Elementary Sorting Methods - Simple sorting methods - Useful if the sorting program is to be used a few times, or if the sorting program is used over a small amount of data to be sorted at any time - Useful for small files, because of low overhead - Useful for well-structured files one with almost sorted elements, or with multiple records with the same key - Most of them are $O(N^2)$ #### Rules of the game - Sorting algorithms will be applied to files of items (records) containing keys - Keys are part of the items that are used to control the sort - Objective of sorting algorithm is to rearrange the items such that their keys are ordered according to some well-defined ordering rule (numerical or alphabetic) - We will not be concerned about specific characteristics of keys but only about some criterion that can be used to put the records in order based on the key - Check out the man page for qsort(3) and the usage of the comparison function - Internal sorting File fits into memory, and does not require an extra array for keeping temporary values - External sorting File requires an extra array for keeping temporary values, and possibly the entire file - External sort may require items to be accessed in a sequential manner, and was more prevalent in the days past when memory was very expensive - Program 6.1, reading assignment. Compare it with a program based on qsort(3) - Nonadaptive sort - The operation to compare and exchange is fixed - You may not be able to specify your own criterion for comparison, and may not be able to specify the order of sort (ascending or descending) - Exemplified by Program 6.1 - Adaptive sort - Allows you to perform different sequences of operations - Well-suited for hardware operations, and general-purpose sorting implementations - Exemplified by qsort(3) **Definition 1** Stable sorting. A sorting method is said to be **stable** if it preserves the relative order of items with duplicated keys in file. - Indirect sort - Useful technique when the items (records) to be sorted are large relative to the keys - Worthwhile to sort keys and associate a pointer with the keys to point to actual records - Exemplified by indices in the databases #### Selection sort - One of the simplest sorting algorithms - At every step, find the smallest element in the array and exchange it with the first element, then, remove the first element from consideration ``` void selection (item * a, const int 1, const int r, bool * compare) { for (int i (1); i < r; i++) { for (int min (i), int j (i + 1); j <= r; j++) if (compare (a[j], a[min])) // a[j] < a[min] min = j; swap (a[i], a[min]); } }</pre> ``` - Run time of selection sort is almost independent of the amount of order in the file - Selection in each iteration does not use any information from selection in previous iterations - Same performance in files with almost sorted data, or all keys almost equal, or randomly ordered file - Good for sorting files with large items and small keys - Requires very little data movement compared to other algorithms - Only one swap in every iteration #### Insertion sort - Insert an element in its proper place by moving the already sorted elements to make space for the new element - Elements to the left of current index are in sorted order during the sort though they may not be in their final position yet - Array is fully sorted when the index reaches the right end - Implementation is straightforward but inefficient #### **Bubble sort** # Performance characteristics of elementary sorts - Each of the above sorting algorithms is quadratic-time and in-place - in-place sorting Only a constant number of elements of the input array are ever stored outside the array **Property 5** Selection sort uses about $\frac{N^2}{2}$ comparisons and N exchanges. **Property 6** Insertion sort uses about $\frac{N^2}{4}$ comparisons and $\frac{N^2}{4}$ half-exchanges (moves) on the average and twice as many in the worst case. **Property 7** Bubble sort uses about $\frac{N^2}{2}$ comparisons and $\frac{N^2}{2}$ exchanges on the average and in the worst case. #### **Shellsort** - Simple extension of insertion sort that gains speed by allowing exchanges of elements that are far apart - If every hth element in an array is sorted with respect to other elements that are in a location which is a multiple of h, the array is said to be h-sorted - An h-sorted file is h independent sorted files, interleaved together - By h-sorting for some large value of h, we can move elements in the array by large distances and make it easier to sort for smaller values of h - 5-sorting a string ``` A s o r t I n g e x A m p l e A s o r t A n g e x I m p l e a S o r t a N g e x i M p l e a N o r t a S g e x i M p l e a M o r t a N g e x i S p l e a m G r t a n G e x i s P l e a m g E t a n o E x i s p L e a m g E t a n o L x i s p R e a m g e E a n o l X i s p r E a m g e E a n o l T i s p r X ``` Now the elements can be sorted by insertion sort much faster as they are already closer to their final resting place compared to when we started - For large arrays, we can come up with a sequence h_0, h_1, h_2, \ldots such that each h_i is greater than h_{i-1} to allow for fast final placement of elements - The most important thing in shells ort is to come up with the sequence that will optimize the number of comparisons and movements - There is no provably optimal sequence - General idea is to use geometrically decreasing sequences so that the number of increments is logarithmic to the size of file - Program for shellsort with a sequence of $1, 4, 13, 40, 121, \ldots$ ``` void shellsort (item * a, const int l, const int r) { int h (1); for (; h <= (r - 1) / 3; h = 3 * h + 1); for (; h > 0; h /= 3) for (int i (l + h); i <= r; i++) { for (int j(i), item v(a[i]); j >= l + h && v < a[j-h]; j -= h)</pre> ``` ``` a[j] = a[j-h]; a[j] = v; } ``` The above sequence is good because the h_i s are relatively prime to each other leading to comparisons between different elements in successive passes - A very good sequence for shellsort is given by $4^{i+1} + 3 \cdot 2^i + 1$ for i > 0 - The sequence 2^i for $i \ge 0$ is bad as the odd numbered elements are not compared to the even-number elements until the final pass - Nobody has been able to analyze the algorithm (you get an A if you analyze it correctly) ;-) and there is no functional form of the running time for shellsort **Property 8** The result of h-sorting a file that is k-ordered is a file that is both h- and k-ordered. **Property 9** Shellsort does less than N(h-1)(k-1)/g comparisons to g-sort a file that is h- and k-ordered, provided that h and k are relatively prime. **Property 10** Shellsort does less than $O(N^{3/2})$ comparisons for the increments given by the sequence $h_i = 3h_{i-1} + 1$ for i > 0, with $h_0 = 1$. **Property 11** Shellsort does less than $O(N^{4/3})$ comparisons for the increments given by the sequence $4^{i+1} + 3.2^i + 1$. #### Sorting of other types of data • Reading assignment # Index and pointer sorting • Reading assignment ### Sorting of linked lists • Reading assignment ### Key-indexed counting - This algorithm takes advantage of special properties of keys to perform sorting - \bullet Assumption: Each of the *n* input elements is an integer in the range 1 to *k* - \bullet For each input element x, determine the number of elements less than x - You can count the keys in an array by ``` for (int i(0); i < n; b[key(a[i])] = a[i++]); ``` This creates the index of keys - Not an in-place sorting algorithm - Algorithm code: ``` void counting_sort (item * A, item * B, const int num_keys) { int * c = new int[num_keys]; bzero (c, num_keys * sizeof (int)); for (int i (0); i < A.num_elements(); c[A[i++]]++); for (int i (1); i < num_keys; i++) c[i] += c[i-1]; for (int i (A.num_elements() - 1); i >= 0; i--) B[--c[A[i]]] = A[i]; } ``` - Counting sort is stable and runs in O(n) time - In case of duplicate keys, you can count the number of instances of each key in the first pass and distribute the elements in the proper place in the second pass **Property 12** Key-indexed counting is a linear-time sort, provided that the range of distinct key values is within a constant factor of the file size. ### Quicksort - The most widely used sorting algorithm (standard sorting library function in Unix is called qsort(3)) - Developed in 1960 by C.A.R. Hoare - Performs in-place sorting using a small auxiliary stack - Extremely short inner loop - Worst case running time $O(n^2)$ - Average case running time $O(n \lg n)$ - Not stable - Based on divide-and-conquer approach Divide. The array A[1..r] is partitioned into two nonempty subarrays A[1..m] and A[m+1..r] such that each element of A[1..m] is less than or equal to each element of A[m+1..r] - The index m is computed as a part of this partitioning procedure - As a result of partition, the element ${\tt A[m]}$ is in its final place - Achieved by the function partition Conquer. The two subarrays A[1,m-1] and A[m+1,r] are sorted by recursive calls to quicksort. Combine. Since the subarrays are sorted in place, no work is needed to combine them. • The implementation ``` void quicksort (item * A, const int 1, const int r) { if (1 < r) { int