- Key to good understanding of algorithms for practical applications
- We do not analyze every program we write
- Enough to understand basic [standard] algorithms and their performance so that we can select the best algorithm for the job at hand
- Important for the study of algorithm properties so that we can save time and resources, with reasonable sacrifice in terms of complexity of coding
- Consider the following three codes

```
sum \leftarrow0 sum \leftarrow0 sum }\leftarrow\mp@subsup{n}{}{2
for i \leftarrow 1 to n for i }\leftarrow1\mathrm{ to n
    for j \leftarrow 1 to n sum }\leftarrow\mathrm{ sum + n
                sum }\leftarrow\mathrm{ sum + 1
```

- What can you say about their performance? Do they achieve the same goal?

Implementation and Empirical Analysis

- Design, develop, and express algorithms in terms of layers of abstract operations
- Empirical analysis
- Compare the performance of two algorithms by actually running them
- Requires a correct and complete implementation
- Look for resource usage and time required, with the same input data and running on the same machine, with the same type of environment
* Selection of input data is extremely important
* You can select random data, actual data, or perverse data
- Code may execute at different speed depending on load on the system (overall resource usage)
- Useful to validate the mathematical analysis
- Pitfalls in algorithm selection
- Ignoring performance characteristics
* Addition of a few lines of code (increase in complexity) can endow the code with more intelligence to make it run faster
- Paying too much attention to performance characteristics
* Is it worth spending 10 hours of your time to save 10 milliseconds of run time?

Analysis of algorithms

- It may not be always possible to perform empirical analysis
- Mathematical analysis is more informative and less expensive but can be difficult if we do not know all the mathematical formulas
- The high-level program code may not correctly reflect the performance in terms of machine language
- The code may compile differently depending on the level of optimization turned on in the compiler
- Identify the abstract operations on which the algorithm is based, and separate analysis from implementation (think of the abstract operations outlined in selection sort analysis)
- Identify the data for best case comparison, average case comparison, and worst case comparison
- It is possible that the best case data for an algorithm turns out to be the worst case data for a different algorithm

Growth of Functions

- Simple characterization of algorithm efficiency
- Allows to compare relative performance of alternative algorithms
- Depends on input data size N
- If there are multiple input parameters, we will try to reduce them to a single parameter, expressing some parameters in terms of the selected parameter
- The performance of algorithm on an input of size N is generally represented in terms of $1, \lg N, N, N \lg N, N^{2}$, N^{3}, and 2^{N}
- The performance depends heavily on loops, and can be increased by minimizing the inner loops (or work done in inner loops)
- Asymptotic efficiency of algorithms
- Effect of input size increase without bound on running time of algorithm

Standard Notation and Common Functions

- Monotonicity
- Monotonically increasing - $m \leq n \Rightarrow f(m) \leq f(n)$
- Monotonically decreasing - $m \leq n \Rightarrow f(m) \geq f(n)$
- Strictly increasing $-m<n \Rightarrow f(m)<f(n)$
- Strictly decreasing - $m<n \Rightarrow f(m)>f(n)$
- Floors and ceilings
- floor(x) - greatest integer $\leq x$
- ceiling (x) - smallest integer $\geq \mathrm{x}$
$-\forall$ real x

$$
x-1<\lfloor x\rfloor \leq x \leq\lceil x\rceil<x+1
$$

- For any integer n

$$
\left\lceil\frac{n}{2}\right\rceil+\left\lfloor\frac{n}{2}\right\rfloor=n
$$

- For any integer n, and integers $a \neq 0$ and $b \neq 0$

$$
\begin{aligned}
& \lceil\lceil n / a\rceil / b\rceil=\lceil n / a b\rceil \\
& \lfloor\lfloor n / a\rfloor / b\rfloor=\lfloor n / a b\rfloor
\end{aligned}
$$

- Floor and ceiling functions are monotonically increasing
- Polynomials
- Polynomial in n of degree d

$$
p(n)=\sum_{i=0}^{d} a_{i} n^{i}
$$

$a_{0}, a_{1}, \ldots, a_{d}$ are coefficients of polynomial, and $a_{d} \neq 0$

- Polynomial is asymptotically positive iff $a_{d}>0$
- For an asymptotically positive polynomial $p(n)$ of degree $d, p(n)=\Theta\left(n^{d}\right)$
- Exponentials
$-\forall$ real $a \neq 0, m$ and n, we have following identities
* $a^{0}=1$
* $a^{1}=a$
* $a^{-1}=\frac{1}{a}$
* $\left(a^{m}\right)^{n}=a^{m n}$
* $\left(a^{m}\right)^{n}=\left(a^{n}\right)^{m}$
* $a^{m} a^{n}=a^{m+n}$
$-\forall n$ and $a \geq 1, a^{n}$ is monotonically increasing in n
- Assume $0^{0}=1$
$-\forall$ real constants a and b such that $a>1$

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{n^{b}}{a^{n}}=0 \\
n^{b}=o\left(a^{n}\right)
\end{gathered}
$$

