Balanced Trees

e BST algorithms can degenerate to worst case performance, which is bad because the worst case is likely to occur
in practice, with ordered files, for example

e We will like to keep our trees perfectly balanced (ideally speaking)

Corresponds to binary search

Insertion and deletion of records is expensive

e In a non-ideal situation, we can allow the binary tree to grow to twice the height of the perfect tree (2lgn)
and periodically balance it

Provides protection against bad worst case performance

Improves performance for random keys but does not provide guarantees against quadratic performance in
dynamic symbol table

Partition to put the median node at the root and recursively do the same for subtrees

Algorithm to balance a BST in linear time

tree tree::rotate_left()

{
tree * tmp = right_child;
right_child = tmp->left_child;
tmp->left_child = this;
this = tmp;
return (*this);

}

tree tree::rotate_right()

{

tree * tmp = left_child;
left_child = tmp->right_child;
tmp->right_child = this;

this = tmp;

return (*this);

}

tree tree::partition_rotate (int k) // kth smallest node goes to root
{
int tmp = left_child ? left_child->count() : 0;
if (tmp > k)
{
left_child->partition_rotate (k);
*this = rotate_right();
}
if (tmp < k)
{
right_child->partition_rotate (k - tmp - 1);
*this = rotate_left();
}
return (*this); // Return if tmp == k (kth smallest key)
}

tree tree::balance ()

Balanced Trees 52

if (count() < 2)

return (*this);
*this = partition_rotate (count() / 2);
left_child->balance();
right_child->balance();
return (*this);

}

— Rebalancing improves performance for random keys but does not provide guarantees against quadratic
worst-case performance, for dynamic symbol tables

x Preferable to have algorithms that do incremental balancing rather than stop the insertion to do
complete rebalancing

e Randomized algorithm
— Introduce random decision making into the algorithm itself, such as median of three partitioning in
quicksort
— Reduces the chance of worst case scenario, no matter what the input

— Equivalent in the search is skip list
e Amortized algorithm

— Do extra work at some point to save time later
e Optimized algorithm

— Provides performance guarantee for every operation

— Require to maintain some structural information in the trees

Randomized BSTs

e Items inserted randomly into the BST

— Each item is equally likely to be in the root node of the tree

— Possible to introduce randomness into the algorithm so that the above property holds without any as-
sumption about the order of items

e Insert a new random node into the tree at the root

— The probability of this node being at the root is ﬁ when the tree has N nodes

— Perform root insertion with this probability

tree tree::insert_random (item& i)
{
if (rand() < (1 / (1+count())))
insert_at_root (i);
else
if (i.key() < info.key())
left_child->insert_random (i);
else
right_child->insert_random (i);

Balanced Trees 53

Property 1 Building a randomized BST is equivalent to building a standard BST from a random initial per-
mutation of the keys. We use about 2N In N comparisons to construtc a randomized BST with N items (no
matter in what order the items are presented for insertion), and about 2In N comparisons for searches in such
a tree.

— Each element is equally likely at the root of the tree
— The property holds for both subtrees as well

e Average case for insertion into randomized and standard BST is the same (except for random number compu-
tation)

— The assumption of items arriving at random in standard BST is not required any more

Property 2 The probability that the construction cost of a randomized BST is more than a factor of o times

the average is less than e~ <.

Property 3 Making a tree with an arbitrary sequence of randomized insert, remove, and join operations is
equivalent to building a standard BST from a random permutation of the keys in the tree.

Top-down 2-3-4 trees

e Allow 3-nodes and 4-nodes that can hold 2 or 3 keys, respectively, in addition to the regular binary nodes that
hold only one key

Definition 1 A 2-3-4 search tree is a tree that either is empty or comprises three types of nodes:

2-nodes, with one key, a left link to a tree with smaller keys, and a right link to a tree with larger keys;

3-nodes, with two keys, a left link to a tree with smaller keys, a middle link to a tree with key values between
the node’s keys, and a right link to a tree with larger keys;

4-nodes, with three keys and four links to trees with key values defined by the ranges subtended by the node’s
keys.

Definition 2 A balanced 2-3-4 search tree is a 2-3-4 search tree with all links to empty trees at the same
distance from the root.

Red-Black Trees

Properties of red-black tree

e Binary search tree with one extra bit of storage per node — its color
e No path is more than twice as long as any other

e Tree is approximately balanced

Fields in a node — color, key, left, right, and parent

A binary search tree is a red-black tree if the following properties are satisfied

— Every node is either red or black
Every leaf (nil) is black
If a node is red then both its children are black

— Every simple path from a node to a descendant leaf contains the same number of black nodes

Balanced Trees

o4

e black-height of a node — bh(x) — Number of black nodes on any path from, but not including, a node z to a

leaf

Lemma. A red-black tree with n internal nodes has height at most 21g(n + 1)

Rotations

e Insert and delete may result in violation of the red-black properties
e Change the color and pointer structure to restore the properties
e Change pointer structure through rotation

e Left rotation possible only if the right child of the node is non-nil

left_rotate (T,x)

y « right[x]

right[x] « leftl[y]

if left[y] # nil then
parent [left[yl] « x

parent [y] « parent[x]

if parent[x] = nil then
root[T] «— y

else

if x = left([parent([x]] then
left[parent[x]] « ¥y
else
right [parent[x]] «— ¥y

left[y] « x
parent[x] «— y

Insertion

e Accomplished in O(lgn) time

e Insert x into tree T as if it were ordinary binary search tree

e Recolor nodes and perform rotations to preserve the red-black property

red_black_insert (T,x)

tree_insert (T,x)
color[x] « red

while x # root[T] and color[parent[x]]
if parent[x] = left[parent[parent[x]]] then
y « right[parent [parent [x]]]

if color[y] = red then

color[parent[x]] « black

color[y] « black

color[parent [parent [x]]] « red

x <« parent [parent [x]]
else

if x = right[parent[x]] then

x « parent [x]

Balanced Trees

left_rotate (T,x)
color[p[x]] « black
color[parent [parent [x]]] « red
right _rotate (T,parent[parent[x]])
else
y « left[parent[parent[x]]]
if color[y] = red then
color[parent[x]] « black
color[y] « black
color[parent [parent[x]]] « red
x < parent[parent[x]]
else
if x = left([parent([x]] then
x « parent [x]
right_rotate (T,x)
color[p[x]] « black
color[parent [parent [x]]] « red
left_rotate (T,parent[parent[x]])
color[root[T]] « black

%)

