
CS 4760 Operating Systems Test 1
Name: Fall 2011 Max Pts: 40

Important: This is an open book test. You can use any books, notes, or paper, but not exchange
anything with other students. You are not allowed to use any electronic/communication devices, including
a calculator. Do not log into the computer during the test. Switch off your cell phones. Any calculations
and rough work can be done on the back side of the test pages. You will lose five points for not writing
your name.

1. [6 pt] Unix provides a set of library functions that correspond to a system call. For example, the
library function fopen(3C) is used to open a file, and so is the system call open(2). What is the
point of creating two separate functions for the same operation?

2. [6 pt] Consider a machine with two levels of memory (cache and main). The access time for cache
memory is 50ns while the main memory is accessed in 1µs. Let us say that the cache hit ratio is 0.9.
What is the average memory access time for this machine?

3. [6 pt] Memory management has two conflicting goals: process isolation and allowing processes to
cooperate through shared memory. How does an os reconcile between the two?

4. [6 pt] What is the difference between the trace of a sequential process and a multi-threaded concurrent
process?

5. [6 pt] Bakery algorithm allows two processes to get the same turn number. How does it resolve
the conflict when two processes get the same turn number? Is the resolution guaranteed to work?
Explain your answer.

2

6. [10 pt] Consider the following implementation of producer-consumer processes. The P and V functions
implement the standard operations for semaphore wait and signal.

// The extern variables are allocated in shared memory.

extern semaphore mutex; // To get exclusive access to buffers

extern semaphore empty (n); // Number of available buffers

extern semaphore full (0); // Initialized to 0

void producer()

{

do

{

produce (item);

mutex.P();

empty.P();

put (item);

mutex.V()

full.V()

} while (1);

}

void consumer()

{

do

{

full.P();

mutex.P();

remove (item);

mutex.V();

empty.V();

consume (item);

} while (1);

}

Use the critical section solution protocol to determine if the solution is valid.

3