Any positive exponential function grows faster than any polynomial

- Base of natural logarithm function $e=2.71828 \ldots$
$-\forall$ real x

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots=\sum_{i=0}^{\infty} \frac{x^{i}}{i!}
$$

$-\forall$ real $x, e^{x} \geq 1+x$

- When $|x| \leq 1$, we have $1+x \leq e^{x} \leq 1+x+x^{2}$
- When $x \rightarrow 0, e^{x}$ can be approximated by

$$
e^{x}=1+x+\Theta\left(x^{2}\right)
$$

- Logarithms
- Notation

$$
\begin{array}{rll}
\lg n & =\log _{2} n & \\
\text { (binary logarithm) } \\
\ln n & =\log _{e} n & \\
\text { (naturl logarithm) } \\
\lg ^{k} n & =(\lg n)^{k} & \\
\text { (exponentiation) } \\
\lg \lg n & =\lg (\lg n) & \text { (composition) }
\end{array}
$$

- For all real $a>0, b>0, c>0$, and n

$$
\begin{aligned}
a & =b^{\log _{b} a} \\
\log _{c}(a b) & =\log _{c} a+\log _{c} b \\
\log _{b} a^{n} & =n \log _{b} a \\
\log _{b} a & =\frac{\log _{c} a}{\log _{c} b} \\
\log _{b} \frac{1}{a} & =-\log _{b} a \\
\log _{b} a & =\frac{1}{\log _{0} b} \\
a^{\log _{b} n} & =n^{\log _{b} a}
\end{aligned}
$$

- When $|x|<1$

$$
\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\frac{x^{5}}{5}-\cdots
$$

- For $x>-1$

$$
\frac{x}{1+x} \leq \ln (1+x) \leq x
$$

- A function $f(n)$ is polylogarithmically bounded if $f(n)=\lg ^{O(1)} n$
$-\lim _{n \rightarrow \infty} \frac{\lg ^{b} n}{2^{a^{\lg } n}}=\lim _{n \rightarrow \infty} \frac{\lg ^{b} n}{n^{a}}=0$
$\lg ^{b} n=o\left(n^{a}\right)$
Any positive polynomial function grows faster than any polylogarithmic function
- Factorials
$-n!= \begin{cases}1 & \text { if } n=0 \\ n \cdot(n-1)! & \text { if } n>0\end{cases}$
- Fibonacci numbers
- Definition

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=1 \\
& F_{i}=F_{i-1}+F_{i-2}, \quad i \geq 2
\end{aligned}
$$

- Golden ratio Φ and conjugate $\hat{\Phi}$
* $\Phi=\frac{1+\sqrt{5}}{2}=1.61803 \ldots$
* $\hat{\Phi}=\frac{1-\sqrt{5}}{2}=-.61803 \ldots$
$-F_{i}=\frac{\Phi^{i}-\hat{\Phi}^{i}}{\sqrt{5}}$

Asymptotic Notation (including Big-Oh)

- Function with domain as the set of natural numbers
- Allows the suppression of detail when analyzing algorithms
- Allows the description to be accurate while losing little detail
- Convenient to describe the worst case running time function $T(n)$
- Θ-notation
- Consider a given function $g(n)$
- $\Theta(g(n))$ - Set of functions
$-\Theta(g(n))=\left\{f(n): \exists\right.$ positive constants c_{1}, c_{2}, and $\left.n_{0} \mid 0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n) \forall n \geq n_{0}\right\}$.
- $f(n)$ can be sandwiched between $c_{1} g(n)$ and $c_{2} g(n)$, for sufficiently large n
- $\Theta(g(n))$ is a set
- We write $f(n)=\Theta(g(n))$ to imply $f(n) \in \Theta(g(n))$
- For all values of $n \geq n_{0}, f(n)$ lies at or above $c_{1} g(n)$ and at or below $c_{2} g(n)$
- $\forall n \geq n_{0}, f(n)$ is equal to $g(n)$ within a constant factor
$-g(n)$ is an asymptotically tight bound for $f(n)$
- Every member of $\Theta(g(n))$ must be asymptotically nonnegative
- $f(n)$ must be nonnegative whenever n is sufficiently large
- Consequently, $g(n)$ itself must be asymptotically nonnegative, or else, the set $\Theta(g(n))$ is empty
- Therefore, it is reasonable to assume that every function used with Θ-notation is asymptotically nonnegative
- Prove $\frac{1}{2} n^{2}-3 n=\Theta\left(n^{2}\right)$
* Determine positive constants c_{1}, c_{2}, and n_{0} such that

$$
c_{1} n^{2} \leq \frac{1}{2} n^{2}-3 n \leq c_{2} n^{2} \forall n \geq n_{0}
$$

