Principles of Algorithm Analysis

- Key to good understanding of algorithms for practical applications
 - We do not analyze every program we write
 - Enough to understand basic [standard] algorithms and their performance so that we can select the best algorithm for the job at hand
- Important for the study of algorithm properties so that we can save time and resources, with reasonable sacrifice in terms of complexity of coding
- Consider the following three codes

- What can you say about their performance? Do they achieve the same goal?

Implementation and Empirical Analysis

- Design, develop, and express algorithms in terms of layers of abstract operations
- Empirical analysis
 - Compare the performance of two algorithms by actually running them
 - Requires a correct and complete implementation
 - Look for resource usage and time required, with the same input data and running on the same machine, with the same type of environment
 - * Selection of input data is extremely important
 - $\ast\,$ You can select random data, actual data, or perverse data
 - Code may execute at different speed depending on load on the system (overall resource usage)
 - Useful to validate the mathematical analysis
- Pitfalls in algorithm selection
 - Ignoring performance characteristics
 - * Addition of a few lines of code (increase in complexity) can endow the code with more intelligence to make it run faster
 - Paying too much attention to performance characteristics
 - * Is it worth spending 10 hours of your time to save 10 milliseconds of run time?

Analysis of algorithms

- It may not be always possible to perform empirical analysis
- Mathematical analysis is more informative and less expensive but can be difficult if we do not know all the mathematical formulas
- The high-level program code may not correctly reflect the performance in terms of machine language

- The code may compile differently depending on the level of optimization turned on in the compiler
- Identify the abstract operations on which the algorithm is based, and separate analysis from implementation (think of the abstract operations outlined in selection sort analysis)
- Identify the data for best case comparison, average case comparison, and worst case comparison
 - It is possible that the best case data for an algorithm turns out to be the worst case data for a different algorithm

Growth of Functions

- Simple characterization of algorithm efficiency
- Allows to compare relative performance of alternative algorithms
- Depends on input data size N
 - If there are multiple input parameters, we will try to reduce them to a single parameter, expressing some parameters in terms of the selected parameter
- The performance of algorithm on an input of size N is generally represented in terms of 1, $\lg N$, N, $N \lg N$, N^2 , N^3 , and 2^N
 - The performance depends heavily on loops, and can be increased by minimizing the inner loops (or work done in inner loops)
- Asymptotic efficiency of algorithms
 - Effect of input size increase without bound on running time of algorithm

Standard Notation and Common Functions

- Monotonicity
 - Monotonically increasing $m \le n \Rightarrow f(m) \le f(n)$
 - Monotonically decreasing $m \le n \Rightarrow f(m) \ge f(n)$
 - Strictly increasing $m < n \Rightarrow f(m) < f(n)$
 - Strictly decreasing $m < n \Rightarrow f(m) > f(n)$
- Floors and ceilings
 - floor(x) greatest integer \leq x
 - ceiling(x) smallest integer \ge x
 - \forall real x

$$x - 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1$$

- For any integer n

$$\lceil \frac{n}{2} \rceil + \lfloor \frac{n}{2} \rfloor = n$$

- For any integer n, and integers $a \neq 0$ and $b \neq 0$

$$\left\lceil \left\lceil n/a \right\rceil / b \right\rceil = \left\lceil n/ab \right\rceil$$

- Floor and ceiling functions are monotonically increasing
- Polynomials
 - Polynomial in n of degree d

$$p(n) = \sum_{i=0}^{d} a_i n^i$$

 a_0, a_1, \ldots, a_d are *coefficients* of polynomial, and $a_d \neq 0$

- Polynomial is asymptotically positive iff $a_d > 0$
- For an asymptotically positive polynomial p(n) of degree d, $p(n) = \Theta(n^d)$
- Exponentials
 - \forall real $a \neq 0$, m and n, we have following identities
 - * $a^0 = 1$ * $a^1 = a$ * $a^{-1} = \frac{1}{a}$ * $(a^m)^n = a^{mn}$

$$* (a^{m})^{n} = (a^{n})^{m}$$

$$*(a) = (a)$$

- $* a^m a^n = a^{m+n}$
- $~\forall~ n ~ {\rm and}~ a \geq 1,~ a^n$ is monotonically increasing in n
- Assume $0^0 = 1$
- $~\forall$ real constants a and b such that a > 1

$$\lim_{n \to \infty} \frac{n^b}{a^n} = 0$$
$$n^b = o(a^n)$$

Any positive exponential function grows faster than any polynomial

- Base of natural logarithm function e = 2.71828...
- \forall real x

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = \sum_{i=0}^{\infty} \frac{x^i}{i!}$$

