Approximation Algorithms

Introduction

- Approach to attacking NP-hard problems
 - NP-hard problems cannot be solved in polynomial time
 - * NP-hard problems may have practical value but are solvable in exponential time, at best
 - 1. May be acceptable for small input size
 - 2. Possible to isolate special cases that are solvable in polynomial time
 - 3. Possible to find *near-optimal* solution in polynomial time
 - * We may want to get a solution to those problems in polynomial time
 - * Some solutions may be of sub-exponential complexity, such as $2^{n/c}$ for $c > 1, 2^{\sqrt{n}}$, or $n^{\log n}$
 - * Availability of sub-exponential complexity solution allows for solution of problems with larger data sets
 - * $O(n^4)$ complexity may not be good for large data sets; we'll prefer O(n) or $O(n^2)$ complexity algorithms
 - Non-optimal solution in polynomial time
 - * Often good enough for practical purposes
 - * Known as approximation algorithms
 - * Example: Consider the AC Coupling effect in sensor simulation, typically reduced to

$$y_n = \frac{T}{T+1} \left(x_n - x_{n-1} + y_{n-1} \right)$$

• Rewrite the equation by substituting $c = \frac{T}{T+1}$ as

$$y_n = c(x_n - x_{n-1} + y_{n-1})$$

 \cdot Limiting the recursion to k steps yields a kernel that can be implemented to perform the effect as

$$y_n = c \cdot x_n - \sum_{i=0}^{k-1} c^{k-i} (1-c) \cdot x_i$$

- Comparison with heuristics
 - * Heuristics find reasonably good solution in a reasonable time
 - * Heuristics may be based on isolating important special cases that can be solved in polynomial time
 - * Heuristics are not guaranteed to work on every instance of the problem data set
 - · Exponential algorithms may still show exponential behavior even when used with heuristics
 - * Approximation algorithms give provable solution quality in provable run-time bounds
 - * Approximation is optimal up to a small constant factor (like 5%)
- Relax the meaning of "solve"
 - * Remove the requirement that the algorithm must always generate an optimal solution
 - Replace it with the requirement that the algorithm must always generate a feasible solution with value close to the value of an optimal (approximate) solution
 - · For NP-hard problems, each optimal solution may not be obtainable in reasonable computation time
 - * A second goal is to get an algorithm that *almost always* generates optimal solution; such algorithm is called probabilistically good algorithm
- Performance ratios for approximation algorithms
 - A problem (knapsack, traveling salesperson) is denoted by P
 - Let I be an instance of problem P

- Cost of optimal solution for instance I is given by $C^*(I)$, $C^*(I) > 0$
- Optimal solution may be defined as maximum or minimum possible cost (maximization or minimization problem)
- Cost of approximate solution $\hat{C}(I)$
 - * $\hat{C}(I) < C^*(I)$ if P is a maximization problem
 - * $\hat{C}(I) > C^*(I)$ if P is a minimization problem

Definition 1 A is an absolute approximation algorithm if and only if for every instance I of problem P, $|C^*(I) - C(I)| \le k$ for some constant k

- Approximation ratio $\rho(n)$
 - * Given input of size n
 - * $\hat{C}(I)$ is within a factor $\rho(n)$ of $C^*(I)$ if

$$\max\left(\frac{\hat{C}(I)}{C^*(I)}, \frac{C^*(I)}{\hat{C}(I)}\right) \le \rho(n)$$

* Another measure of approximation is given in literature as

$$\frac{|C^*(I) - \hat{C}(I)|}{C^*(I)} \le \rho(n)$$

Definition 2 A is a $\rho(n)$ -approximate algorithm if and only if for every instance of size n, the algorithm achieves an approximation ratio of $\rho(n)$

- * Applies to both maximization $(0 < \hat{C}(I) \le C^*(I))$ and minimization $(0 < C^*(I) \le \hat{C}(I))$ problems because of the maximization factor, and because the costs are positive
- * $\rho(n) > 1$

Definition 3 An ϵ -approximation algorithm is a $\rho(n)$ -approximation algorithm for which $\rho(n) \leq \epsilon$ for some constant ϵ