m (partition (A, 1, r)):</pre> ``` ``` quicksort (A, 1, m-1); quicksort (A, m+1, r); } ``` To sort the entire array, the initial call is quicksort (A, 1, A.length() - 1) • The partitioning process always puts at least one element in its proper place # Performance of Quicksort - Worst-case partitioning - Sorting an already sorted array - Recurrence $$T_n = T_{n-1} + \Theta(n)$$ Observe that $T_1 = \Theta(1)$ $$T_n = T_{n-1} + \Theta(n)$$ $$= \sum_{k=1}^n \Theta(k)$$ $$= \Theta\left(\sum_{k=1}^n k\right)$$ $$= \Theta(n^2)$$ - Best-case partitioning - Partitioning procedure produces two regions of size n/2 - Recurrence $$T_n = 2T_{\frac{n}{2}} + \Theta(n)$$ - Solution from Case 2 of master theorem $O(n \lg n)$ - Balanced partitioning $$-T_n = T_{\frac{9n}{10}} + T_{\frac{n}{10}} + \Theta(n)$$ • Average case partitioning # Randomized version of quicksort - Selecting pivot as a random element - Selecting pivot as median-of-three elements ### Merging and Mergesort # Priority Queues and Heapsort # **Priority Queues** \bullet A data structure to maintain a set S of elements, each with an associated value called a key **Definition 2** A priority queue is a data structure of items with keys that support two basic operations: insert a new item, and remove the term with the largest key. • Forms the basis for the data structure called heap # Elementary implementation of priority queue • Unordered array - Definition class priority_queue { int size; // Number of end ``` int size; // Number of elements in the queue item *data; // The actual records public: item get_maximum (void); void insert_element (const item); }; ``` - get_maximum() has to be implemented by linear scan of the array - insert_element() is simple - We can find implementations where one of the above two operations take constant time but finding an efficient method to perform both is a challenge - Ordered array ### Heap • Formed like a complete binary tree **Definition 3** A tree is **heap-ordered** if the key in each node is greater than or equal to the keys in all of the node's children (if any). Equivalently, the key in each node of a heap-ordered tree is less than or equal to the key in that node's parent. Property 13 Heap property. No node in a heap has a key larger than the key at the root. **Definition 4** A heap is a set of nodes with keys arranged in a complete heap-ordered binary tree, represented as an array. • Data | 16 14 10 | 8 7 | 9 3 | 2 4 | 1 | |--------------|-----|-----|-----|---| |--------------|-----|-----|-----|---| • Properties of complete binary tree represented as array ``` - parent(i) = \lfloor i/2 \rfloor - left_child(i) = 2 \times i - right_child(i) = 2 \times i + 1 ``` • Heap property A[parent(i)] $$\geq$$ A[i] - Height of a node in a tree Number of edges on the longest simple downward path from the node to a leaf - Height of the tree Height of the root - Height of a heap with n elements $\Theta(\lg n)$ ### Algorithms on heap - Heapify, or fix the heap - This process works by first violating the heap property and then, fixing it - The algorithm works only on a heap where there is a single violation of heap property - Two possible cases for heapify - 1. The priority of some node is increased, or a new node is added to the bottom of the heap - 2. The priority of some node is decreased, or the root node is removed from the heap - Code for heapify (top-down) ``` void heapify (heap *h, int node, const int nelements) { // Ensure that heap property is satisfied in the subtree with root index // given by node if (node > nelements) return; int left (node * 2), right (node * 2 + 1); int max (node); if (left <= nelements && h[left] > h[node]) max = left; if (right <= nelements && h[right] > h[max]) max = right; if (max != node) ``` ``` { swap (h[node], h[max]); heapify (heap, max, nelements); // max is index and not maximum element } ``` * This code is used to fix the heap after removing the largest element, or after increasing the priority of an element ``` - Building a heap ``` ``` void build_heap (heap *h, const int nelements) { for (int i (nelements / 2); i; heapify (h, i--, nelements)); } ``` - * The first element of heap is always considered to be 1 (to account for left and right child) - Algorithm analysis ``` Cost of each call to heapify O(\lg n) Number of calls to heapify() n Cost of build_heap() O(n \lg n) ``` Property 14 The insert_element() and remove_max() operations for the priority queue ADT can be implemented with heap-ordered trees such that insert_element() requires no more than $\lg N$ comparisons and remove_max() no more than $2 \lg N$ comparisons, when