* Dividing by n^{2} we have

$$
c_{1} \leq \frac{1}{2}-\frac{3}{n} \leq c_{2}
$$

* $c_{1} \leq \frac{1}{14}$ for $n \geq 7$
* $c_{2} \geq \frac{1}{14}$ for $n \geq 7$, but preferably, $c_{2} \geq \frac{1}{2}$ for arbitrarily large n
- Prove $6 n^{3} \neq \Theta\left(n^{2}\right)$

Assume that c_{2} and n_{0} exist such that $6 n^{3} \leq c_{2} n^{2} \forall n \geq n_{0}$ $n \leq \frac{c_{2}}{6}$, not possible for arbitrarily large n because c_{2} is a constant

- Since any constant is a degree-0 polynomial, constant function can be expressed as $\Theta\left(n^{0}\right)$ or $\Theta(1)$
- O-notation
- Asymptotic upper bound
- Upper bound on a function within a constant factor
- Not as strong as Θ-notation
$-O(g(n))=\left\{f(n): \exists\right.$ positive constants c and $\left.n_{0} \mid 0 \leq f(n) \leq c g(n) \forall n \geq n_{0}\right\}$
$-f(n)=\Theta(g(n)) \Rightarrow f(n)=O(g(n))$
$-\Theta(g(n)) \supseteq O(g(n))$
- O-notation used to describe the running time of algorithm by inspection of algorithm structure
* Doubly nested loop structure $\Rightarrow O\left(n^{2}\right)$
* Biggest concern is the terms with the larger exponent, or the leading terms in a polynomial
- Three purposes of O-notation:

1. Bound the error when small terms in mathematical formulas are ignored
2. Bound the error when we ignore parts of a program that contribute a small amount to the total being analyzed

* Such items will include initialization code and/or heuristics which may have a small but significant effect on the actual run-time

3. Classify algorithms according to upper bounds on their total running times

- Above reasoning allows us to focus on the leading term when comparing running times for algorithms (with the assumption that precise analysis can be performed, if necessary)
$-f(n) \in O(g(n)) \equiv f(n)=O(g(n))$
* When $f(n)$ is asymptotically large compared to another function $g(n)$, i.e., $\lim _{N \rightarrow \infty} \frac{g(n)}{f(n)}=0, f(n)$ is taken to mean $f(n)+O(g(n))$
* We sacrifice mathematical precision in favor of clarity, with a guarantee that for large N, the effect of quantity given by $O(g(n))$ actually is negligible
- As an example, we take the summation of the series $\sum_{i=1}^{N} i$ to be $\frac{N^{2}}{2}$ rather than $\frac{N(N+1)}{2}$
* Such notation allows us to be both precise and concise when describing the performance of algorithms
- Ω-notation
- Asymptotic lower bound
- Best-case running time
$-\Omega(g(n))=\left\{f(n): \exists\right.$ positive constants c and $\left.n_{0} \mid 0 \leq c g(n) \leq f(n) \forall n>n_{0}\right\}$
- Best case running time of insertion sort $\Omega(n)$
- Theorem 1 For any two functions $f(n)$ and $g(n), f(n)=\Theta(g(n))$ if and only if $f(n)=O(g(n))$ and $f(n)=$ $\Omega(g(n))$
- Useful to prove asymptotically tight bounds from upper and lower bounds
- Running time of insertion sort falls between $O\left(n^{2}\right)$ and $\Omega(n)$
- o-notation
- Asymptotic upper bound provided by O-notation may or may not be asymptotically tight
- o-notation denotes an upper bound that is not asymptotically tight
$-o(g(n))=\left\{f(n):\right.$ For any constant $c>0, \exists$ a constant $\left.n_{0}>0 \mid 0 \leq f(n)<c g(n) \forall n \geq n_{0}\right\}$
- For example, $2 n=o\left(n^{2}\right)$, but $2 n^{2} \neq o\left(n^{2}\right)$
- $f(n)$ becomes insignificant compared to $g(n)$ as n approaches infinity, or

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0
$$

- ω-notation
- ω-notation denotes the asymptotic lower bound that is not tight
$-\omega(g(n))=\left\{f(n):\right.$ For any constant $c>0, \exists$ a constant $\left.n_{0}>0 \mid 0 \leq c g(n)<f(n) \forall n \geq n_{0}\right\}$
- For example, $\frac{n^{2}}{2}=\omega(n)$, but $\frac{n^{2}}{2} \neq \omega\left(n^{2}\right)$
- $f(n)=\omega(g(n))$ implies

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty
$$

- $f(n)$ becomes arbitrarily large relative to $g(n)$ as n approaches infinity.
- Comparison of functions
- $f(n)$ and $g(n)$ are asymptotically positive
- Transitivity

$$
\begin{aligned}
& f(n)=\Theta(g(n)) \quad \wedge \quad g(n)=\Theta(h(n)) \quad \Rightarrow \quad f(n)=\Theta(h(n)) \\
& f(n)=O(g(n)) \quad \wedge \quad g(n)=O(h(n)) \quad \Rightarrow \quad f(n)=O(h(n)) \\
& f(n)=\Omega(g(n)) \quad \wedge \quad g(n)=\Omega(h(n)) \quad \Rightarrow \quad f(n)=\Omega(h(n)) \\
& f(n)=o(g(n)) \quad \wedge \quad g(n)=o(h(n)) \quad \Rightarrow \quad f(n)=o(h(n)) \\
& f(n)=\omega(g(n)) \quad \wedge \quad g(n)=\omega(h(n)) \quad \Rightarrow \quad f(n)=\omega(h(n))
\end{aligned}
$$