- \forall real x, $e^x \ge 1 + x$
- When $|x| \leq 1$, we have $1 + x \leq e^x \leq 1 + x + x^2$
- When $x \rightarrow 0$, e^x can be approximated by

$$e^x = 1 + x + \Theta(x^2)$$

- Logarithms
 - Notation

$$\begin{array}{rcl} \lg n &=& \log_2 n & (\text{binary logarithm}) \\ \ln n &=& \log_e n & (\text{naturl logarithm}) \\ \lg^k n &=& (\lg n)^k & (\text{exponentiation}) \\ \lg\lg n &=& \lg(\lg n) & (\text{composition}) \end{array}$$

- For all real a > 0, b > 0, c > 0, and n

$$a = b^{\log_b a}$$

$$\log_c(ab) = \log_c a + \log_c b$$

$$\log_b a^n = n \log_b a$$

$$\log_b a = \frac{\log_c a}{\log_c b}$$

$$\log_b \frac{1}{a} = -\log_b a$$

$$\log_b a = \frac{1}{\log_a b}$$

$$a^{\log_b n} = n^{\log_b a}$$

- When |x| < 1

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \cdots$$

- For x > -1

$$\frac{x}{1+x} \le \ln(1+x) \le x$$

- A function f(n) is polylogarithmically bounded if $f(n) = \lg^{O(1)} n$
- $-\lim_{n\to\infty}\frac{|\mathbf{g}^{^{b}}n}{2^{a^{\lg n}}}=\lim_{n\to\infty}\frac{|\mathbf{g}^{^{b}}n}{n^{^{a}}}=0$ $|\mathbf{g}^{^{b}}n=o(n^{a})$

Any positive polynomial function grows faster than any polylogarithmic function

• Factorials

$$- n! = \begin{cases} 1 & \text{if } n = 0\\ n \cdot (n-1)! & \text{if } n > 0 \end{cases}$$

- Fibonacci numbers
 - Definition

$$\begin{array}{l} F_0 = 0 \\ F_1 = 1 \\ F_i = F_{i-1} + F_{i-2}, \ i \geq 2 \end{array}$$

– Golden ratio Φ and conjugate $\hat{\Phi}$

*
$$\Phi = \frac{1+\sqrt{5}}{2} = 1.61803...$$

* $\hat{\Phi} = \frac{1-\sqrt{5}}{2} = -.61803...$
+ $F_i = \frac{\Phi^i - \hat{\Phi}^i}{\sqrt{5}}$

Asymptotic Notation (including Big-Oh)

- Function with domain as the set of natural numbers
- Allows the suppression of detail when analyzing algorithms
- Allows the description to be accurate while losing little detail
- Convenient to describe the worst case running time function ${\cal T}(n)$
- Θ -notation

_

- Consider a given function g(n)
- $\Theta(g(n))$ Set of functions
- $\Theta(g(n)) = \{f(n) : \exists \text{ positive constants } c_1, c_2, \text{ and } n_0 \mid 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \ \forall n \ge n_0 \}.$

- f(n) can be sandwiched between $c_1g(n)$ and $c_2g(n)$, for sufficiently large n
- $-\Theta(q(n))$ is a set
- We write $f(n) = \Theta(g(n))$ to imply $f(n) \in \Theta(g(n))$
- For all values of $n \ge n_0$, f(n) lies at or above $c_1g(n)$ and at or below $c_2g(n)$
- $\forall n \geq n_0, f(n)$ is equal to g(n) within a constant factor
- -g(n) is an asymptotically tight bound for f(n)
- Every member of $\Theta(g(n))$ must be asymptotically nonnegative
- f(n) must be nonnegative whenever n is sufficiently large
- Consequently, q(n) itself must be asymptotically nonnegative, or else, the set $\Theta(q(n))$ is empty
- Therefore, it is reasonable to assume that every function used with Θ -notation is asymptotically nonnegative
- Prove $\frac{1}{2}n^2 3n = \Theta(n^2)$
 - * Determine positive constants c_1, c_2 , and n_0 such that

$$c_1 n^2 \le \frac{1}{2}n^2 - 3n \le c_2 n^2 \forall n \ge n_0$$

* Dividing by n^2 we have

$$c_1 \le \frac{1}{2} - \frac{3}{n} \le c_2$$

- * $c_1 \leq \frac{1}{14}$ for $n \geq 7$ * $c_2 \geq \frac{1}{14}$ for $n \geq 7$, but preferably, $c_2 \geq \frac{1}{2}$ for arbitrarily large n
- Prove $6n^3 \neq \Theta(n^2)$

