- Consider the key-indexed search method that we studied earlier with symbol tables
 - Uses key value as array index rather than comparing the keys
 - Depends on the keys being distinct, and mappable to distinct integers to provide for the index within the array range
- Hashing is an extension of the key-indexed approach that handles general search application without any assumption on the properties of keys being able to be mapped onto distinct indices
 - The property of key being distinct still holds
- Search algorithms based on hashing consist of two parts:
 - 1. Compute a hash function
 - Transforms a key into an index
 - Hashing is also known as key transformation for this reason
 - 2. Collision-resolution process
 - Kicks in when two distinct keys get transformed to the same address
- Hashing is a good example of time-space tradeoff

Hash Tables

Effective data structure for implementing dictionaries Symbol tables generated by a compiler – insert, search, delete Worst case search time – $\Theta(n)$

Average case search time – O(1)

Effective when number of keys actually stored is small compared to the total number of possible keys

Direct-Address Tables

 \bullet Universe of keys U assumed to be reasonably small

$$U = \{0, 1, \dots, m-1\}$$

- Assume that no two elements have the same key
- Direct-Address Table An array T[0..m-1] in which each position, or slot corresponds to a key in the universe U
- If the set contains no element with key k, then T[k] = NIL
- Dictionary operations
 - direct_address_search (T,k)
 return(T[k])
 - direct_address_insert (T,x) $T[key[x]] \leftarrow x$
 - direct_address_delete (T,x) $T[key[x]] \leftarrow NIL$

Hash Tables

- Problems with direct addressing
 - If the universe U is large, storing a table T of size |U| may be impractical, or even impossible
 - The set K of keys actually stored may be so small relative to U that most of the space allocated for T would be wasted.
- Reduce the storage requirements to $\Theta(|K|)$, keeping the search for an element O(1)
- With direct addressing, an element with key k goes in T[k]
- With hash addressing, an element with key k goes in T[h(k)]
- \bullet Hash function h is used to compute an address from key k
- h maps the universe U of keys into the slots of a hash table T(0..m-1)

$$h: U \to \{0, 1, \dots, m-1\}$$

- An element with key k hashes to slot h(k)
- h(k) is the hash value of key k
- Result reduction in the range of array indices that need to be handled
- Collision Two keys hash to the same value
- Ideal hash function
 - Easy to compute
 - approximates a "random" function
- A simple hashing function
 - Consider a four character key called AKEY
 - Replace every character with its five bit representation (between 1 and 26)

$$AKEY \equiv 00001 \ 01011 \ 00101 \ 11001$$

- Decimal equivalent 44217
- Select a prime number of locations in the array m = 101
- Location corresponding to AKEY $-44217 \mod 101 = 80$
- The key BARH also hashes to location 80 collision
- Why prime number of locations for the hashing function
 - * Arithmetic properties of the mod function
 - * The number 44217 can be written as

$$1 \cdot 32^3 + 11 \cdot 32^2 + 5 \cdot 32^1 + 25 \cdot 32^0$$

- * If m is chosen to be 32, the value of hash function is simply the value for the last character
- Collision resolution by chaining
 - Simplest collision resolution technique
 - Put all the elements that hash to the same address in a linked list
 - Address j contains a pointer to the head of the list
 - If no elements hash to the address, the corresponding slot contains NIL
 - New definition for dictionary operations

- * chained_hash_insert (T,x) insert x at the head of the list T[h(key[x])] Worst-case running time -O(1)
- * chained_hash_search (T,k)
 search for an element with key k in list T[h(k)]
 Worst-cast running time proportional to length of list
- * chained_hash_delete (T,x) delete x from the list T[h(key[x])] O(1) if lists are doubly linked
- Analysis of hashing with chaining
 - Given Hash table T with m slots to store n elements
 - Load factor α for T = n/m
 - Assume that α stays constant as m and n approach infinity
 - No other restriction on α ; can be < 1, = 1, or > 1
 - Worst case behavior
 - * All n keys hash to the same address
 - * A list of length n
 - * Worst case time for search $\Theta(n)$ + Time to compute hash function
 - Average case performance
 - * Depends upon the distribution of keys among m addresses by h
 - * Simple uniform hashing
 - Assume that h(k) can be computed in O(1) time
 - Time for search depends linearly upon the length of the list T[h(k)]

Theorem 1 In a hash table in which collisions are resolved by chaining, an unsuccessful search takes time $\Theta(1+\alpha)$, on the average, under the assumption of simple uniform hashing.