- Reflexivity

$$
\begin{aligned}
f(n) & =\Theta(f(n)) \\
f(n) & =O(f(n)) \\
f(n) & =\Omega(f(n))
\end{aligned}
$$

- Symmetry

$$
f(n)=\Theta(g(n)) \quad \text { if and only if } \quad g(n)=\Theta(f(n))
$$

- Transpose symmetry

$$
\begin{array}{cll}
f(n)=O(g(n)) & \text { if and only if } & g(n)=\Omega(f(n)) \\
f(n)=o(g(n)) & \text { if and only if } & g(n)=\omega(f(n))
\end{array}
$$

- Analogy with two real numbers a and b

$$
\begin{aligned}
& f(n)=O(g(n)) \quad \approx \quad a \leq b \\
& f(n)=\Omega(g(n)) \quad \approx \quad a \geq b \\
& f(n)=\Theta(g(n)) \quad \approx \quad a=b \\
& f(n)=o(g(n)) \quad \approx \quad a<b \\
& f(n)=\omega(g(n)) \quad \approx \quad a>b
\end{aligned}
$$

Summations - Formulas and Properties

- Infinite series

$$
\sum_{i=1}^{\infty} a_{i}=a_{1}+a_{2}+\cdots=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} a_{i}
$$

- Divergent series - no limit
- Convergent series - some limit
- Linearity
- For any real number c and any finite sequences $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$

$$
\sum_{i=1}^{n}\left(c a_{i}+b_{i}\right)=c \sum_{i=1}^{n} a_{i}+\sum_{i=1}^{n} b_{i}
$$

- Usage in growth estimation

$$
\sum_{i=1}^{n} \Theta(f(i))=\Theta\left(\sum_{i=1}^{n} f(i)\right)
$$

- Arithmetic series

$$
\begin{aligned}
\sum_{i=1}^{n} i & =1+2+3+\cdots+n \\
& =\frac{1}{2} n(n+1) \\
& =\Theta\left(n^{2}\right)
\end{aligned}
$$

- Geometric series
- For real $x \neq 1$

$$
\begin{aligned}
\sum_{i=0}^{n} x^{i} & =1+x+x^{2}+x^{3}+\cdots+x^{n} \\
& =\frac{x^{n+1}-1}{x-1}
\end{aligned}
$$

- For $|x|<1$

$$
\sum_{i=0}^{n} x^{i}=\frac{1}{1-x}
$$

- Harmonic series
- For $n>0$, the nth harmonic number is

$$
\begin{aligned}
H_{n} & =1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{n} \\
& =\sum_{i=1}^{n} \frac{1}{i} \\
& =\ln n+O(1)
\end{aligned}
$$

- Telescoping series
- For any sequence $a_{0}, a_{1}, \ldots, a_{n}$

$$
\begin{aligned}
& \sum_{i=1}^{n}\left(a_{i}-a_{i-1}\right)=a_{n}-a_{0} \\
& \sum_{i=0}^{n-1}\left(a_{i}-a_{i+1}\right)=a_{0}-a_{n}
\end{aligned}
$$

- Example

$$
\begin{aligned}
\sum_{i=1}^{n-1} \frac{1}{i(i+1)} & =\sum_{i=0}^{n-1}\left(\frac{1}{i}-\frac{1}{i+1}\right) \\
& =1-\frac{1}{n}
\end{aligned}
$$

- Products
- Finite product

$$
\prod_{i=1}^{n} a_{i}
$$

- Convert a formula with a product to one with summation

$$
\lg \left(\prod_{i=1}^{n} a_{i}\right)=\sum_{i=1}^{n} \lg a_{i}
$$

Bounding Summations

- Mathematical induction
- Prove that

$$
\sum_{i=1}^{n} i=\frac{1}{2} n(n+1)
$$

Base case: For $n=1$, trivially proven
Inductive assumption: True for all values of n such that $1 \leq n \leq k$.

Induction:

$$
\begin{aligned}
\sum_{i=1}^{k+1} i & =\sum_{i=1}^{k} i+(k+1) \\
& =\frac{1}{2} k(k+1)+(k+1) \\
& =\frac{1}{2}(k+1)(k+2)
\end{aligned}
$$

- Use of induction to show a bound.

