Single-Source Shortest Paths

Problem: To find the shortest path from point A to point B on a map. You are given a map with distances between
adjacent nodes already marked.

Solution using brute force: Enumerate the total distance using all paths (eliminating cycles), and select the
shortest. Leads to a combinatorial explosion of possibilities.

Shortest-path problem
e Given a weighted directed graph G = (V, E)

Weight function w = E — R to map edges to real-valued weights

Weight of path p = (vo,v1,...,v)

Shortest path weight from u to v

5(u, v) = min{w(p) : w5 v} if there is a path from u to v
’ 00 otherwise

A shortest path from vertex u to vertex v is defined as any path p with weight w(p) = d(u,v).

— Breadth-first search algorithm is an example of shortest path algorithm that works on unweighted graphs

* Fach edge is considered to be of unit weight

Representing shortest paths

— For each vertex v € V, maintain a predecessor 7[v]
— Find predecessor subgraph G, = (V, E) induced by 7 values

— A shortest-paths tree rooted at s is a directed subgraph G’ = (V', E’), where V' C V and E’ C E, such
that

1. V' is the set of vertices reachable from s in G
2. G’ forms a rooted tree with s
3. For all v € V', the unique simple path from s to v in G’ is a shortest path from s to v in G

Shortest Paths and Relaxation

e Repeatedly decrease an upper bound on the actual shortest-path weight of each vertex until the upper bound
equals the shortest-path weight

e Optimal substructure of a shortest path

— A shortest path between two vertices contains other shortest paths within it

Lemma 1 (Subpaths of shortest paths are shortest paths.) Given a weighted, directed graph G =
(V, E) with weight function w: E — R, let p = (v1,v9,...,vx) be a shortest path from vertex vy to vertex
vg and, for any i and j such that 1 < i < j <k, let p;; = (v;,Vit1,...,0;) be the subpath of p from vertex
v; to vertex vj. Then, pi; is a shortest path from v; to v;.

Corollary 1 Let G = (V, E) be a weighted, directed graph with weight function w : E — R. Suppose that

a shortest path p from a source s to a vertex v can be decomposed into s Lu-ow for some vertex u and
path p'. Then, the weight of a shortest path from s to v is §(s,v) = 6(s,u) + w(u,v).

Lemma 2 Let G = (V, E) be a weighted, directed graph with weight function w : E — R and source vertex
s. Then, for all edges (u,v) € E, we have §(s,v) < §(s,u) + w(u,v).

63

e Relaxation

— For each vertex v € V, maintain an attribute d[v]

— d[v] — upper bound on the weight of a shortest path from source s to v — shortest path estimate

Initialization procedure

initialize_single_source (G,s)
for each vertex v € V[G] do
dlv]l «
m[v] < nil
dfs] < 0

— Relaxation

relax (u,v,w)
if dl[v] > d[u] + w(u,v) then
dlv] « d[ul] + w(u,v)
wlv] <« u

e Properties of relaxation

Lemma 3 Let G = (V, E) be a weighted, directed graph with weight function w : E — R, and let (u,v) € E.
Then, immediately after relazing edge (u,v) by executing relax (u,v,w), we have d[v] < du] + w(u,v).

Lemma 4 Let G = (V, E) be a weighted, directed graph with weight function w : E — R. Let s € V be the
source vertex, and let the graph be initialized by initialize single source(G,s). Then, d[v] > é(s,v) for
all v € V, and this invariant is maintained over any sequence of relaxation steps on the edges of G. Moreover,
once d[v] achieves its lower bound d[s,v], it never changes.

Corollary 2 Suppose that in a weighted, directed graph G = (V, E) with weight function w : E — R, no
path connects a source verter s € V to a given vertex v € V. Then, after the graph is initialized by
initialize_single_source(G,s), we have d[v] = §(s,v), and this equality is maintained as an invariant
over any sequence of relaxation steps on the edges of G.

Lemma 5 Let G = (V, E) be a weighted, directed graph with weight function w: E — R, let s € V be a source
vertex, and let s ~ u — v be a shortest path in G for some vertices u,v € V. Suppose that G is initialized by
initialize_single_source(G,s) and then a sequence of relazation steps that includes the call relax (u, v, w)
is executed on the edges of G. If d[u] = §(s,u) at any time prior to the call, the d[v] = §(s,v) at all times after
the call.

e Shortest-paths trees

Lemma 6 Let G = (V, E) be a weighted, directed graph with weight function w : E — R and source vertex
s € V, and assume that G contains no negative-weight cycles that are reachable from s. Then, after the graph
is initialized by initialize_single_source(G,s), the predecessor subgraph G forms a rooted tree with root
s, and any sequence of relaxation steps on edges of G maintain this property as an invariant.

Lemma 7 Let G = (V,E) be a weighted, directed graph with weight function w : E — R and source ver-
tex s € V, and assume that G contains no negative-weight cycles that are reachable from s. Let us call
initialize _single_source(G,s) and then execute any sequence of relaxation steps on edges of G that pro-
duces d[v] = (s, v) for allv € V. Then, the predecessor subgraph G is a shortest-paths tree rooted at s.

Dijkstra’s Algorithm

e All edge weights are assumed to be non-negative

64

Maintain a set S of vertices whose final shortest-path weights from the source s have already been determined,
or for all vertices v € S, we have d[v] = d(s,v).

Select the vertex u € V — S with the minimum shortest-path estimate, using a priority queue @

Insert u into S

e Relax all edges leaving u

Dijkstra (G,w,s)
initialize_single_source(G,s)
S0
Q «— VI[G]
while Q # 0 do

u «— extractmin(Q)

S «— S U {u}

for each vertex v € Adjlul] do
relax(u,v,w)

e Analysis

— Each extract min — O(V)

— Total time for extract min — O(V?)

|E| iterations of for loop with O(1) for each iteration
Total run time — O(V2 + E) = O(V?)

Bellman-Ford Algorithm

e bellman_ford (G,w,s)
initialize_single_source (G,s)
for i «+— 1 to |V[G]| - 1 do

for each edge (u,v) € E[G] do
relax (u, v, w)
for each edge (u,v) € E[G] do
if dl[v] > d[u] + w(u,v) then
return false
return true

Lemma 8 Let G = (V, E) be a weighted, directed graph with source s and weight function w : E — R, and assume
that G contains no negative weight cycles that are reachable from s. Then, at the termination of BELLMAN-FORD,
we have d[v] = (s, v) for all vertices v that are reachable from s.

Corollary 3 Let G = (V, E) be a weighted, directed graph with source vertex s and weight function w : E — K.
Then for each vertex v € V, there is a path from s to v if and only if BELLMAN-FORD terminates with d[v] < oo
when it is run on G.

65