Assume that c_2 and n_0 exist such that $6n^3 \leq c_2n^2 \ \forall n \geq n_0$ $n \leq \frac{c_2}{6}$, not possible for arbitrarily large n because c_2 is a constant

- Since any constant is a degree-0 polynomial, constant function can be expressed as $\Theta(n^0)$ or $\Theta(1)$
- O-notation
 - Asymptotic upper bound
 - Upper bound on a function within a constant factor
 - Not as strong as Θ -notation
 - $-O(q(n)) = \{f(n) : \exists \text{ positive constants } c \text{ and } n_0 \mid 0 \le f(n) \le cq(n) \forall n \ge n_0 \}$

$$- f(n) = \Theta(g(n)) \Rightarrow f(n) = O(g(n))$$

- $\Theta(g(n)) \supseteq O(g(n))$
- O-notation used to describe the running time of algorithm by inspection of algorithm structure
 - * Doubly nested loop structure $\Rightarrow O(n^2)$
 - * Biggest concern is the terms with the larger exponent, or the leading terms in a polynomial
- Three purposes of *O*-notation:
 - 1. Bound the error when small terms in mathematical formulas are ignored
 - 2. Bound the error when we ignore parts of a program that contribute a small amount to the total being analyzed
 - * Such items will include initialization code and/or heuristics which may have a small but significant effect on the actual run-time
 - 3. Classify algorithms according to upper bounds on their total running times
- Above reasoning allows us to focus on the leading term when comparing running times for algorithms (with the assumption that precise analysis can be performed, if necessary)
- $-f(n) \in O(q(n)) \equiv f(n) = O(q(n))$

- * When f(n) is asymptotically large compared to another function g(n), i.e., $\lim_{N\to\infty} \frac{g(n)}{f(n)} = 0$, f(n) is taken to mean f(n) + O(g(n))
- * We sacrifice mathematical precision in favor of clarity, with a guarantee that for large N, the effect of quantity given by O(g(n)) actually is negligible
 - \cdot As an example, we take the summation of the series $\sum_{i=1}^N i$ to be $rac{N^2}{2}$ rather than $rac{N(N+1)}{2}$
- * Such notation allows us to be both precise and concise when describing the performance of algorithms
- Ω -notation
 - Asymptotic lower bound
 - Best-case running time
 - $\Omega(g(n)) = \{ f(n) : \exists \text{ positive constants } c \text{ and } n_0 \mid 0 \le cg(n) \le f(n) \forall n > n_0 \}$
 - Best case running time of insertion sort $\Omega(n)$
- Theorem 1 For any two functions f(n) and g(n), $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$
 - Useful to prove asymptotically tight bounds from upper and lower bounds
 - Running time of insertion sort falls between $O(n^2)$ and $\Omega(n)$
- *o*-notation
 - Asymptotic upper bound provided by O-notation may or may not be asymptotically tight
 - o-notation denotes an upper bound that is not asymptotically tight
 - $o(g(n)) = \{f(n) : \text{ For any constant } c > 0, \exists a \text{ constant } n_0 > 0 \mid 0 \le f(n) < cg(n) \forall n \ge n_0 \}$
 - For example, $2n = o(n^2)$, but $2n^2 \neq o(n^2)$
 - -f(n) becomes insignificant compared to g(n) as n approaches infinity, or

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

- ω -notation
 - $\omega\text{-notation}$ denotes the asymptotic lower bound that is not tight
 - $\ \omega(g(n)) = \{f(n) \ : \ \text{For any constant} \ c > 0, \ \exists \text{ a constant} \ n_0 > 0 \ | \ 0 \le cg(n) < f(n) \ \forall n \ge n_0 \}$
 - For example, $\frac{n^2}{2}=\omega(n),$ but $\frac{n^2}{2}\neq\omega(n^2)$
 - $f(n) = \omega(g(n))$ implies

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

- f(n) becomes arbitrarily large relative to g(n) as n approaches infinity.