Prove that $\sum_{i=0}^{n} 3^{i}$ is $O\left(3^{n}\right)$;
Or, for any constant c

$$
\sum_{i=0}^{n} 3^{i} \leq c \cdot 3^{n}
$$

Base case: $n=0$

$$
\sum_{i=0}^{0} 3^{i}=1 \leq c, \text { for } c \geq 1
$$

Inductive assumption: True for all values of n such that $1 \leq n \leq k$. Induction:

$$
\begin{aligned}
\sum_{i=0}^{k+1} 3^{i} & =\sum_{i=0}^{k} 3^{i}+3^{k+1} \\
& \leq c 3^{k}+3^{k+1} \\
& =\left(\frac{1}{3}+\frac{1}{c}\right) c 3^{k+1} \\
& \leq c 3^{k+1} \quad \forall c \leq \frac{3}{2}
\end{aligned}
$$

- Use of asymptotic notation to prove a bound

Fallacious proof for

$$
\sum_{i=1}^{n} i=O(n)
$$

Base case: $n=1$. Trivial proof
Inductive assumption: True for all values of n such that $1 \leq n \leq k$.
Induction:

$$
\begin{aligned}
\sum_{i=1}^{k+1} i & =\sum_{i=1}^{k} i+(k+1) \\
& =O(k)+(k+1) \Leftarrow \text { error } \\
& =O(k+1)
\end{aligned}
$$

- Bounding the terms
- Upper bound on arithmetic series

$$
\begin{aligned}
\sum_{i=1}^{n} i & \leq \sum_{i=1}^{n} n \\
& =n^{2}
\end{aligned}
$$

- For a series $\sum_{i=1}^{n} a_{i}$, let $a_{\max }=\max _{1 \leq i \leq n} a_{i}$. Then,

$$
\sum_{i=1}^{n} a_{i} \leq n a_{\max }
$$

- Geometric series
* For a series, $\sum_{i=0}^{n} a_{i}$, let $\frac{a_{i+1}}{a_{i}} \leq r$ for all $i \geq 0$, where $r<1$

Sum can be bounded by an infinite decreasing geometric series, since $a_{i} \leq a_{0} r^{i}$

$$
\begin{aligned}
\sum_{i=0}^{n} a_{i} & \leq \sum_{i=0}^{\infty} a_{0} r^{i} \\
& =a_{0} \sum_{i=0}^{\infty} r^{i} \\
& =a_{0} \frac{1}{1-r}
\end{aligned}
$$

* Bound the summation

$$
\sum_{i=1}^{\infty} \frac{i}{3^{i}}
$$

First term $=\frac{1}{3}$
Ratio of consecutive terms

$$
\begin{aligned}
\frac{(i+1) / 3^{i+1}}{i / 3^{i}} & =\frac{1}{3} \cdot \frac{i+1}{i} \\
& \leq \frac{2}{3} \forall i \geq 1
\end{aligned}
$$

Each term is bounded above by $\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)^{i}$

$$
\begin{aligned}
\sum_{i=1}^{\infty} \frac{i}{3^{i}} & \leq \sum_{i=1}^{\infty} \frac{1}{3}\left(\frac{2}{3}\right)^{i} \\
& =\frac{1}{3} \cdot \frac{1}{1-\frac{2}{3}} \\
& =1
\end{aligned}
$$

* A common pitfall

$$
\begin{aligned}
\sum_{i=1}^{\infty} \frac{1}{i} & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{i} \\
& =\lim _{n \rightarrow \infty} \Theta(\lg n) \\
& =\infty
\end{aligned}
$$

- Splitting summations
- Express the series as the sum of two or more summations
- Lower bound of the series $\sum_{i=1}^{n} i$
- Assume that n is even

$$
\sum_{i=1}^{n} i=\sum_{i=1}^{n / 2} i+\sum_{i=n / 2+1}^{n} i
$$

$$
\begin{aligned}
& \geq \sum_{i=1}^{n / 2} 0+\sum_{i=n / 2+1}^{n} \frac{n}{2} \\
& \geq\left(\frac{n}{2}\right)^{2} \\
& =\Omega\left(n^{2}\right)
\end{aligned}
$$

- If each term a_{i} in a summation $\sum_{i=0}^{n} a_{i}$ is independent of n, then, for any constant $i_{0}>0$

$$
\begin{aligned}
\sum_{i=0}^{n} a_{i} & =\sum_{i=0}^{i_{0}-1} a_{i}+\sum_{i=i_{0}}^{n} a_{i} \\
& =\Theta(1)+\sum_{i=i_{0}}^{n} a_{i}
\end{aligned}
$$

- Find an asymptotic upper bound on

$$
\sum_{i=0}^{\infty} \frac{i^{2}}{2^{i}}
$$

Observe that the ratio of consecutive terms, for $i \geq 3$, is

$$
\begin{aligned}
\frac{(i+1)^{2} / 2^{i+1}}{i^{2} / 2^{i}} & =\frac{(i+1)^{2}}{2 i^{2}} \\
& \leq \frac{8}{9}
\end{aligned}
$$

The summation can be split into

$$
\begin{aligned}
\sum_{i=0}^{\infty} \frac{i^{2}}{2^{i}} & =\sum_{i=0}^{2} \frac{i^{2}}{2^{i}}+\sum_{i=3}^{\infty} \frac{i^{2}}{2^{i}} \\
& \leq O(1)+\frac{9}{8} \sum_{i=0}^{\infty}\left(\frac{8}{9}\right)^{i} \\
& =O(1)
\end{aligned}
$$

since the second summation is a decreasing geometric series.