- * 1-approximation implies $\hat{C}(I) = C^*(I)$, resulting in an optimal solution
- * An approximation algorithm with a large $\rho(n)$ may return a solution that is far worse than optimal
- Approximation scheme
 - * Tradeoff between computation time and quality of approximation
 - * An algorithm may achieve increasingly smaller $\rho(n)$ using more and more computation time
 - * Approximation algorithm takes a value $\epsilon > 0$ as an additional input such that for any fixed ϵ , the scheme is a $(1 + \epsilon)$ -approximation algorithm

Definition 4 $A(\epsilon)$ is an approximation scheme if and only if for every given $\epsilon > 0$ and problem instance I, $A(\epsilon)$ generates a feasible solution such that $\frac{|C^*(I) - \hat{C}(I)|}{C^*(I)} \le \epsilon$, assuming $C^*(I) > 0$

Definition 5 An approximation scheme is a **polynomial-time approximation scheme** if and only if for any fixed $\epsilon > 0$, the scheme runs in time polynomial in the size *n* of input instance

- * Running time of a polynomial-time approximation scheme can increase rapidly as ϵ decreases
 - · Assume running time of a polynomial-time approximation scheme is $O(n^{2/\epsilon})$
 - · Ideally, if ϵ decreases by a constant factor, the run time for desired aproximation should not increase by a constant factor
 - Preferable to have run time polynomial in $1/\epsilon$ as well as in n

Definition 6 An approximation scheme whose computing time is a polynomial both in problem size and in $1/\epsilon$ is a *fully polynomial-time approximation scheme*

* Example running time for scheme: $O((1/\epsilon)^2 n^3)$

- * Allows a constant-factor decrease in ϵ with a corresponding constant-factor increase in running-time
- Absolute approximation algorithm is the most desirable approximation algorithm
 - * For most NP-hard problems, fast algorithms of this type exists only if $\mathcal{P} = NP$
- Example: Knapsack problem
 - * $n = 3, m = 100, P = \{20, 10, 19\}, W = \{65, 20, 35\}$
 - * Solution $X = \{1, 1, 1\}$ is not feasible
 - * Solution $X = \{1, 0, 1\}$ is optimal, with $\sum p_i x_i = 39$
 - * We have $C^*(I) = 39$ for this instance
 - * Solution $X = \{1, 1, 0\}$ is suboptimal with $\sum p_i x_i = 30$
 - · Candidate for a possible output from an approximation algorithm
 - $\cdot \hat{C}(I) = 30$
 - $\cdot \rho(n) = \max\left(\frac{30}{39}, \frac{39}{30}\right) = 1.3$ for this instance
 - $\cdot \frac{|C^*(I) \hat{C}(I)|}{C^*(I)} = \frac{39 30}{39} = 0.23$
 - * Perform the computation with other feasible solution: $\{0, 1, 1\}$
- Example: Knapsack problem
 - * Assume the objects are in nonincreasing order of p_i/w_i
 - * If object *i* fits, set x_i to 1; otherwise set x_i to 0
 - * Instance 1
 - $\cdot n = 2, m = 4, P = \{100, 20\}, W = \{4, 1\}$
 - $\cdot\,$ Objects considered in the order 1,2
 - · Solution is: $X = \{1, 0\}$, which is optimal
 - * Instance 2
 - $\cdot n = 2, m = r, P = \{2, r\}, W = \{1, r\}$
 - When r > 2, optimal solution is $X = \{0, 1\}$, and $C^*(I) = r$
 - · Solution generated by approximation algorithm is $X = \{1, 0\}$, with $\hat{C}(I) = 2$
 - $\cdot \frac{|C^*(I) \hat{C}(I)|}{C^*(I)} = \frac{r-2}{r}$
 - The approximation algorithm is not an absolute approximation as there is no k such that $\frac{|C^*(I) \hat{C}(I)|}{C^*(I)} \le k$ for all instances I
 - · Also notice that $\frac{|C^*(I) \hat{C}(I)|}{C^*(I)} = 1 \frac{2}{r}$; this approaches 1 as r becomes large
 - $\frac{|C^*(I) \hat{C}(I)|}{C^*(I)} \leq 1$ for every feasible solution to every knapsack instance
 - · Since this algorithm always generates a feasible solution, it is a 1-approximate algorithm; it is not ϵ -approximate for any ϵ , $\epsilon < 1$

