
Symbol Tables and Binary Search Trees

Search

• Basic operation for retrieval of a specific piece of information from large volume of previously stored data

• Each data item divided into two parts

1. Key – used for searching

2. Record – information to be looked for based on key

Definition 1 A symbol table is a data structure of items with keys that supports two basic operations:

1. insert a new item, and

2. return an item with a given key.

– Also known as a dictionary

– Mostly used to organize software on computers, such as list of variable names in a program during
compilation

– Low-level abstraction or associative memory

Symbol Table ADT

• Operations of interest

1. insert a new item

2. search for an item on the basis of a key

3. remove a specified item

4. select the kth largest item

5. sort the symbol table

6. join two symbol tables

• Implementation of symbol table adt

class sym_tab
{

int num_elements; // Number of elements in the symbol table
item * a; // Array of items

// Private functions

void sort (void);
void join (const sym_tab&);

public:
sym_tab (void); // Default constructor
sym_tab (const int); // Parameterized constructor
sym_tab (const sym_tab&); // Copy constructor
~sym_tab (void); // Destructor

int count (void) const; // Number of elements in symbol table
item& search (const key) const;

Symbol Tables and Binary Search Trees 48

void insert (const item);
void remove (const item);
item& select (const int);
void show (ostream&);

};

• Check the man page for bsearch(3) and other searches mentioned in the cross reference section of this man
page

Key-indexed search

• Useful when the keys are small compared to the entire record

• The items can be stored in an array, indexed by keys

– Initialize all items in array a to be NULL

– Store the item with key k in location a[k]

• Search is straightforward by simply picking the item in a[k]

• Deletion is performed by putting a NULL item in a[k]

Sequential search

Binary search

Binary search trees

• Represented as a linked data structure

• Each node represents an object

• Node contains key + pointer to left child, right child, parent

• Binary-search-tree property

– All records with smaller keys than a node are in left subtree

– All records with larger keys than a node are in right subtree

• All keys can be printed in sorted order by in-order traversal

• Querying a binary search tree

– Searching

∗ tree search (x,k)
if x = nil or k = key[x] then

return (x)
if k < key[x] then

return (tree search (left[x],k)
else

return (tree search (right[x],k)

∗ Run-time for tree search is O(h) where h is the height of the tree

– Minimum and Maximum

∗ tree minimum (x)
while left[x] 6= nil do

x ← left[x]
return(x)

Symbol Tables and Binary Search Trees 49

∗ tree maximum (x)
while right[x] 6= nil do

x ← right[x]
return(x)

∗ Both the procedure run in O(h) time for a tree of height h

– Successor and Predecessor

∗ Successor in sorted order determined by in-order traversal
∗ Successor of node x is the smallest key greater than key[x]

∗ tree successor (x)
if right[x] 6= nil then

return tree minimum(right[x])
y ← parent[x]
while y 6= nil and x = right[y] do

x ← y
y ← parent[y]

return y

• Insertion and deletion

– Insertion

∗ tree insert (T,z)
y ← nil
x ← root[T]
while x 6= nil do

y ← x
if key[z] < key[x] then

x ← left[x]
else

x ← right[x]
parent[z] ← y
if y = nil then

root[T] ← z
else

if key[z] < key[y] then
left[y] ← z

else
right[y] ← z

∗ tree insert runs in O(h) time for a tree of height h

– Deletion

∗ tree delete (T,z)
if left[z] = nil or right[z] = nil then

y ← z
else

y ← tree successor(z)
if left[y] 6= nil then

x ← left[y]
else

x ← right[y]
if x 6= nil

parent[x] ← parent[y]
if parent[y] = nil then

Symbol Tables and Binary Search Trees 50

root[T] ← x
else

if y = left[parent[y]] then
left[parent[y]] ← x

else
right[parent[y]] ← x

if y 6= z then
key[z] ← key[y]

return(y)

∗ The procedure runs in O(h) time for a tree of height h

Performance characteristics of BSTs

Index implementations with symbol tables

Insertion at the root in BSTs

BST implementations of other ADT functions

