Scalable Parallel Computing

Clustering for massive parallelism

- Computer cluster
 - Collection of interconnected stand-alone computers
 - * Connected by a high-speed Ethernet connection
 - * Work collectively and cooperatively as a single integrated computing resource pool
 - Massive parallelism at the job level
 - High availability through stand-alone operations
 - Scalable performance, high availability, fault tolerance, modular growth, COTS components
- Design objectives
 - Scalability
 - * Modular growth; however, scaling from hundreds of uniprocessor nodes to 10,000+ multicore nodes is non-trivial
 - * Scalability limited by factors including multicore chip technology, cluster topology, packaging method, power consumption, and cooling scheme applied
 - * Other limiting factors include memory wall, disk I/O bottleneck, and latency tolerance
 - · Memory wall is the growing disparity of speed between CPU and memory outside the CPU chip

- Packaging

- * Nodes may be packaged as compact cluster or slack cluster
- * Affects communications wire length and interconnection techology
- * Compact cluster
 - · Nodes closely packaged in one or more racks in a room
 - · Nodes not attached to any peripherals
 - · High bandwidth low latency communication network
- * Slack cluster
 - · Nodes are complete SMPs, workstations, and PCs
 - · May be located in different physical locations
 - · Connected through standard LAN or WAN

- Control

- * Centralized control for compact cluster
- * Centralized or decentralized control for slack cluster
- * Centralized control
 - · All nodes owned, controlled, managed, and administered by a central operator
- * Decentralized control
 - · Nodes owned individually
 - · Owner may reconfigure, upgrade, or shut down the node at any time
 - · Difficult to administer the complete system
 - · May require special techniques for process scheduling, workload migration, checkpointing, and accounting
- Homogeneity
 - * Homogeneous cluster
 - · All nodes are identical in terms of processor architecture and OS
 - · Any node can execute binary code, even in mid-execution
 - * Heterogeneous cluster

- · Nodes may be built on different platforms
- · Issues of interoperability (process migration for load balancing not possible)

- Security

- * Exposed cluster
 - · Communication paths among nodes are exposed to outside world
 - · Individual nodes may be accessible using standard protocols, such as TCP/IP, and high overhead of those protocols
 - · Not secure
 - · Outside communications may disrupt intracluster communications in an unpredictable fashion
- * Enclosed cluster
 - · Intracluster communications shielded from outside world
 - · No standard protocol for efficient, enclosed intracluster communications
- Dedicated vs enterprise clusters
 - * Dedicated cluster
 - · Typically installed in a deckside rack in a central computer room
 - · Homogeneously configured with the same type of nodes
 - · Managed by a single admin
 - · Installed, used, and administered as a single machine
 - · Much enhanced throughput and reduced response time
 - * Enterprise cluster
 - · Used to utilize idle resources in the nodes
 - · Each node may be a full-fledged SMP, workstation, or PC
 - · Nodes may be geographically distributed
 - · Individual nodes owned and managed by different owners who may join or quit the cluster at any time
 - · Cluster admin has limited control over the nodes
 - · Owner's local jobs have priority over the enterprise jobs
 - · Nodes connected through a low-cost Ethernet

• Fundamental cluster design issues

- Scalable performance
 - * Increase in performance by scaling of resources cluster nodes, memory capacity, I/O bandwidth
 - * Both scaling up and scaling down capabilities may be needed
- Single-system image
 - * A set of workstations connected together do not form a cluster
 - * Combining several workstations into a megastation, with scaled performance
- Availability support
 - * High availability requirement
 - * Redundancy in CPUs, memory, disks, I/O devices, networks, and OS images
- Cluster job management
 - * Goal to achieve high system utilization from nodes that may not be highly utilized otherwise
 - * Job management software for batching, load balancing, and parallel processing
- Internode communication
 - * Not as compact as MPPs (massively parallel processors)
 - * Longer wires increase latency
 - * May also have issues with reliability, clock skew, and cross talking

- * Need reliable and secure communication protocols (such as TCP/IP) which increase overhead
- Fault tolerance and recovery
 - * Can be designed to eliminate all single points of failure
 - * In case of node failure, critical jobs running on failing nodes can be saved to the surviving nodes
 - * Use rollback with periodic checkpointing
- Cluster family classification
 - 1. Compute clusters
 - * Beowulf clusters
 - * Designed for collective computing over a single large job
 - * Numerical simulation of weather conditions
 - * Do not handle many I/O operations
 - * Dedicated network to facilitate communication among cluster nodes, with homogeneous nodes
 - * Use message passing interface (MPI) or parallel virtual machine (PVM) for porting the code
 - 2. High availability clusters
 - * Designed for fault tolerance and high availability
 - * Multiple redundant nodes to sustain faults or failures
 - 3. Load-balancing clusters
 - * Aim for higher resource utilization through load balancing
 - * All nodes share the workload as a single VM
 - * Requests initiated by the user are distributed to all nodes
 - * Need middleware to achieve dynamic load balancing by job or process migration among all cluster nodes

Computer Clusters and MPP Architectures

- Cluster organization and resource sharing
 - Basic cluster architecture
 - * Simple cluster can be built with commodity components
 - * Commodity workstations as cluster nodes
 - * Nodes interconnected by a fast commodity network, using standard communication protocols
 - * Deploy cluster middleware to glue together all node platforms in user space, offering HA service
 - * Use an SSI layer to provide a single entry point, a single file hierarchy, a single point of control, and a single job management system
 - * Idealized cluster supported by three subsystems
 - Conventional databases and online transaction processing (OLTP) monitors offer users a desktop environment to use the cluster
 - 2. In addition to running sequential user programs, cluster supports parallel programming based on standard languages and clustering libraries using PVM, MPI, or OpenMP
 - 3. A user interface subsystem to combine the advantages of web interface and Windows GUI
 - Resource sharing in clusters