
Hashing

• Consider the key-indexed search method that we studied earlier with symbol tables

– Uses key value as array index rather than comparing the keys

– Depends on the keys being distinct, and mappable to distinct integers to provide for the index within the
array range

• Hashing is an extension of the key-indexed approach that handles general search application without any
assumption on the properties of keys being able to be mapped onto distinct indices

– The property of key being distinct still holds

• Search algorithms based on hashing consist of two parts:

1. Compute a hash function

– Transforms a key into an index
– Hashing is also known as key transformation for this reason

2. Collision-resolution process

– Kicks in when two distinct keys get transformed to the same address

• Hashing is a good example of time-space tradeoff

Hash Tables

Effective data structure for implementing dictionaries
Symbol tables generated by a compiler – insert, search, delete
Worst case search time – Θ(n)
Average case search time – O(1)
Effective when number of keys actually stored is small compared to the total number of possible keys

Direct-Address Tables

• Universe of keys U assumed to be reasonably small

U = {0, 1, . . . ,m− 1}

• Assume that no two elements have the same key

• Direct-Address Table – An array T [0..m − 1] in which each position, or slot corresponds to a key in the
universe U

• If the set contains no element with key k, then T [k] = nil

• Dictionary operations

– direct address search (T,k)
return(T[k])

– direct address insert (T,x)
T[key[x]] ← x

– direct address delete (T,x)
T[key[x]] ← nil

Hash Tables

Hashing 57

• Problems with direct addressing

– If the universe U is large, storing a table T of size |U | may be impractical, or even impossible

– The set K of keys actually stored may be so small relative to U that most of the space allocated for T
would be wasted.

• Reduce the storage requirements to Θ(|K|), keeping the search for an element O(1)

• With direct addressing, an element with key k goes in T [k]

• With hash addressing, an element with key k goes in T [h(k)]

• Hash function h is used to compute an address from key k

• h maps the universe U of keys into the slots of a hash table T (0..m− 1)

h : U → {0, 1, . . . ,m− 1}

• An element with key k hashes to slot h(k)

• h(k) is the hash value of key k

• Result – reduction in the range of array indices that need to be handled

• Collision – Two keys hash to the same value

• Ideal hash function

– Easy to compute

– approximates a “random” function

• A simple hashing function

– Consider a four character key called akey

– Replace every character with its five bit representation (between 1 and 26)

akey ≡ 00001 01011 00101 11001

– Decimal equivalent – 44217

– Select a prime number of locations in the array – m = 101

– Location corresponding to akey – 44217mod101 = 80

– The key barh also hashes to location 80 – collision

– Why prime number of locations for the hashing function

∗ Arithmetic properties of the mod function
∗ The number 44217 can be written as

1 · 323 + 11 · 322 + 5 · 321 + 25 · 320

∗ If m is chosen to be 32, the value of hash function is simply the value for the last character

• Collision resolution by chaining

– Simplest collision resolution technique

– Put all the elements that hash to the same address in a linked list

– Address j contains a pointer to the head of the list

– If no elements hash to the address, the corresponding slot contains nil

– New definition for dictionary operations

Hashing 58

∗ chained hash insert (T,x)
insert x at the head of the list T[h(key[x])]
Worst-case running time – O(1)
∗ chained hash search (T,k)
search for an element with key k in list T[h(k)]
Worst-cast running time proportional to length of list
∗ chained hash delete (T,x)
delete x from the list T[h(key[x])]
O(1) if lists are doubly linked

• Analysis of hashing with chaining

– Given – Hash table T with m slots to store n elements

– Load factor – α for T = n/m

– Assume that α stays constant as m and n approach infinity

– No other restriction on α; can be < 1, = 1, or > 1

– Worst case behavior

∗ All n keys hash to the same address
∗ A list of length n

∗ Worst case time for search – Θ(n) + Time to compute hash function

– Average case performance

∗ Depends upon the distribution of keys among m addresses by h
∗ Simple uniform hashing

– Assume that h(k) can be computed in O(1) time

– Time for search depends linearly upon the length of the list T[h(k)]

Theorem 1 In a hash table in which collisions are resolved by chaining, an unsuccessful search takes time
Θ(1 + α), on the average, under the assumption of simple uniform hashing.

Theorem 2 In a hash table in which collisions are resolved by chaining, a successful search takes time
Θ(1 + α), on the average, under the assumption of simple uniform hashing.

– by above theorems, if the number of hash addresses is at least proportional to the number of elements in
the table, n = O(m)
Consequently, α = n/m = O(m)/m = O(1)

Hash Functions

• What is a good hash function?

– Each key is equally likely to hash to any of the m addresses

– Compute the hash value as independent of any patterns in data

• Interpreting keys as natural numbers

• The division method

– Hash function – h(k) = k mod m

– Good values for m are primes not too close to a power of 2

• The multiplication method

– Two steps

Hashing 59

∗ Multiply the key k by a constant A, 0 < A < 1, and extract the fractional part of kA
∗ Multiply this value by m and take the floor of the result

– Also given by – h(k) = bm(kA mod 1)c
– Value of m is not critical any more
– Typically, m is chosen to be 2p for some integer p

• Universal hashing

– Choose the hash function randomly in a way that is independent of the keys to be stored from a set of
hash functions

Open Addressing

• All elements stored in the hash table itself

• Possible to “fill up” the table so that no more insertions can be made

• Load factor α can never exceed 1

• No need for pointers – the space used by pointers can be added to hash table address space to yield fewer
collisions and faster retrieval

• “probing” for insertion

• Possible to probe after a fixed number of keys rather than successive keys

• New hash function
h : U × {0, 1, . . . ,m− 1} → {0, 1, . . . ,m− 1}

• Probe sequence
〈h(k, 0), h(k, 1), . . . , h(k,m− 1)〉

must be a permutation of 〈0, 1, . . . ,m− 1〉 so that every hash table position can be eventually considered

• Procedure to insert in a hash table

hash insert (T, k)
i ← 0
repeat

j ← h(k,i)
if T[j] = nil then

T[j] ← k
return j

else
i ← i + 1

until i = m
error ‘‘hash table overflow’’

• Procedure to search in a hash table

hash search (T, k)
i ← 0
repeat

j ← h(k,i)
if T[j] = k then

return j
i ← i + 1

until T[j] = nil or i = m
return nil

Hashing 60

• Procedure to delete from hash table

• Probing sequences

– Linear probing

∗ Easy to implement

∗ Given an ordinary hash function
h′ : U → {0, 1, . . . ,m− 1}

the method of linear probing uses the hash function

h(k, i) = (h′(k) + i) mod m

for i = 0, 1, . . . ,m− 1.

∗ Suffers from the problem of primary clustering

– Quadratic probing

∗ Better than linear probing

∗ Hash function is of the form
h(k, i) = (h′(k) + c1i+ c2i

2) mod m

where h′ is an auxiliary hash function, c1 and c2 6= 0 are auxiliary constants, and i = 0, 1, . . . ,m− 1.

∗ Leads to a milder form of clustering known as secondary clustering

– Double hashing

∗ Uses a hash function of the form

h(k, i) = (hi(k) + ih2(k)) mod m

where h1 and h2 are auxiliary hash functions

∗ First position to be probed is T [h1(k)]
∗ Successive probe positions are offset from previous position by h2(k) mod m