- Comparison of functions
 - f(n) and g(n) are asymptotically positive
 - Transitivity

Reflexivity

$$\begin{array}{rcl} f(n) & = & \Theta(f(n)) \\ f(n) & = & O(f(n)) \\ f(n) & = & \Omega(f(n)) \end{array}$$

- Symmetry

$$f(n) = \Theta(g(n))$$
 if and only if $g(n) = \Theta(f(n))$

- Transpose symmetry

$$\begin{array}{ll} f(n)=O(g(n)) & \text{ if and only if } & g(n)=\Omega(f(n)) \\ f(n)=o(g(n)) & \text{ if and only if } & g(n)=\omega(f(n)) \end{array}$$

- Analogy with two real numbers $a \mbox{ and } b$

$$\begin{array}{lll} f(n) = O(g(n)) &\approx & a \leq b \\ f(n) = \Omega(g(n)) &\approx & a \geq b \\ f(n) = \Theta(g(n)) &\approx & a = b \\ f(n) = o(g(n)) &\approx & a < b \\ f(n) = \omega(g(n)) &\approx & a > b \end{array}$$

Summations – Formulas and Properties

• Infinite series

$$\sum_{i=1}^{\infty} a_i = a_1 + a_2 + \dots = \lim_{n \to \infty} \sum_{i=1}^{n} a_i$$

- Divergent series no limit
- Convergent series some limit
- Linearity
 - For any real number c and any finite sequences a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_n

$$\sum_{i=1}^{n} (ca_i + b_i) = c \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i$$

- Usage in growth estimation

$$\sum_{i=1}^n \Theta(f(i)) = \Theta\left(\sum_{i=1}^n f(i)\right)$$

• Arithmetic series

$$\sum_{i=1}^{n} i = 1+2+3+\dots+n$$
$$= \frac{1}{2}n(n+1)$$
$$= \Theta(n^2)$$

- Geometric series
 - For real $x \neq 1$

$$\sum_{i=0}^{n} x^{i} = 1 + x + x^{2} + x^{3} + \dots + x^{n}$$
$$= \frac{x^{n+1} - 1}{x - 1}$$

- For |x| < 1

$$\sum_{i=0}^{n} x^{i} = \frac{1}{1-x}$$

- Harmonic series
 - For n > 0, the *n*th harmonic number is

$$H_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n}$$
$$= \sum_{i=1}^n \frac{1}{i}$$
$$= \ln n + O(1)$$

- Telescoping series
 - For any sequence a_0, a_1, \ldots, a_n

$$\sum_{i=1}^{n} (a_i - a_{i-1}) = a_n - a_0$$
$$\sum_{i=0}^{n-1} (a_i - a_{i+1}) = a_0 - a_n$$

- Example

$$\sum_{i=1}^{n-1} \frac{1}{i(i+1)} = \sum_{i=0}^{n-1} \left(\frac{1}{i} - \frac{1}{i+1}\right)$$
$$= 1 - \frac{1}{n}$$

• Products

- Finite product

$$\lg\left(\prod_{i=1}^{n} a_i\right) = \sum_{i=1}^{n} \lg a_i$$

 $\prod_{i=1}^{n} a_i$

Bounding Summations

- Mathematical induction
 - Prove that

$$\sum_{i=1}^{n} i = \frac{1}{2}n(n+1)$$

Base case: For n = 1, trivially proven

Inductive assumption: True for all values of n such that $1 \leq n \leq k.$

Induction:

$$\sum_{i=1}^{k+1} i = \sum_{i=1}^{k} i + (k+1)$$
$$= \frac{1}{2}k(k+1) + (k+1)$$
$$= \frac{1}{2}(k+1)(k+2)$$

- Use of induction to show a bound. Prove that $\sum_{i=0}^{n} 3^{i}$ is $O(3^{n})$; Or, for any constant c

$$\sum_{i=0}^{n} 3^{i} \le c \cdot 3^{n}$$

Base case: n = 0

$$\sum_{i=0}^0 3^i = 1 \hspace{.1in} \leq \hspace{.1in} c, \hspace{.1in} \mathrm{for} c \geq 1$$

Inductive assumption: True for all values of n such that $1 \leq n \leq k.$ Induction:

$$\sum_{i=0}^{k+1} 3^{i} = \sum_{i=0}^{k} 3^{i} + 3^{k+1}$$
$$\leq c3^{k} + 3^{k+1}$$
$$= \left(\frac{1}{3} + \frac{1}{c}\right)c3^{k+1}$$
$$\leq c3^{k+1} \quad \forall c \leq \frac{3}{2}$$