- Find the asymptotic bound on the harmonic series

$$
H_{n}=\sum_{i=1}^{n} \frac{1}{i}
$$

Split the range 1 to n into $\lfloor\lg n\rfloor$ pieces and upper bound the contribution of each piece by 1 .

$$
\begin{aligned}
\sum_{i=1}^{n} \frac{1}{i} & \leq \sum_{i=0}^{\lfloor\lg n\rfloor} \sum_{j=0}^{2^{i}-1} \frac{1}{2^{i}+j} \\
& \leq \sum_{i=0}^{\lfloor\lg n\rfloor} \sum_{j=0}^{2^{i}-1} \frac{1}{2^{i}} \\
& \leq \sum_{i=0}^{\lfloor\lg n\rfloor} 1 \\
& \leq \lg n+1
\end{aligned}
$$

Recurrences

- Recursively decompose a large problem into a set of smaller problems
- Decomposition is directly reflected in analysis
- Run-time determined by the size and number of subproblems to be solved in addition to the time required for decomposition
- An equation or inequality that describes a function in terms of its value on smaller inputs
- Also known as recurrence relation
- Recurrence can be solved to derive the running time
- Example, mergesort recurrence

$$
T_{n}= \begin{cases}\Theta(1) & \text { if } n=1 \\ 2 T_{\frac{n}{2}}+\Theta(n) & \text { if } n>1\end{cases}
$$

Solution for the mergesort recurrence: $\Theta(n \lg n)$

- You can ignore extreme details like floor, ceiling, and boundary in recurrence description.

Substitution Method

- Guess the form of solution and use induction to find constants
- Determine upper bound on the recurrence

$$
T_{n}=2 T_{\left\lfloor\frac{n}{2}\right\rfloor}+n
$$

Guess the solution as: $T_{n}=O(n \lg n)$
Now, prove that $T_{n} \leq c n \lg n$ for some $c>0$
Assume that the bound holds for $\left\lfloor\frac{n}{2}\right\rfloor$
Substituting into the recurrence

$$
\begin{aligned}
T_{n} & \leq 2\left(c\left\lfloor\frac{n}{2}\right\rfloor \lg \left(\left\lfloor\frac{n}{2}\right\rfloor\right)\right)+n \\
& \leq c n \lg \left(\frac{n}{2}\right)+n \\
& =c n \lg n-c n \lg 2+n \\
& =c n \lg n-c n+n \\
& \leq c n \lg n \quad \forall c \geq 1
\end{aligned}
$$

Boundary condition: Let the only bound be $T_{1}=1$

$$
\nexists c \mid T_{1} \leq c 1 \lg 1=0
$$

Problem overcome by the fact that asymptotic notation requires us to prove

$$
T_{n} \leq c n \lg n \text { for } n \geq n_{0}
$$

Include T_{2} and T_{3} as boundary conditions for the proof

$$
T_{2}=4 \quad T_{3}=5
$$

Choose c such that $T_{2} \leq c 2 \lg 2$ and $T_{3} \leq c 3 \lg 3$
True for any $c \geq 2$

- Making a good guess
- If a recurrence is similar to a known recurrence, it is reasonable to guess a similar solution

$$
T_{n}=2 T_{\left\lfloor\frac{n}{2}\right\rfloor}+n
$$

If n is large, difference between $T_{\left\lfloor\frac{n}{2}\right\rfloor}$ and $T_{\left\lfloor\frac{n}{2}\right\rfloor+17}$ is relatively small

- Prove upper and lower bounds on a recurrence and reduce the range of uncertainty.

Start with a lower bound of $T_{n}=\Omega(n)$ and an initial upper bound of $T_{n}=O\left(n^{2}\right)$. Gradually lower the upper bound and raise the lower bound to get asymptotically tight solution of $T_{n}=\Theta(n \lg n)$

- Pitfall
$-T_{n}=2 T_{\left\lfloor\frac{n}{2}\right\rfloor}+n$
Assume inductively that $T_{n} \leq c n$ implying that $T_{n}=O(n)$

$$
\begin{aligned}
T_{n} & \leq 2 c\left\lfloor\frac{n}{2}\right\rfloor+n \\
& \leq c n+n \\
& =O(n) \Leftarrow \text { wrong }
\end{aligned}
$$

We haven't proved the exact form of inductive hypothesis $T_{n} \leq c n$

- Changing variables
- Consider the recurrence

$$
T_{n}=2 T_{\lfloor\sqrt{n}\rfloor}+\lg n
$$

Let $m=\lg n$.

