
Balanced Trees

• bst algorithms can degenerate to worst case performance, which is bad because the worst case is likely to occur
in practice, with ordered files, for example

• We will like to keep our trees perfectly balanced (ideally speaking)

– Corresponds to binary search

– Insertion and deletion of records is expensive

• In a non-ideal situation, we can allow the binary tree to grow to twice the height of the perfect tree (2 lg n)
and periodically balance it

– Provides protection against bad worst case performance

– Improves performance for random keys but does not provide guarantees against quadratic performance in
dynamic symbol table

– Partition to put the median node at the root and recursively do the same for subtrees

– Algorithm to balance a bst in linear time

tree tree::rotate_left()
{

tree * tmp = right_child;
right_child = tmp->left_child;
tmp->left_child = this;
this = tmp;
return (*this);

}

tree tree::rotate_right()
{

tree * tmp = left_child;
left_child = tmp->right_child;
tmp->right_child = this;
this = tmp;
return (*this);

}

tree tree::partition_rotate (int k) // kth smallest node goes to root
{

int tmp = left_child ? left_child->count() : 0;
if (tmp > k)
{

left_child->partition_rotate (k);
*this = rotate_right();

}
if (tmp < k)
{

right_child->partition_rotate (k - tmp - 1);
*this = rotate_left();

}
return (*this); // Return if tmp == k (kth smallest key)

}

tree tree::balance ()

Balanced Trees 52

{
if (count() < 2)

return (*this);
*this = partition_rotate (count() / 2);
left_child->balance();
right_child->balance();
return (*this);

}

– Rebalancing improves performance for random keys but does not provide guarantees against quadratic
worst-case performance, for dynamic symbol tables

∗ Preferable to have algorithms that do incremental balancing rather than stop the insertion to do
complete rebalancing

• Randomized algorithm

– Introduce random decision making into the algorithm itself, such as median of three partitioning in
quicksort

– Reduces the chance of worst case scenario, no matter what the input

– Equivalent in the search is skip list

• Amortized algorithm

– Do extra work at some point to save time later

• Optimized algorithm

– Provides performance guarantee for every operation

– Require to maintain some structural information in the trees

Randomized BSTs

• Items inserted randomly into the bst

– Each item is equally likely to be in the root node of the tree

– Possible to introduce randomness into the algorithm so that the above property holds without any as-
sumption about the order of items

• Insert a new random node into the tree at the root

– The probability of this node being at the root is 1
1+N when the tree has N nodes

– Perform root insertion with this probability

tree tree::insert_random (item& i)
{

if (rand() < (1 / (1+count())))
insert_at_root (i);

else
if (i.key() < info.key())

left_child->insert_random (i);
else

right_child->insert_random (i);
}

Balanced Trees 53

Property 1 Building a randomized bst is equivalent to building a standard bst from a random initial per-
mutation of the keys. We use about 2N lnN comparisons to construtc a randomized bst with N items (no
matter in what order the items are presented for insertion), and about 2 lnN comparisons for searches in such
a tree.

– Each element is equally likely at the root of the tree

– The property holds for both subtrees as well

• Average case for insertion into randomized and standard bst is the same (except for random number compu-
tation)

– The assumption of items arriving at random in standard bst is not required any more

Property 2 The probability that the construction cost of a randomized bst is more than a factor of α times
the average is less than e−α.

Property 3 Making a tree with an arbitrary sequence of randomized insert, remove, and join operations is
equivalent to building a standard bst from a random permutation of the keys in the tree.

Top-down 2-3-4 trees

• Allow 3-nodes and 4-nodes that can hold 2 or 3 keys, respectively, in addition to the regular binary nodes that
hold only one key

Definition 1 A 2-3-4 search tree is a tree that either is empty or comprises three types of nodes:

2-nodes, with one key, a left link to a tree with smaller keys, and a right link to a tree with larger keys;

3-nodes, with two keys, a left link to a tree with smaller keys, a middle link to a tree with key values between
the node’s keys, and a right link to a tree with larger keys;

4-nodes, with three keys and four links to trees with key values defined by the ranges subtended by the node’s
keys.

Definition 2 A balanced 2-3-4 search tree is a 2-3-4 search tree with all links to empty trees at the same
distance from the root.

Red-Black Trees

Properties of red-black tree

• Binary search tree with one extra bit of storage per node – its color

• No path is more than twice as long as any other

• Tree is approximately balanced

• Fields in a node – color, key, left, right, and parent

• A binary search tree is a red-black tree if the following properties are satisfied

– Every node is either red or black

– Every leaf (nil) is black

– If a node is red then both its children are black

– Every simple path from a node to a descendant leaf contains the same number of black nodes

Balanced Trees 54

• black-height of a node – bh(x) – Number of black nodes on any path from, but not including, a node x to a
leaf

Lemma. A red-black tree with n internal nodes has height at most 2 lg(n+ 1)

Rotations

• Insert and delete may result in violation of the red-black properties

• Change the color and pointer structure to restore the properties

• Change pointer structure through rotation

• Left rotation possible only if the right child of the node is non-nil

left rotate (T,x)
y ← right[x]
right[x] ← left[y]
if left[y] 6= nil then

parent[left[y]] ← x
parent[y] ← parent[x]
if parent[x] = nil then

root[T] ← y
else

if x = left[parent[x]] then
left[parent[x]] ← y

else
right[parent[x]] ← y

left[y] ← x
parent[x] ← y

Insertion

• Accomplished in O(lg n) time

• Insert x into tree T as if it were ordinary binary search tree

• Recolor nodes and perform rotations to preserve the red-black property

red black insert (T,x)
tree insert (T,x)
color[x] ← red
while x 6= root[T] and color[parent[x]] = red do

if parent[x] = left[parent[parent[x]]] then
y ← right[parent[parent[x]]]
if color[y] = red then

color[parent[x]] ← black
color[y] ← black
color[parent[parent[x]]] ← red
x ← parent[parent[x]]

else
if x = right[parent[x]] then

x ← parent[x]

Balanced Trees 55

left rotate (T,x)
color[p[x]] ← black
color[parent[parent[x]]] ← red
right rotate (T,parent[parent[x]])

else
y ← left[parent[parent[x]]]
if color[y] = red then

color[parent[x]] ← black
color[y] ← black
color[parent[parent[x]]] ← red
x ← parent[parent[x]]

else
if x = left[parent[x]] then

x ← parent[x]
right rotate (T,x)

color[p[x]] ← black
color[parent[parent[x]]] ← red
left rotate (T,parent[parent[x]])

color[root[T]] ← black