 Use of asymptotic notation to prove a bound Fallacious proof for

$$\sum_{i=1}^n i = O(n)$$

Base case: n = 1. Trivial proof

Inductive assumption: True for all values of n such that $1 \leq n \leq k.$ Induction:

$$\sum_{i=1}^{k+1} i = \sum_{i=1}^{k} i + (k+1)$$
$$= O(k) + (k+1) \iff \text{error}$$
$$= O(k+1)$$

• Bounding the terms

- Upper bound on arithmetic series

$$\sum_{i=1}^{n} i \leq \sum_{i=1}^{n} n$$
$$= n^{2}$$

– For a series $\sum_{i=1}^n a_i$, let $a_{\max} = \max_{1 \leq i \leq n} a_i$. Then,

$$\sum_{i=1}^{n} a_i \le n a_{\max}$$

- Geometric series

* For a series, $\sum_{i=0}^{n} a_i$, let $\frac{a_{i+1}}{a_i} \leq r$ for all $i \geq 0$, where r < 1Sum can be bounded by an infinite decreasing geometric series, since $a_i \leq a_0 r^i$

$$\sum_{i=0}^{n} a_i \leq \sum_{i=0}^{\infty} a_0 r^i$$
$$= a_0 \sum_{i=0}^{\infty} r^i$$
$$= a_0 \frac{1}{1-r}$$
$$\sum_{i=1}^{\infty} \frac{i}{3^i}$$

* Bound the summation

First term $=\frac{1}{3}$ Ratio of consecutive terms

$$\frac{(i+1)/3^{i+1}}{i/3^i} = \frac{1}{3} \cdot \frac{i+1}{i}$$
$$\leq \frac{2}{3} \quad \forall i \ge 1$$

Each term is bounded above by $\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)^i$

$$\sum_{i=1}^{\infty} \frac{i}{3^i} \leq \sum_{i=1}^{\infty} \frac{1}{3} \left(\frac{2}{3}\right)^i$$
$$= \frac{1}{3} \cdot \frac{1}{1-\frac{2}{3}}$$
$$= 1$$

* A common pitfall

$$\sum_{i=1}^{\infty} \frac{1}{i} = \lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{i}$$
$$= \lim_{n \to \infty} \Theta(\lg n)$$
$$= \infty$$

- Splitting summations
 - Express the series as the sum of two or more summations
 - Lower bound of the series $\sum_{i=1}^n i$
 - $-% \left({{\rm{Assume that}}} \right) = n \left({{\rm{Assume that}}} \right)$ is even

$$\sum_{i=1}^{n} i = \sum_{i=1}^{n/2} i + \sum_{i=n/2+1}^{n} i$$

$$\geq \sum_{i=1}^{n/2} 0 + \sum_{i=n/2+1}^{n} \frac{n}{2}$$
$$\geq \left(\frac{n}{2}\right)^2$$
$$= \Omega(n^2)$$

- If each term a_i in a summation $\sum_{i=0}^n a_i$ is independent of n, then, for any constant $i_0 > 0$

$$\sum_{i=0}^{n} a_i = \sum_{i=0}^{i_0-1} a_i + \sum_{i=i_0}^{n} a_i$$
$$= \Theta(1) + \sum_{i=i_0}^{n} a_i$$

- Find an asymptotic upper bound on

$$\sum_{i=0}^{\infty} \frac{i^2}{2^i}$$

Observe that the ratio of consecutive terms, for $i\geq 3,$ is

$$\frac{(i+1)^2/2^{i+1}}{i^2/2^i} = \frac{(i+1)^2}{2i^2} \le \frac{8}{9}$$

The summation can be split into

$$\sum_{i=0}^{\infty} \frac{i^2}{2^i} = \sum_{i=0}^{2} \frac{i^2}{2^i} + \sum_{i=3}^{\infty} \frac{i^2}{2^i}$$
$$\leq O(1) + \frac{9}{8} \sum_{i=0}^{\infty} \left(\frac{8}{9}\right)^i$$
$$= O(1)$$

since the second summation is a decreasing geometric series.