Vertex cover problem

• A vertex cover of an undirected graph G = (V, E) is a subset V' of the vertics of the graph which contains at least one of the two endpoints of each edge

$$V' \subseteq V : \forall \{a, b\} \in E, a \in V' \lor b \in V'$$

- The size of a vertex cover is the number of vertices in it
- Optimization problem of finding a vertex cover of minimum size (optimal vertex cover) in a graph
 - Useful in circuit design
 - NP-complete problem
- Decision problem: Given a graph G and a positive integer k, is there a vertex cover of size less than or equal to k

2-approximate algorithm for vertex cover

```
algorithm approx_vertex_cover ( G )
{
   // Input: Undirected graph G
   // Output: Vertex cover whose size is guaranteed to be no more than twice
              the size of optimal vertex cover
   11
   C = NULL
                           // Current vertex cover
   E' = E[G]
                           // All edges in the graph
   while ( E' != NULL )
       e = (u, v)
                          // Select an arbitrary edge from E'
       C = C + e // Add the selected edge to C (set union)
       Remove from E' every edge incident on either u or v
    }
   return (C)
}
```

- Example
 - Graph with six vertices $V = \{a, b, c, d, e, f, g\}$ and edges given by $E = \{ab, bc, cd, ce, de, df, dg\}$
 - Approximate vertex cover is given by $\{b, c, d, e, f, g\}$
 - Optimal vertex cover is given by $\{b, d, e\}$
- Run-time of vertex cover approximation algorithm is O(V + E), using adjacency lists to represent E'

Theorem 1 approx_vertex_cover is a polynomial-time 2-approximation algorithm.

- Easy to see that approx_vertex_cover runs in polynomial time
- Set of vertices C is a vertex cover since algorithm loops until every edge in E has been covered by some vertex in C
- Proving that C is at most twice the size of optimal cover
 - * Let A be the set of edges selected by the algorithm (first statement in loop)
 - * To cover the edges in A, any vertex cover must include at least one endpoint of each edge in A
 - * No two edges in A share an endpoint
 - Once an edge is picked up in A, all other edges incident on its endpoints are deleted from E'
 - * No two edges are covered by the same vertex from optimal cover C^* giving us the lower bound as $|C^*| \ge |A|$
 - * Each iteration of the loop picks an edge with neither endpoints in C, giving an upper bound on the vertex cover as |C| = 2|A|
 - * From those two observations

$$\begin{aligned} |C| &= 2|A| \\ &\leq 2|C^* \end{aligned}$$

- We do not require that we know $|C^*|$ exactly; instead, we rely on the lower bound on the size

Absolute approximations

- Planar graph coloring
 - Graph coloring

- * Assignment of colors (or labels) to vertices in a graph such that no two adjacent vertices share the same color
- Determine the minimum number of colors needed to color a planar graph G = (V, E)
- A graph is 0-colorable iff $V = \emptyset$
- A graph is 1-colorable iff $E = \emptyset$
- A graph is 2-colorable iff it is bipartite
- Determining whether a graph is 3-colorable is \mathcal{NP} -hard
- It is known that every planar graph is four colorable
- It is easy to obtain an algorithm with $|C^*(I) \hat{C}(I)| \leq 1$

```
algorithm acolor ( V, E )
{
    // Determine an approximation to the minimum number of colors
    // Input: Set of vertices and set of edges
    // Output: Number of colors
    if ( V == NULL ) return 0;
    if ( E == NULL ) return 1;
    if ( G is bipartite ) return 2;
    return ( 4 );
}
* We can determine that a graph is bipartite in time O(|V| + |E|)
```

* Complexity of acolor is O(|V| + |E|)