performed on an N-item queue. **Property 15** The change_priority(), remove_max(), and replace_max() operations for the priority queue ADT can be implemented with heap-ordered trees such that no more than $2 \lg N$ comparisons are required for any operation on an N-item queue. #### Heapsort - Use build_heap() and heapify() to perform sorting - Notice that heapify() maintains the heap property from the given node downwards, and leaves the nodes above it undisturbed - Algorithm heapsort ``` void heapsort (item * A, const int nelements) { build_heap (A, nelements); int heap_elements (nelements); for (int i (nelements); i > 2;) { swap (A[1], A[i--]); heapify (A, 1, i); } } ``` Property 16 build-heap() executes in linear time. **Property 17** Heapsort uses fewer than $O(N \lg N)$ comparisons to sort N elements. **Property 18** Heap-based selection allows the kth largest of N items to be found in time proportional to N when k is small or close to N, and in time proportional to $N \lg N$ otherwise. ### Priority-queue ADT • Inserting an element into the queue • Getting the maximum element ``` item get_max (priority_queue S) { return (S[1]); } ``` • Extracting the maximum element ``` item extract_max (priority_queue S, int& nelements) { item max (S[1]); S[1] = S[nelements--]; heapify (S, nelements, 1); return (max); } ``` # **Radix Sorting** - ullet All methods studied so far can be classified as $comparison\ sorts$ - Given two elements a_i and a_j , we perform one of the tests $a_i < a_j$, $a_i \le a_j$, $a_i = a_j$, $a_i \ge a_j$, or $a_i > a_j$ to determine their relative order. - May be unnecessary you look at the first few letters of a person's last name to search for him in the phone book - The radix sort algorithms are based on properties of keys; instead of comparing keys, they process and compare pieces of keys, or bytes - Virtually any key that can be represented in a computer can be treated as a string of bits, or radix 2 integer - Easy to implement in languages such as C/C++ because of availability of low-level bit manipulation operations - Two types of radix sort - 1. MSD radix sort compares key from left (most significant bit) to right 2. LSD radix sort compares keys from right (least significant bit) to left #### Bits, bytes, and words - \bullet Most processing done in terms of words smallest unit of data to be transferred between memory and CPU at any one time - Words generally made up of bytes smallest addressable unit of memory - Bytes are made up of bits smallest unit of information in a computer ### Binary quicksort • Also known as radix exchange sort ``` void radix_exchange (item * A, const int left, const int right, const int bit) { if (right > left) and (bit >= 0) { int i (left), j (right); do { while (bits (A[i], bit, 1) == 0 && i < j) i++; while (bits (A[j], bit, 1) == 1 && i < j) j--; swap (A[i], A[j]); } while (j != i); if (bits (A[right], bit, 1) == 0) j++; radix_exchange (A, left, j-1, bit-1); radix_exchange (A, j, right, bit-1); } }</pre> ``` # Lower bounds for sorting - Assume that all of the input elements are distinct - No need for comparisons of type $a_i = a_j$ - Assume that all comparisons have the form $a_i \leq a_j$ ### The Decision-Tree Model - Decision tree to represent the comparison sorts - Each leaf a permutation of the array to be sorted, plus the elements to be compared $(a_i : a_j)$ - Leaves contain the sorted array Lower bound for the worst case • Length of the longest path from the root of a decision tree to any of its leaves. • Height of the decision tree **Theorem 1** Any decision tree that sorts n elements has height $\Omega(n \lg n)$. **Proof** Consider a decision tree of height h that sorts n elements Possible number of distint sorted orders = Number of permutations = n! The tree has at least n! leaves But a binary tree of height h cannot have more than 2^h leaves Therefore, $n! \leq 2^h$ or, $h \geq \lg(n!)$ From Stirling's approximation, we have $n! > (\frac{n}{e})^n$ Therefore, $$h \geq \lg \left(\frac{n}{e}\right)^n$$ $$= n \lg n - n \lg e$$ $$= \Omega(n \lg n)$$ Corollary 1 Heapsort and mergesort are asymptotically optimal comparison sorts. ### Radix Sort Straight Radix Sort - Originally used by card sorting machines - Used to sort records of information keyed by multiple fields # **Bucket Sort** Assumption • Elements distributed uniformly over the range [0, 1) Divide the interval [1,0) into n equal sized intervals, called *buckets* Distribute the input numbers into the buckets Sort the numbers in each bucket and then, go through the buckets in order, listing the elements in each