Disaster Recovery Planning

- Failure in technology
 - Web server, database server, data center
 - Expect every component to fail and design for the failure
 - Major catastrophic events classified into human, on purpose or by accident, (9/11); natural (Hurricane Katrina or earthquake); or technological failures
 - Plan for physical security and human contingency using evolving technologies
 - * Company operations must go on during, and after, a disaster
 - * Workforce resilience
 - · Allow employees to work remotely during a disaster using VPN
 - · Open communications and emergency notification systems
 - · Support from emergency management; setting up internet cafes and charging stations in the event of power failure
 - · Use of social media (Facebook/Twitter) to manage corporate communications and controlling rumors
 - · May even provide cots, flashlights, food, and water for employees who stay in office and have a remote recovery site in operation to restore critical systems quickly
 - * Some of the rules are mandated by federal laws; others are needed just to stay in business
 - Risks mitigated due to virtualization and the ability to run multiple live data centers with active failover
 - * Reduction in time between system failures and data recovery points

Cost of downtime

- Getting a solution to marketplace vs deploying a failsafe solution
- Strategies for disaster recovery
 - 1. Understand three important variables from a business perspective
 - (a) Recovery time objective (RTO)
 - Time within which business requires that the service is back up and running
 - Possibly five minutes or less for an e-commerce site
 - Reporting system can tolerate longer down time because of no impact on revenue or customer satisfaction
 - (b) Recovery point objective (RPO)
 - Amount of time in which data loss can be tolerated
 - Parts dealing with financial transactions must have zero or near-zero tolerance for data loss
 - Social aspects of an e-commerce site can tolerate longer down time
 - (c) Value placed on recovery
 - Measurement of worth to the company to mitigate disaster situations
 - Digital incentive platform for a small business (downtime of an hour or two is acceptable) vs big retailers (requires fully redundant virtual data centers across multiple availability zones)
 - Criticality of service (health and safety of citizens)
 - Service reliability (streaming music)

Disaster recovery strategies for IaaS

• Complex as the CSC is responsible for the application stack

Disaster Recovery 2

- For public IaaS, CSC depends on CSP to manage physical data center
- Preventing disasters in Amazon cloud
 - Amazon cloud consists of regions and availability zones
 - * Regions located across the globe
 - * Zones are independent data centers within a region
 - Typical outage occurs within a single availability zone
 - * Build redundancy across multiple zones to maintain uptime even when AWS has outage
 - An API may have outage impacting multiple zones
 - * Amazon Elastic Block Store (EBS)is a service to provide network attached disks to install databases
 - * If EBS has issues across zones, cross-zone redundancy would not prevent system from failing
 - Redundancy across regions
 - * More complex and expensive than cross-zone redundancy
 - * Moving data across zones
 - · Incurs extra charges
 - · Introduces extra latency
 - * Cost and complexity of cross-region redundancy must be balanced with the value of recovery, RTO and RPO
- Hybrid cloud solution
 - Leverage a private cloud provider that supports Amazon's API
 - Restrict AWS API usage to just the APIs that are supported by private cloud vendor if all parts of the system need to be recovered
 - Private cloud in the hybrid cloud creates another availability zone with the APIs in the private zone isolated from any issues in AWS
- Leverage multiple cloud vendors
 - Build system to not lock into an IaaS vendor
 - Do not use proprietary APIs to be *cloud agnostic*
 - Isolate vendor-specific APIs and build logic to execute appropriate API based on vendor

Recovery in primary data center

- Standard set of best practices to recover the database from a disaster
 - 1. Classic backup and restore method
 - Create daily full backups and incremental backups
 - Store backups into a disk service provided by cloud vendor
 - Copy backups to a secondary data center and to some third-party vendor
 - Database goes offline, gets corrupted, or any other issue
 - * Restore last good full backup and apply incremental backups
 - Cheapest solution with no redundant servers
 - RTO is long as database cannot be brought back online until backups restored and data quality verified
 - 2. Redundant data centers active-passive cold
 - Secondary data center prepared to take over duties from primary data center
 - Cold Redundant servers are not on and running

Disaster Recovery 3

 Set of scripts ready to run in case of emergency to provision a set of servers configured exactly the same as primary data center

- Restore from the latest backup in the event of emergency
- Cost-effective way to deal with outage as cold servers do not cost anything unless provisioned
- Not acceptable if RTO is less than a few minutes
- 3. Redundant data centers active-passive warm
 - Runs the database server hot
 - * Always on and always in sync with the master data center
 - Other servers are *cold* and provisioned upon execution of disaster recovery plan
 - More expensive than active-passive cold
 - Greatly reduces downtime as no database restore required
 - Hot database can be allocated for other uses instead of waiting for disaster declaration
 - * Use for business intelligence workloads
 - Useful for systems with a low RPO
- 4. Redundant data centers active-active hot
 - Fully redundant data centers at all times
 - Complete failure of one data center causes no downtime at all
 - Provides low tolerance for lost data and downtime
 - High value of recovery; very low impact to customers
 - Database uses master-slave replication across data centers
 - If primary data center fails, the secondary data center becomes the new master
 - When failed data center recovers, downed databases start to sync up
 - When all data is synced, control goes back to primary data center to act as master again
 - Failure is not an option

Disaster recovery strategies for PaaS

- Public PaaS
 - Entire platform, including application stack and infrastructure, is responsibility of vendor
 - Abstract away all the work to handle underlying infrastructure and application stack, including scaling databases, designing for fail over, and patching servers
 - Developers focus on business requirements
 - Consumer responsible for applications built on top of platform
 - In emergency, consumer at the mercy of vendor's disaster recovery plan
- Private PaaS
 - Vendor abstracts the development platform
 - Installing and managing application stack becomes simple but consumer has to manage the infrastructure
 - Consumer back in control in case of emergency

Disaster recovery strategies for SaaS

- Disaster recovery plan for use case where an SaaS service is unavailable for an extended period
 - SaaS-based financial system offline for a week
 - Typically, customer dependent on the SaaS provider without much recourse
- Minimally, SaaS contract from the vendor should have a software escrow
 - Protects the buyer if SaaS vendor goes out of business, or voids the contract if purchased by another company
 - Escrow holds the vendor's IP in an independent third party's holding area, giving the buyer ownership of data