
Single-Source Shortest Paths
Problem: To find the shortest path from point A to point B on a map. You are given a map with distances between
adjacent nodes already marked.
Solution using brute force: Enumerate the total distance using all paths (eliminating cycles), and select the
shortest. Leads to a combinatorial explosion of possibilities.

Shortest-path problem

• Given a weighted directed graph G = (V,E)

• Weight function w = E → < to map edges to real-valued weights

• Weight of path p = 〈v0, v1, . . . , vk〉

w(p) =
k∑
i=1

w(vi−1, vi)

• Shortest path weight from u to v

δ(u, v) =
{

min{w(p) : u
p
; v} if there is a path from u to v

∞ otherwise

• A shortest path from vertex u to vertex v is defined as any path p with weight w(p) = δ(u, v).

– Breadth-first search algorithm is an example of shortest path algorithm that works on unweighted graphs

∗ Each edge is considered to be of unit weight

• Representing shortest paths

– For each vertex v ∈ V , maintain a predecessor π[v]

– Find predecessor subgraph Gπ = (Vπ, Eπ) induced by π values

– A shortest-paths tree rooted at s is a directed subgraph G′ = (V ′, E′), where V ′ ⊆ V and E′ ⊆ E, such
that

1. V ′ is the set of vertices reachable from s in G

2. G′ forms a rooted tree with s

3. For all v ∈ V ′, the unique simple path from s to v in G′ is a shortest path from s to v in G

Shortest Paths and Relaxation

• Repeatedly decrease an upper bound on the actual shortest-path weight of each vertex until the upper bound
equals the shortest-path weight

• Optimal substructure of a shortest path

– A shortest path between two vertices contains other shortest paths within it

Lemma 1 (Subpaths of shortest paths are shortest paths.) Given a weighted, directed graph G =
(V,E) with weight function w : E → <, let p = 〈v1, v2, . . . , vk〉 be a shortest path from vertex v1 to vertex
vk and, for any i and j such that 1 ≤ i ≤ j ≤ k, let pij = 〈vi, vi+1, . . . , vj〉 be the subpath of p from vertex
vi to vertex vj. Then, pij is a shortest path from vi to vj.

Corollary 1 Let G = (V,E) be a weighted, directed graph with weight function w : E → <. Suppose that

a shortest path p from a source s to a vertex v can be decomposed into s
p′

; u→ v for some vertex u and
path p′. Then, the weight of a shortest path from s to v is δ(s, v) = δ(s, u) + w(u, v).

Lemma 2 Let G = (V,E) be a weighted, directed graph with weight function w : E → < and source vertex
s. Then, for all edges (u, v) ∈ E, we have δ(s, v) ≤ δ(s, u) + w(u, v).

63

• Relaxation

– For each vertex v ∈ V , maintain an attribute d[v]

– d[v] – upper bound on the weight of a shortest path from source s to v – shortest path estimate

– Initialization procedure

initialize single source (G,s)
for each vertex v ∈ V[G] do

d[v] ← ∞
π[v] ← nil

d[s] ← 0

– Relaxation

relax (u,v,w)
if d[v] > d[u] + w(u,v) then

d[v] ← d[u] + w(u,v)
π[v] ← u

• Properties of relaxation

Lemma 3 Let G = (V,E) be a weighted, directed graph with weight function w : E → <, and let (u, v) ∈ E.
Then, immediately after relaxing edge (u, v) by executing relax(u, v, w), we have d[v] ≤ d[u] + w(u, v).

Lemma 4 Let G = (V,E) be a weighted, directed graph with weight function w : E → <. Let s ∈ V be the
source vertex, and let the graph be initialized by initialize single source(G, s). Then, d[v] ≥ δ(s, v) for
all v ∈ V , and this invariant is maintained over any sequence of relaxation steps on the edges of G. Moreover,
once d[v] achieves its lower bound δ[s, v], it never changes.

Corollary 2 Suppose that in a weighted, directed graph G = (V,E) with weight function w : E → <, no
path connects a source vertex s ∈ V to a given vertex v ∈ V . Then, after the graph is initialized by
initialize single source(G, s), we have d[v] = δ(s, v), and this equality is maintained as an invariant
over any sequence of relaxation steps on the edges of G.

Lemma 5 Let G = (V,E) be a weighted, directed graph with weight function w : E → <, let s ∈ V be a source
vertex, and let s ; u→ v be a shortest path in G for some vertices u, v ∈ V . Suppose that G is initialized by
initialize single source(G, s) and then a sequence of relaxation steps that includes the call relax(u, v, w)
is executed on the edges of G. If d[u] = δ(s, u) at any time prior to the call, the d[v] = δ(s, v) at all times after
the call.

• Shortest-paths trees

Lemma 6 Let G = (V,E) be a weighted, directed graph with weight function w : E → < and source vertex
s ∈ V , and assume that G contains no negative-weight cycles that are reachable from s. Then, after the graph
is initialized by initialize single source(G, s), the predecessor subgraph Gπ forms a rooted tree with root
s, and any sequence of relaxation steps on edges of G maintain this property as an invariant.

Lemma 7 Let G = (V,E) be a weighted, directed graph with weight function w : E → < and source ver-
tex s ∈ V , and assume that G contains no negative-weight cycles that are reachable from s. Let us call
initialize single source(G, s) and then execute any sequence of relaxation steps on edges of G that pro-
duces d[v] = δ(s, v) for all v ∈ V . Then, the predecessor subgraph Gπ is a shortest-paths tree rooted at s.

Dijkstra’s Algorithm

• All edge weights are assumed to be non-negative

64

• Maintain a set S of vertices whose final shortest-path weights from the source s have already been determined,
or for all vertices v ∈ S, we have d[v] = δ(s, v).

• Select the vertex u ∈ V − S with the minimum shortest-path estimate, using a priority queue Q

• Insert u into S

• Relax all edges leaving u

Dijkstra (G,w,s)
initialize single source(G,s)
S ← ∅
Q ← V[G]
while Q 6= ∅ do

u ← extract min(Q)
S ← S ∪ {u}
for each vertex v ∈ Adj[u] do

relax(u,v,w)

• Analysis

– Each extract min – O(V)

– Total time for extract min – O(V 2)

– |E| iterations of for loop with O(1) for each iteration

– Total run time – O(V 2 + E) = O(V 2)

Bellman-Ford Algorithm

• bellman ford (G,w,s)
initialize single source (G,s)
for i ← 1 to |V[G]| - 1 do

for each edge (u,v) ∈ E[G] do
relax (u, v, w)

for each edge (u,v) ∈ E[G] do
if d[v] > d[u] + w(u,v) then

return false
return true

Lemma 8 Let G = (V,E) be a weighted, directed graph with source s and weight function w : E → <, and assume
that G contains no negative weight cycles that are reachable from s. Then, at the termination of bellman-ford,
we have d[v] = δ(s, v) for all vertices v that are reachable from s.

Corollary 3 Let G = (V,E) be a weighted, directed graph with source vertex s and weight function w : E → <.
Then for each vertex v ∈ V , there is a path from s to v if and only if bellman-ford terminates with d[v] < ∞
when it is run on G.

65

