

}

return (-1);
}

Finding the maximum and minimum

• Linear scan algorithm

– Straightforward comparison – 2(n− 1) comparisons

– Compare for min only if comparison for max fails

– Best case: increasing order – n− 1 comparisons

– Worst case: decreasing order – 2(n− 1) comparisons

– Average case: 3n/2− 1 comparisons

• Divide and conquer algorithm

Divide and Conquer 8

item_t a[n] // Global array
maxmin (i, j, max, min)
{

if (i == j) // Only one element
{

max = min = a[i]
return

}

if (i == j - 1) // Only two elements
{

if (a[i] < a[j])
{

max = a[j]
min = a[i]

}
else
{

max = a[i]
min = a[j]

}
return

}

// Divide

mid = floor ((i + j) / 2)
maxmin (i, mid, max, min)
maxmin (mid+1, j, max1, min1)

// Conquer

if (max < max1) max = max1
if (min > min1) min = min1
return

}

• Analyzing divide and conquer maxmin described by the recurrence

Tn =

Tn

2
+ Tn

2
+ 2 n > 2

1 n = 2
0 n = 1

Let n = 2k, for some k > 0

Tn = 2Tn
2

+ 2

= 2(2Tn
4

+ 2) + 2

= 22T n
22

+ 22 + 2

= 22(2T n
23

+ 2) + 22 + 2

= 23T n
23

+ 23 + 22 + 2

...
...

= 2k−1T n

2k−1
+

k−1∑
i=1

2i

Divide and Conquer 9

= 2k−1 +

k−1∑
i=1

2i

= 2k−1 +
2(k−1)+1 − 1

2− 1

= 2k−1 + 2k − 1

=
n

2
+ n− 1

=
3n

2
− 1

Merge sort

• Recursive algorithm

• Algorithm can be described by the following recurrence

Tn =

{
2Tn

2
+ cn n > 1, c is a constant

a n = 1, a is a constant

Quick sort

• The array to be sorted is partitioned at a pivot element such that the elements at indices less than that of the pivot are less
than the pivot while the elements with indices greater than the pivot are larger than the pivot

• Quicksort eliminates the need for a subsequent merge as required by merge sort

• Performance analysis

– Worst case when elements are already in sorted order

• Randomized quick sort

– Select pivot as median of three

– Select a random element as the pivot (Las Vegas algorithm)

Selection

• Selecting kth smallest element using partition from quicksort

Strassen’s matrix multiplication

• Given two n× n matrices A and B; their product C is given by

Cij =

n∑
k=1

AikBkj

– It requires n multiplications for each element in C

– Total time to perform above computation is Θ(n3)

• Divide and conquer strategy

– Assume that n = 2k

Divide and Conquer 10

∗ If n 6= 2k, we can add enough rows and columns to make it satisfy our assumption

– Each of A, B, and C is partitioned into submatrices of size n
2 such that[

A11 A12

A21 A22

] [
B11 B12

B21 B22

]
=

[
C11 C12

C21 C22

]
– This yields eight multiplications of n2 ×

n
2 matrices (Tn

2
), and four additions of the same size of matrices (assume

cn2 for some constant c, starting with 4 · (n2)2)

– The recurrence is

Tn =

{
b n ≤ 2
8Tn

2
+ cn2 n > 2

– A solution of this recurrence yields Tn = O(n3) (no improvement)

– Observation: Matrix multiplications are more expensive (O(n3)) than matrix additions (O(n2))

– Strassen’s method relies on devising a clever workaround to minimize the number of multiplications while increas-
ing the number of additions

∗ 7 multiplications and 18 additions/subtractions

– The intermediate computations are

P1 = (A11 +A22)(B11 +B22)

P2 = (A21 +A22)B11

P3 = A11(B12 −B22)

P4 = A22(B21 −B11)

P5 = (A11 +A12)B22

P6 = (A21 −A11)(B11 +B12)

P7 = (A12 −A22)(B21 +B22)

– The elements of C are given as

C11 = P1 + P4 − P5 + P7

C12 = P3 + P5

C21 = P2 + P4

C22 = P1 + P3 − P2 + P6

– The recurrence relation is

Tn =

{
b n ≤ 2
7Tn

2
+ an2 n > 2

where a and b are constants

– Solving the recurrence

Tn = an2[1 +
7

4
+

(
7

4

)2

+ · · ·+
(

7

4

)k−1
] + 7kT (1)

≤ cn2
(

7

4

)lgn

+ 7lgn, c is a constant

= cnlg 4+lg 7−lg 4 + nlg 7

= O(nlg 7)

≈ O(n2.81)

Convex hull

Divide and Conquer 11

• Structure (smallest convex polygon) used in the construction of geometric structures

• Polygon: A piecewise-linear, closed curve in a plane

– Curve composed of a sequence of straight line segments, or sides of polygon

– Curve starts and ends at the same point

– A point that is common to two sides is called a vertex

Definition 1 A polygon is defined to be convex if for any two vertices p1 and p2 inside the polygon, the directed line
segment from p1 to p2 (denoted as 〈p1, p2〉) is fully contained in the polygon.

Definition 2 The convex hull of a set S of points in the plane is defined to be the smallest convex polygon containing all
the points of S.