- Find the asymptotic bound on the harmonic series

$$H_n = \sum_{i=1}^n \frac{1}{i}$$

Split the range 1 to n into $\lfloor \lg n \rfloor$ pieces and upper bound the contribution of each piece by 1.

$$\begin{split} \sum_{i=1}^{n} \frac{1}{i} &\leq \sum_{i=0}^{\lfloor \lg n \rfloor} \sum_{j=0}^{2^{i}-1} \frac{1}{2^{i}+j} \\ &\leq \sum_{i=0}^{\lfloor \lg n \rfloor} \sum_{j=0}^{2^{i}-1} \frac{1}{2^{i}} \\ &\leq \sum_{i=0}^{\lfloor \lg n \rfloor} 1 \\ &\leq \lg n+1 \end{split}$$

Recurrences

- Recursively decompose a large problem into a set of smaller problems
 - Decomposition is directly reflected in analysis
 - Run-time determined by the size and number of subproblems to be solved in addition to the time required for decomposition
- An equation or inequality that describes a function in terms of its value on smaller inputs
 - Also known as recurrence relation
 - Recurrence can be solved to derive the running time
- Example, mergesort recurrence

$$T_n = \begin{cases} \Theta(1) & \text{if } n = 1\\ 2T_{\frac{n}{2}} + \Theta(n) & \text{if } n > 1 \end{cases}$$

Solution for the mergesort recurrence: $\Theta(n \lg n)$

• You can ignore extreme details like floor, ceiling, and boundary in recurrence description.

Substitution Method

- Guess the form of solution and use induction to find constants
- Determine upper bound on the recurrence

$$T_n = 2T_{\lfloor \frac{n}{2} \rfloor} + n$$

Guess the solution as: $T_n = O(n \lg n)$ Now, prove that $T_n \leq cn \lg n$ for some c > 0Assume that the bound holds for $\lfloor \frac{n}{2} \rfloor$ Substituting into the recurrence

$$T_n \leq 2\left(c\left\lfloor\frac{n}{2}\right\rfloor \lg\left(\left\lfloor\frac{n}{2}\right\rfloor\right)\right) + n$$
$$\leq cn \lg\left(\frac{n}{2}\right) + n$$
$$= cn \lg n - cn \lg 2 + n$$
$$= cn \lg n - cn + n$$
$$\leq cn \lg n \quad \forall c \geq 1$$

Boundary condition: Let the only bound be $T_1 = 1$

$$\not\exists c \mid T_1 \le c 1 \lg 1 = 0$$

Problem overcome by the fact that asymptotic notation requires us to prove

$$T_n \leq cn \lg n$$
 for $n \geq n_0$

Include T_2 and T_3 as boundary conditions for the proof

$$T_2 = 4$$
 $T_3 = 5$

Choose c such that $T_2 \leq c 2 \lg 2$ and $T_3 \leq c 3 \lg 3$ True for any $c \geq 2$

• Making a good guess

- If a recurrence is similar to a known recurrence, it is reasonable to guess a similar solution

$$T_n = 2T_{\lfloor \frac{n}{2} \rfloor} + n$$

If n is large, difference between $T_{\lfloor \frac{n}{2} \rfloor}$ and $T_{\lfloor \frac{n}{2} \rfloor+17}$ is relatively small

- Prove upper and lower bounds on a recurrence and reduce the range of uncertainty. Start with a lower bound of $T_n = \Omega(n)$ and an initial upper bound of $T_n = O(n^2)$. Gradually lower the upper bound and raise the lower bound to get asymptotically tight solution of $T_n = \Theta(n \lg n)$
- Pitfall

 $-\ T_n=2T_{\lfloor \frac{n}{2} \rfloor}+n$ Assume inductively that $T_n\leq cn$ implying that $T_n=O(n)$

$$\begin{array}{rcl} T_n & \leq & 2c \left\lfloor \frac{n}{2} \right\rfloor + n \\ & \leq & cn + n \\ & = & O(n) & \Leftarrow \text{ wrong} \end{array}$$

We haven't proved the exact form of inductive hypothesis $T_n \leq cn$

- Changing variables
 - Consider the recurrence

Let $m = \lg n$.