$$
T_{2^{m}}=2 T_{2 \frac{m}{2}}+m
$$

Rename $S_{m}=T_{2^{m}}$

$$
S_{m}=2 S_{\frac{m}{2}}+m
$$

Solution for the recurrence: $S_{m}=m \lg m$
Change back from S_{m} to T_{n}

$$
T_{n}=T_{2^{m}}=S_{m}=O(m \lg m)=O(\lg n \lg \lg n)
$$

The iteration method

- Also known as telescoping method
- No guessing but more algebra, by applying the recurrence to itself (on the right hand side of the equation)
- Expand the recurrence and express it as summation dependent on only n and initial conditions
- Recurrence

$$
\begin{aligned}
& T_{n}=3 T_{\left\lfloor\frac{n}{4}\right\rfloor}+n \\
T_{n}= & n+3 T_{\left\lfloor\frac{n}{4}\right\rfloor} \\
= & n+3\left(\left\lfloor\frac{n}{4}\right\rfloor+3 T_{\left\lfloor\frac{n}{16}\right\rfloor}\right) \\
= & n+3\left(\left\lfloor\frac{n}{4}\right\rfloor+3\left(\left\lfloor\frac{n}{16}\right\rfloor+3 T_{\left\lfloor\frac{n}{64}\right\rfloor}\right)\right) \\
= & n+3\left\lfloor\frac{n}{4}\right\rfloor+9\left\lfloor\frac{n}{16}\right\rfloor+27 T_{\left\lfloor\frac{n}{64}\right\rfloor}
\end{aligned}
$$

i th term is given by $3^{i}\left\lfloor\frac{n}{4^{i}}\right\rfloor$
Bound $n=1$ when $\left\lfloor\frac{n}{4^{i}}\right\rfloor=1$ or $i>\log _{4} n$

Bound $\left\lfloor\frac{n}{4^{i}}\right\rfloor \leq \frac{n}{4^{i}}$
Decreasing geometric series

$$
\begin{aligned}
T_{n} & \leq n+\frac{3}{4} n+\frac{9}{16} n+\frac{27}{64} n+\cdots+3^{\log _{4} n} \Theta(1) \\
& \leq n \sum_{i=0}^{\infty}\left(\frac{3}{4}\right)^{i}+\Theta\left(n^{\log _{4} 3}\right) \\
& =4 n+o(n) \quad 3^{\log _{4} n}=n^{\log _{4} 3} \\
& =O(n)
\end{aligned}
$$

Focus on

- Number of iterations to reach boundary condition
- Sum of terms arising from each level of iteration
- Recursion trees
- Recurrence

$$
T_{n}=2 T_{\frac{n}{2}}+n^{2}
$$

Assume n to be an exact power of 2 .

$$
\begin{aligned}
T_{n} & =n^{2}+2 T_{\frac{n}{2}} \\
& =n^{2}+2\left(\left(\frac{n}{2}\right)^{2}+2 T_{\frac{n}{4}}\right) \\
& =n^{2}+\frac{n^{2}}{2}+4\left(\left(\frac{n}{4}\right)^{2}+2 T_{\frac{n}{8}}\right) \\
& =n^{2}+\frac{n^{2}}{2}+\frac{n^{2}}{4}+8\left(\left(\frac{n}{8}\right)^{2}+2 T_{\frac{n}{16}}\right) \\
& =n^{2}+\frac{n^{2}}{2}+\frac{n^{2}}{4}+\frac{n^{2}}{8}+\cdots \\
& =n^{2}\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots\right) \\
& =\Theta\left(n^{2}\right)
\end{aligned}
$$

The values above decrease geometrically by a constant factor.

- Recurrence

$$
T_{n}=T_{\frac{n}{3}}+T_{\frac{2 n}{3}}+n
$$

Longest path from root to a leaf

$$
n \rightarrow\left(\frac{2}{3}\right) n \rightarrow\left(\frac{2}{3}\right)^{2} n \rightarrow \cdots 1
$$

$\left(\frac{2}{3}\right)^{k} n=1$ when $k=\log _{\frac{3}{2}} n, k$ being the height of the tree
Upper bound to the solution to the recurrence $-n \log _{\frac{3}{2}} n$, or $O(n \log n)$

The Master Method

- Suitable for recurrences of the form

$$
T_{n}=a T_{\frac{n}{b}}+f(n)
$$

where $a \geq 1$ and $b>1$ are constants, and $f(n)$ is an asymptotically positive function

- For mergesort, $a=2, b=2$, and $f(n)=\Theta(n)$
- Master Theorem

Theorem 2 Let $a \geq 1$ and $b>1$ be constants, let $f(n)$ be a function, and let T_{n} be defined on the nonnegative integers by the recurrence

$$
T_{n}=a T_{\frac{n}{b}}+f(n)
$$

where we interpret $\frac{n}{b}$ to mean either $\left\lfloor\frac{n}{b}\right\rfloor$ or $\left\lceil\frac{n}{b}\right\rceil$. Then T_{n} can be bounded asymptotically as follows

