- BST algorithms can degenerate to worst case performance, which is bad because the worst case is likely to occur in practice, with ordered files, for example
- We will like to keep our trees perfectly balanced (ideally speaking)
 - Corresponds to binary search
 - Insertion and deletion of records is expensive
- In a non-ideal situation, we can allow the binary tree to grow to twice the height of the perfect tree $(2 \lg n)$ and periodically balance it
 - Provides protection against bad worst case performance
 - Improves performance for random keys but does not provide guarantees against quadratic performance in dynamic symbol table
 - Partition to put the median node at the root and recursively do the same for subtrees
 - Algorithm to balance a BST in linear time

```
tree tree::rotate_left()
{
    tree * tmp = right_child;
    right_child = tmp->left_child;
    tmp->left_child = this;
    this = tmp;
    return ( *this );
}
tree tree::rotate_right()
    tree * tmp = left_child;
    left_child = tmp->right_child;
    tmp->right_child = this;
    this = tmp;
    return ( *this );
}
tree tree::partition_rotate ( int k )
                                             // kth smallest node goes to root
    int tmp = left_child ? left_child->count() : 0;
    if (tmp > k)
        left_child->partition_rotate ( k );
        *this = rotate_right();
    }
    if (tmp < k)
        right_child->partition_rotate ( k - tmp - 1 );
        *this = rotate_left();
    return ( *this );
                                      // Return if tmp == k (kth smallest key)
}
tree tree::balance ()
```

```
{
    if ( count() < 2 )
        return ( *this );
    *this = partition_rotate ( count() / 2 );
    left_child->balance();
    right_child->balance();
    return ( *this );
}
```

- Rebalancing improves performance for random keys but does not provide guarantees against quadratic worst-case performance, for *dynamic* symbol tables
 - * Preferable to have algorithms that do incremental balancing rather than stop the insertion to do complete rebalancing
- Randomized algorithm
 - Introduce random decision making into the algorithm itself, such as median of three partitioning in quicksort
 - Reduces the chance of worst case scenario, no matter what the input
 - Equivalent in the search is skip list
- Amortized algorithm
 - Do extra work at some point to save time later
- Optimized algorithm
 - Provides performance guarantee for every operation
 - Require to maintain some structural information in the trees

Randomized BSTs

- Items inserted randomly into the BST
 - Each item is equally likely to be in the root node of the tree
 - Possible to introduce randomness into the algorithm so that the above property holds without any assumption about the order of items
- Insert a new random node into the tree at the root
 - The probability of this node being at the root is $\frac{1}{1+N}$ when the tree has N nodes
 - Perform root insertion with this probability

```
tree tree::insert_random ( item& i )
{
    if ( rand() < ( 1 / ( 1+count() ) ) )
        insert_at_root ( i );
    else
        if ( i.key() < info.key() )
            left_child->insert_random ( i );
        else
            right_child->insert_random ( i );
}
```

Property 1 Building a randomized BST is equivalent to building a standard BST from a random initial permutation of the keys. We use about $2N \ln N$ comparisons to construct a randomized BST with N items (no matter in what order the items are presented for insertion), and about $2 \ln N$ comparisons for searches in such a tree.

- Each element is equally likely at the root of the tree
- The property holds for both subtrees as well
- Average case for insertion into randomized and standard BST is the same (except for random number computation)
 - The assumption of items arriving at random in standard BST is not required any more

Property 2 The probability that the construction cost of a randomized BST is more than a factor of α times the average is less than $e^{-\alpha}$.

Property 3 Making a tree with an arbitrary sequence of randomized insert, remove, and join operations is equivalent to building a standard BST from a random permutation of the keys in the tree.

Top-down 2-3-4 trees

• Allow 3-nodes and 4-nodes that can hold 2 or 3 keys, respectively, in addition to the regular binary nodes that hold only one key

Definition 1 A 2-3-4 search tree is a tree that either is empty or comprises three types of nodes:

2-nodes, with one key, a left link to a tree with smaller keys, and a right link to a tree with larger keys;

3-nodes, with two keys, a left link to a tree with smaller keys, a middle link to a tree with key values between the node's keys, and a right link to a tree with larger keys;

4-nodes, with three keys and four links to trees with key values defined by the ranges subtended by the node's keys.

Definition 2 A balanced 2-3-4 search tree is a 2-3-4 search tree with all links to empty trees at the same distance from the root.

Red-Black Trees

Properties of red-black tree

- Binary search tree with one extra bit of storage per node its color
- No path is more than twice as long as any other
- Tree is approximately balanced
- Fields in a node color, key, left, right, and parent
- A binary search tree is a red-black tree if the following properties are satisfied
 - Every node is either red or black
 - Every leaf (nil) is black
 - If a node is red then both its children are black
 - Every simple path from a node to a descendant leaf contains the same number of black nodes

• black-height of a node – bh(x) – Number of black nodes on any path from, but not including, a node x to a leaf

Lemma. A red-black tree with n internal nodes has height at most $2\lg(n+1)$

Rotations

- Insert and delete may result in violation of the red-black properties
- Change the color and pointer structure to restore the properties
- Change pointer structure through rotation
- Left rotation possible only if the right child of the node is non-nil

Insertion

- Accomplished in $O(\lg n)$ time
- \bullet Insert x into tree T as if it were ordinary binary search tree
- Recolor nodes and perform rotations to preserve the red-black property

```
left_rotate (T,x)
              \texttt{color[p[x]]} \; \leftarrow \; \texttt{black}
              \texttt{color[parent[parent[x]]]} \; \leftarrow \; \texttt{red}
              right_rotate (T,parent[parent[x]])
     else
         y \( \text{left[parent[parent[x]]]} \)
         if color[y] = red then
              \texttt{color[parent[x]]} \; \leftarrow \; \texttt{black}
              \texttt{color[y]} \leftarrow \texttt{black}
              \texttt{color[parent[parent[x]]]} \leftarrow \texttt{red}
              x \leftarrow parent[parent[x]]
         else
              if x = left[parent[x]] then
                   x \;\leftarrow\; \texttt{parent[x]}
                   right_rotate (T,x)
              \texttt{color[p[x]]} \; \leftarrow \; \texttt{black}
              color[parent[parent[x]]] \leftarrow red
              left_rotate (T,parent[parent[x]])
\texttt{color[root[T]]} \; \leftarrow \; \texttt{black}
```