Rename $S_m = T_{2^m}$

$$S_m = 2S_{\frac{m}{2}} + m$$

 $T_{2^m} = 2T_{2^{\frac{m}{2}}} + m$

 $T_n = 2T_{\lfloor \sqrt{n} \rfloor} + \lg n$

Solution for the recurrence: $S_m = m \lg m$ Change back from S_m to T_n

$$T_n = T_{2^m} = S_m = O(m \lg m) = O(\lg n \lg \lg n)$$

The iteration method

- Also known as telescoping method
- No guessing but more algebra, by applying the recurrence to itself (on the right hand side of the equation)
- Expand the recurrence and express it as summation dependent on only n and initial conditions
- Recurrence

$$T_n = 3T_{\lfloor \frac{n}{4} \rfloor} + n$$

$$\begin{split} T_n &= n + 3T_{\lfloor \frac{n}{4} \rfloor} \\ &= n + 3(\lfloor \frac{n}{4} \rfloor + 3T_{\lfloor \frac{n}{16} \rfloor}) \\ &= n + 3(\lfloor \frac{n}{4} \rfloor + 3(\lfloor \frac{n}{16} \rfloor + 3T_{\lfloor \frac{n}{64} \rfloor})) \\ &= n + 3\lfloor \frac{n}{4} \rfloor + 9\lfloor \frac{n}{16} \rfloor + 27T_{\lfloor \frac{n}{64} \rfloor} \end{split}$$

ith term is given by $3^i\lfloor\frac{n}{4^i}\rfloor$ Bound n=1 when $\lfloor\frac{n}{4^i}\rfloor=1$ or $i>\log_4n$ Bound $\lfloor \frac{n}{4^i} \rfloor \leq \frac{n}{4^i}$ Decreasing geometric series

$$T_n \leq n + \frac{3}{4}n + \frac{9}{16}n + \frac{27}{64}n + \dots + 3^{\log_4 n}\Theta(1)$$

$$\leq n\sum_{i=0}^{\infty} \left(\frac{3}{4}\right)^i + \Theta(n^{\log_4 3}) \qquad 3^{\log_4 n} = n^{\log_4 3}$$

$$= 4n + o(n) \qquad \log_4 3 < 1 \Rightarrow \Theta(n^{\log_4 3}) = o(n)$$

$$= O(n)$$

Focus on

- $-\,$ Number of iterations to reach boundary condition
- Sum of terms arising from each level of iteration
- Recursion trees
 - Recurrence

$$T_n = 2T_{\frac{n}{2}} + n^2$$

Assume n to be an exact power of 2.

$$T_n = n^2 + 2T_{\frac{n}{2}}$$

$$= n^2 + 2\left(\left(\frac{n}{2}\right)^2 + 2T_{\frac{n}{4}}\right)$$

$$= n^2 + \frac{n^2}{2} + 4\left(\left(\frac{n}{4}\right)^2 + 2T_{\frac{n}{8}}\right)$$

$$= n^2 + \frac{n^2}{2} + \frac{n^2}{4} + 8\left(\left(\frac{n}{8}\right)^2 + 2T_{\frac{n}{16}}\right)$$

$$= n^2 + \frac{n^2}{2} + \frac{n^2}{4} + \frac{n^2}{8} + \cdots$$

$$= n^2(1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots)$$

$$= \Theta(n^2)$$

The values above decrease geometrically by a constant factor.

Recurrence

$$T_n = T_{\frac{n}{3}} + T_{\frac{2n}{3}} + n$$

Longest path from root to a leaf

$$n \to \left(\frac{2}{3}\right)n \to \left(\frac{2}{3}\right)^2 n \to \cdots 1$$

 $\left(\frac{2}{3}\right)^k n=1$ when $k=\log_{\frac{3}{2}}n$, k being the height of the tree Upper bound to the solution to the recurrence – $n\log_{\frac{3}{2}}n$, or $O(n\log n)$

The Master Method

• Suitable for recurrences of the form

$$T_n = aT_{\frac{n}{b}} + f(n)$$

where $a \geq 1$ and b > 1 are constants, and f(n) is an asymptotically positive function

- For mergesort, a = 2, b = 2, and $f(n) = \Theta(n)$
- Master Theorem

Theorem 2 Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T_n be defined on the nonnegative integers by the recurrence

$$T_n = aT_{\frac{n}{b}} + f(n)$$

where we interpret $\frac{n}{b}$ to mean either $\left|\frac{n}{b}\right|$ or $\left[\frac{n}{b}\right]$. Then T_n can be bounded asymptotically as follows