1. If $f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$ for some constant $\epsilon>0$, then $T_{n}=\Theta\left(n^{\log _{b} a}\right)$
2. If $f(n)=\Theta\left(n^{\log _{b} a}\right)$, then $T_{n}=\Theta\left(n^{\log _{b} a} \lg n\right)$
3. If $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)$ for some constant $\epsilon>0$, and if af $\left(\frac{n}{b}\right) \leq c f(n)$ for some constant $c<1$ and all sufficiently large n, then $T_{n}=\Theta(f(n))$

- In all three cases, compare $f(n)$ with $n^{\log _{b} a}$
- Solution determined by the larger of the two
* Case 1: $n^{\log _{b} a}>f(n)$ Solution $T_{n}=\Theta\left(n^{\log _{b} a}\right)$
* Case 2: $n^{\log _{b} a} \approx f(n)$

Multiply by a logarithmic factor
Solution $T_{n}=\Theta\left(n^{\log _{b} a} \lg n\right)=\Theta(f(n) \lg n)$

* Case 3: $f(n)>n^{\log _{b} a}$

Solution $T_{n}=\Theta(f(n))$

- In case $1, f(n)$ must be asymptotically smaller than $n^{\log _{b} a}$ by a factor of n^{ϵ} for some constant $\epsilon>0$
- In case 3, f_{n} must be polynomially larger than $n^{\log _{b} a}$ and satisfy the "regularity" condition that $a f\left(\frac{n}{b}\right) \leq c f(n)$
- Using the master method
- Recurrence

$$
T_{n}=9 T_{\frac{n}{3}}+n
$$

$a=9, b=3, f(n)=n$
$n^{\log _{b} a}=n^{\log _{3} 9}=\Theta\left(n^{2}\right)$
$f(n)=O\left(n^{\log _{3} 9-\epsilon}\right)$, where $\epsilon=1$
Apply case 1 of master theorem and conclude $T_{n}=\Theta\left(n^{2}\right)$

- Recurrence

$$
T_{n}=T_{\frac{2 n}{3}}+1
$$

$a=1, b=\frac{3}{2}, f(n)=1$
$n^{\log _{b} a}=n^{\log _{\frac{3}{2}} 1}=n^{0}=1$
$f(n)=\Theta\left(n^{\log _{b} a}\right)=\Theta(1)$
Apply case 2 of master theorem and conclude $T_{n}=\Theta(\lg n)$

- Recurrence

$$
T_{n}=3 T_{\frac{n}{4}}+n \lg n
$$

$a=3, b=4, f(n)=n \lg n$
$n^{\log _{b} a}=n^{\log _{4} 3}=O\left(n^{0.793}\right)$
$f(n)=\Omega\left(n^{\log _{4} 3+\epsilon}\right)$, where $\epsilon \approx 0.2$
Apply case 3 , if regularity condition holds for $f(n)$
For large $n, a f\left(\frac{n}{b}\right)=3 \frac{n}{4} \lg \left(\frac{n}{4}\right) \leq \frac{3}{4} n \lg n=c f(n)$ for $c=\frac{3}{4}$
Therefore, $T_{n}=\Theta(n \lg n)$

- Recurrence

$$
T_{n}=2 T_{\frac{n}{2}}+n \lg n
$$

Recurrence has proper form $-a=2, b=2, f(n)=n \lg n$ and $n^{\log _{b} a}=n$
$f(n)=n \lg n$ is asymptotically larger than $n^{\log _{b}}=n$ but not polynomially larger
Ratio $\frac{f(n)}{n^{\log _{b} a}}=\frac{n \lg n}{n}=\lg n$ is asymptotically less than n^{ϵ} for any positive constant ϵ Recurrence falls between case 2 and case 3

Examples of algorithm analysis

- Sequential search, or linear search

Property 1 Sequential search examines N numbers for each unsuccessful search and about $N / 2$ numbers for each successful search on the average.

Property 2 Sequential search in an ordered table examines N numbers for each search in the worst case and about $N / 2$ numbers for each search on the average.

- Consider the effect of M transactions and N entries in the table; with a requirement of $c \mu \mathrm{sec}$ per comparison
- Binary search

Property 3 Binary search never examines more than $\lfloor\lg N\rfloor+1$ numbers.
Easily showed by the recurrence for binary search:

$$
T_{N} \leq T_{\lfloor N / 2\rfloor}+1, \text { for } N \geq 2 \text { with } T_{1}=1
$$

Guarantees, Predictions, and Limitations

- Run time depends on two things in data
- Amount of data
- Type of data (worst case/average case/best case)
- Worst case performance of algorithms
- Allows to make guarantees about the run time of programs
- Function provides the maximum number of times an abstract operation will be performed, independent of data
* Property 3 for binary serach algorithms
- Algorithms with lower worst case performance are preferable and are the goal of algorithm analysis