• Vertices of the convex hull of a set S of points form a [not necessarily proper] subset of S

• Two variants of the convex hull problem

1. Obtain the vertices (extreme points) of the convex hull

2. Obtain the vertices of the convex hull in some order, such as clockwise

• Obtaining extreme points of a given set S of points in a plane

for each p in S
{

for each possible triplet of points in S
if p is not inside the triangle formed by any triplet

mark p as an extreme point;
}

– Testing for p being inside a given triangle is performed in Θ(1) time

– Number of possible triangles is Θ(n3)

– Since there are n points, the above algorithm runs in Θ(n4) time

• Divide and conquer allows us to solve the convex hull problem (either form) in O(n log n) time

• Geometric primitives

– Let A be an n× n matrix with elements denoted by aij

Definition 3 The ijth minor of A, denoted by Aij , is defined to be the submatrix of A obtained by deleting the ith
row and jth column.

Definition 4 The determinant of A, denoted by |A|, is given by

|A| =
{
a11 n = 1
a11 · |A11| − a12 · |A12|+ · · ·+ (−1)n−1 · |A1n| n > 1

– Consider the directed line segment 〈p1, p2〉 from some point p1 = (x1, y1) to some other point p2 = (x2, y2). If
q = (x3, y3) is another point, we say q is to the left [right] of 〈p1, p2〉 if the angle p1p2q is a left [right] turn.

∗ An angle θ is said to be a left turn if θ ≤ 180; otherwise, it is considered to be a right turn
∗ We can check whether q is to the left or right of 〈p1, p2〉 by evaluating the determinant of their coordinates∣∣∣∣∣∣

x1 x2 x3
y1 y2 y3
1 1 1

∣∣∣∣∣∣

Divide and Conquer 12

Determinant > 0. q is to the left of 〈p1, p2〉
Determinant = 0. The three points are colinear
Determinant < 0. q is to the right of 〈p1, p2〉
· Point p is within the triangle formed by p1, p2, and p3 iff p is to the right of each of the three lines p1p2,
p2p3, and p3p1
· For any three points (x1, y1), (x2, y2), and (x3, y3), the signed area formed by the corresponding triangle

is given by one-half of the above determinant

– Checking for point p to be inside a convex polygon Q given by vertices p1, p2, . . . , pn
∗ Consider a horizontal line h from −∞ to∞ and passing through p
∗ Two possibilities

1. h does not intersect any of the edges of Q
· p is outside Q

2. h intersects some of the edges of Q
· There can be at most two points of intersection; if h intersects Q at a single point, it is considered as two

points
· Count the number of points to the left of p
· If the number is even, p is outside Q; otherwise it is inside Q

∗ The method takes Θ(n) time to check whether p is interior to Q

• QuickHull Algorithm

– Similar to quicksort

– Computes the convex hull of a set X of n points in the plane

convex_hull quick_hull (X)
{

// Identify p_1 and p_2 as part of the convex hull

p_1 = point in X with the smallest x-coordinate value
p_2 = point in X with the largest x-coordinate value
divide X into X_1 and X_2 such that
{

X_1 = set of points to the left of line segment <p_1, p_2>
X_2 = set of points to the right of line segment <p_1, p_2>
// Convex hull of X_1 is the upper hull
// Convex hull of X_2 is the lower hull
// Compute the upper and lower hull using the divide and conquer
// algorithm called hull; union of the two hulls is the overall convex
// hull

H1 = hull (X_1, p_1, p_2);
H2 = hull (X_2, p_2, p_1);

}

return (H1 + H2); // Union of H1 and H2
}

– The case of ties when more than one point has the extreme x-coordinate, can be handled as a special case

convex_hull hull (X, p1, p2)
{

for each point p in X
compute the area of the triangle formed by p, p1, and p2

Divide and Conquer 13

p3 = p, for which the above area is maximized

// In case of a tie for point with maximum area, select p3 to be the point
// for which the angle p3p1p2 is maximized

// Divide X into two parts X1 and X2 based on p3

X1 = points in X to the left of <p1,p3>
X2 = points in X to the left of <p3,p2>

// There is no point in X1 that is to the left of both <p1,p3> and <p3,p2>
// Remaining points are interior points and can be dropped from further
// consideration

H1 = hull (X1, p1, p3);
H2 = hull (X2, p3, p2);

return (H1 + H2); // Union of H1 and H2
}

– Analyzing the algorithm

∗ Let there be m points in X1

∗ We can identify p3 in O(m) time
∗ Partitioning X1 into two is also done in O(m) time
∗ Merging the two convex hulls is done in O(1) time
∗ Run time of hull on m points is given by Tm
∗ Size of resultant parts given by m1 and m2; m1 +m2 ≤ m
∗ Recurrence relation is:

Tm = Tm1 + Tm2 +O(m)

· Similar to quicksort
∗ Worst case run-time: O(m2) for m points when the partitioning is highly uneven
∗ For nearly even partitioning, run-time given by O(m lgm)

• Graham’s scan

– Given a set of points S in a 2D plane

– Identify the point p with smallest y coordinate

∗ Break ties by picking the point with smallest x coordinate

– Sort the points by angle subtended by points and p with the horizontal axis

– Scan through sorted list starting with p, three points at a time

∗ If points p1, p2, p3 form a left turn, they all are on the hull
∗ If p1, p2, p3 form a right turn, p2 is not on the convex hull

– Example

Divide and Conquer 14

rp0 rp1

rp2

rp3

rp4

rp5

rp6

rp7

rp14

rp8

rp9

rp10

rp11

rp12

rp13

hhhh
hhhh

hh
bb

bb

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