1. If $f(n) = O(n^{\log_b a - \epsilon})$ for some constant $\epsilon > 0$, then $T_n = \Theta(n^{\log_b a})$

2. If
$$f(n) = \Theta(n^{\log_b a})$$
, then $T_n = \Theta(n^{\log_b a} \lg n)$

- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af\left(\frac{n}{b}\right) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T_n = \Theta(f(n))$
- In all three cases, compare f(n) with $n^{\log_b a}$
- Solution determined by the larger of the two
 - * Case 1: $n^{\log_b a} > f(n)$ Solution $T_n = \Theta(n^{\log_b a})$
 - * Case 2: $n^{\log_b a} \approx f(n)$ Multiply by a logarithmic factor Solution $T_n = \Theta(n^{\log_b a} \lg n) = \Theta(f(n) \lg n)$ * Case 3: $f(n) > n^{\log_b a}$

Solution
$$T_n = \Theta(f(n))$$

- In case 1, f(n) must be asymptotically smaller than $n^{\log_b a}$ by a factor of n^{ϵ} for some constant $\epsilon > 0$
- In case 3, f_n must be polynomially larger than $n^{\log_b a}$ and satisfy the "regularity" condition that $af(\frac{n}{b}) \leq cf(n)$
- Using the master method
 - Recurrence

$$T_n = 9T_{\frac{n}{3}} + n$$

 $\begin{array}{l} a=9,\ b=3,\ f(n)=n\\ n^{\log_b a}=n^{\log_3 9}=\Theta(n^2)\\ f(n)=O(n^{\log_3 9-\epsilon}), \ \text{where} \ \epsilon=1\\ \text{Apply case 1 of master theorem and conclude } T_n=\Theta(n^2) \end{array}$

- Recurrence

$$T_n = T_{\frac{2n}{3}} + 1$$

$$\begin{split} &a=1, \ b=\frac{3}{2}, \ f(n)=1\\ &n^{\log_b a}=n^{\log_\frac{3}{2}1}=n^0=1\\ &f(n)=\Theta(n^{\log_b a})=\Theta(1)\\ &\text{Apply case 2 of master theorem and conclude } T_n=\Theta(\lg n) \end{split}$$

- Recurrence

$$T_n = 3T_{\frac{n}{4}} + n \lg n$$

 $\begin{array}{l} a=3,\ b=4,\ f(n)=n\lg n\\ n^{\log_b a}=n^{\log_4 3}=O(n^{0.793})\\ f(n)=\Omega(n^{\log_4 3+\epsilon}), \ \text{where} \ \epsilon\approx 0.2\\ \text{Apply case 3, if regularity condition holds for } f(n)\\ \text{For large } n,\ af(\frac{n}{b})=3\frac{n}{4}\lg(\frac{n}{4})\leq \frac{3}{4}n\lg n=cf(n) \ \text{for } c=\frac{3}{4}\\ \text{Therefore, } T_n=\Theta(n\lg n) \end{array}$

- Recurrence

$$T_n = 2T_{\frac{n}{2}} + n \lg n$$

Recurrence has proper form – a = 2, b = 2, $f(n) = n \lg n$ and $n^{\log_b a} = n$ $f(n) = n \lg n$ is asymptotically larger than $n^{\log_b} = n$ but not *polynomially* larger Ratio $\frac{f(n)}{n^{\log_b a}} = \frac{n \lg n}{n} = \lg n$ is asymptotically less than n^{ϵ} for any positive constant ϵ Recurrence falls between case 2 and case 3

Examples of algorithm analysis

• Sequential search, or linear search

Property 1 Sequential search examines N numbers for each unsuccessful search and about N/2 numbers for each successful search on the average.

Property 2 Sequential search in an ordered table examines N numbers for each search in the worst case and about N/2 numbers for each search on the average.

- Consider the effect of M transactions and N entries in the table; with a requirement of $c \mu$ sec per comparison
- Binary search

Property 3 Binary search never examines more than $\lfloor \lg N \rfloor + 1$ numbers.

Easily showed by the recurrence for binary search:

$$T_N \leq T_{\lfloor N/2 \rfloor} + 1$$
, for $N \geq 2$ with $T_1 = 1$

Guarantees, Predictions, and Limitations

- Run time depends on two things in data
 - Amount of data
 - Type of data (worst case/average case/best case)
- Worst case performance of algorithms
 - Allows to make guarantees about the run time of programs
 - Function provides the maximum number of times an abstract operation will be performed, *independent of data* * Property 3 for binary serach algorithms
 - Algorithms with lower worst case performance are preferable and are the goal of algorithm analysis