Theorem 2 In a hash table in which collisions are resolved by chaining, a successful search takes time $\Theta(1+\alpha)$, on the average, under the assumption of simple uniform hashing.

- by above theorems, if the number of hash addresses is at least proportional to the number of elements in the table, n = O(m)

Consequently, $\alpha = n/m = O(m)/m = O(1)$

Hash Functions

- What is a good hash function?
 - Each key is equally likely to hash to any of the m addresses
 - Compute the hash value as independent of any patterns in data
- Interpreting keys as natural numbers
- The division method
 - Hash function $-h(k) = k \mod m$
 - Good values for m are primes not too close to a power of 2
- The multiplication method
 - Two steps

- * Multiply the key k by a constant A, 0 < A < 1, and extract the fractional part of kA
- * Multiply this value by m and take the floor of the result
- Also given by $-h(k) = |m(kA \mod 1)|$
- Value of m is not critical any more
- Typically, m is chosen to be 2^p for some integer p
- Universal hashing
 - Choose the hash function randomly in a way that is independent of the keys to be stored from a set of hash functions

Open Addressing

- All elements stored in the hash table itself
- Possible to "fill up" the table so that no more insertions can be made
- Load factor α can never exceed 1
- No need for pointers the space used by pointers can be added to hash table address space to yield fewer collisions and faster retrieval
- "probing" for insertion
- Possible to probe after a fixed number of keys rather than successive keys
- New hash function

$$h: U \times \{0, 1, \dots, m-1\} \to \{0, 1, \dots, m-1\}$$

• Probe sequence

$$\langle h(k,0), h(k,1), \ldots, h(k,m-1) \rangle$$

must be a permutation of $(0, 1, \dots, m-1)$ so that every hash table position can be eventually considered

• Procedure to insert in a hash table

```
hash_insert (T, k)
    i ← 0
    repeat
        j ← h(k,i)
        if T[j] = nil then
            T[j] ← k
            return j
        else
            i ← i + 1
    until i = m
    error ''hash table overflow''
```

• Procedure to search in a hash table

```
\begin{array}{l} hash\_search \ (T,\ k) \\ i \leftarrow 0 \\ repeat \\ j \leftarrow h(k,i) \\ if \ T[j] = k \ then \\ return \ j \\ i \leftarrow i + 1 \\ until \ T[j] = nil \ or \ i = m \\ return \ nil \end{array}
```

- Procedure to delete from hash table
- Probing sequences
 - Linear probing
 - * Easy to implement
 - * Given an ordinary hash function

$$h': U \to \{0, 1, \dots, m-1\}$$

the method of linear probing uses the hash function

$$h(k,i) = (h'(k) + i) \bmod m$$

for
$$i = 0, 1, \dots, m - 1$$
.

- * Suffers from the problem of primary clustering
- Quadratic probing
 - * Better than linear probing
 - * Hash function is of the form

$$h(k,i) = (h'(k) + c_1 i + c_2 i^2) \mod m$$

where h' is an auxiliary hash function, c_1 and $c_2 \neq 0$ are auxiliary constants, and $i = 0, 1, \dots, m-1$.

- st Leads to a milder form of clustering known as $secondary\ clustering$
- Double hashing
 - * Uses a hash function of the form

$$h(k,i) = (h_i(k) + ih_2(k)) \bmod m$$

where h_1 and h_2 are auxiliary hash functions

- * First position to be probed is $T[h_1(k)]$
- st Successive probe positions are offset from previous position by $h_2(k) \mod m$