
Principles of Algorithm Analysis

• Key to good understanding of algorithms for practical applications

– We do not analyze every program we write

– Enough to understand basic [standard] algorithms and their performance so that we can select the best algorithm
for the job at hand

• Important for the study of algorithm properties so that we can save time and resources, with reasonable sacrifice in
terms of complexity of coding

• Consider the following three codes

sum ← 0 sum ← 0 sum ← n2

for i ← 1 to n for i ← 1 to n
for j ← 1 to n sum ← sum + n

sum ← sum + 1

– What can you say about their performance? Do they achieve the same goal?

Implementation and Empirical Analysis

• Design, develop, and express algorithms in terms of layers of abstract operations

• Empirical analysis

– Compare the performance of two algorithms by actually running them

– Requires a correct and complete implementation

– Look for resource usage and time required, with the same input data and running on the same machine, with
the same type of environment

∗ Selection of input data is extremely important

∗ You can select random data, actual data, or perverse data

– Code may execute at different speed depending on load on the system (overall resource usage)

– Useful to validate the mathematical analysis

• Pitfalls in algorithm selection

– Ignoring performance characteristics

∗ Addition of a few lines of code (increase in complexity) can endow the code with more intelligence to make
it run faster

– Paying too much attention to performance characteristics

∗ Is it worth spending 10 hours of your time to save 10 milliseconds of run time?

Analysis of algorithms

• It may not be always possible to perform empirical analysis

• Mathematical analysis is more informative and less expensive but can be difficult if we do not know all the mathe-
matical formulas

• The high-level program code may not correctly reflect the performance in terms of machine language

Principles of Algorithm Analysis 8

– The code may compile differently depending on the level of optimization turned on in the compiler

• Identify the abstract operations on which the algorithm is based, and separate analysis from implementation (think
of the abstract operations outlined in selection sort analysis)

• Identify the data for best case comparison, average case comparison, and worst case comparison

– It is possible that the best case data for an algorithm turns out to be the worst case data for a different
algorithm

Growth of Functions

• Simple characterization of algorithm efficiency

• Allows to compare relative performance of alternative algorithms

• Depends on input data size N

– If there are multiple input parameters, we will try to reduce them to a single parameter, expressing some
parameters in terms of the selected parameter

• The performance of algorithm on an input of size N is generally represented in terms of 1, lgN , N , N lgN , N2,
N3, and 2N

– The performance depends heavily on loops, and can be increased by minimizing the inner loops (or work done
in inner loops)

• Asymptotic efficiency of algorithms

– Effect of input size increase without bound on running time of algorithm

Standard Notation and Common Functions

• Monotonicity

– Monotonically increasing – m ≤ n ⇒ f(m) ≤ f(n)

– Monotonically decreasing – m ≤ n ⇒ f(m) ≥ f(n)

– Strictly increasing – m < n ⇒ f(m) < f(n)

– Strictly decreasing – m < n ⇒ f(m) > f(n)

• Floors and ceilings

– floor(x) – greatest integer ≤ x

– ceiling(x) – smallest integer ≥ x

– ∀ real x
x− 1 < bxc ≤ x ≤ dxe < x+ 1

– For any integer n

dn
2
e+ bn

2
c = n

– For any integer n, and integers a 6= 0 and b 6= 0

ddn/ae/be = dn/abe

bbn/ac/bc = bn/abc

Principles of Algorithm Analysis 9

– Floor and ceiling functions are monotonically increasing

• Polynomials

– Polynomial in n of degree d

p(n) =
d∑
i=0

ain
i

a0, a1, . . . , ad are coefficients of polynomial, and ad 6= 0

– Polynomial is asymptotically positive iff ad > 0

– For an asymptotically positive polynomial p(n) of degree d, p(n) = Θ(nd)

• Exponentials

– ∀ real a 6= 0, m and n, we have following identities

∗ a0 = 1
∗ a1 = a

∗ a−1 = 1
a

∗ (am)n = amn

∗ (am)n = (an)m

∗ aman = am+n

– ∀ n and a ≥ 1, an is monotonically increasing in n

– Assume 00 = 1

– ∀ real constants a and b such that a > 1

lim
n→∞

nb

an
= 0

nb = o(an)

Any positive exponential function grows faster than any polynomial

– Base of natural logarithm function e = 2.71828 . . .

– ∀ real x

ex = 1 + x+
x2

2!
+
x3

3!
+ · · · =

∞∑
i=0

xi

i!

– ∀ real x, ex ≥ 1 + x

– When |x| ≤ 1, we have 1 + x ≤ ex ≤ 1 + x+ x2

– When x→ 0, ex can be approximated by

ex = 1 + x+ Θ(x2)

• Logarithms

– Notation
lg n = log2 n (binary logarithm)
lnn = loge n (naturl logarithm)

lgk n = (lgn)k (exponentiation)
lg lg n = lg(lg n) (composition)

Principles of Algorithm Analysis 10

– For all real a > 0, b > 0, c > 0, and n

a = blogb a

logc(ab) = logc a+ logc b
logb an = n logb a
logb a = logc a

logc b

logb
1
a = − logb a

logb a = 1
loga b

alogb n = nlogb a

– When |x| < 1

ln(1 + x) = x− x2

2
+
x3

3
− x4

4
+
x5

5
− · · ·

– For x > −1
x

1 + x
≤ ln(1 + x) ≤ x

– A function f(n) is polylogarithmically bounded if f(n) = lgO(1) n

– limn→∞
lgbn
2a

lgn = limn→∞
lgbn
na = 0

lgbn = o(na)
Any positive polynomial function grows faster than any polylogarithmic function

• Factorials

– n! =
{

1 if n = 0
n · (n− 1)! if n > 0

• Fibonacci numbers

– Definition
F0 = 0
F1 = 1
Fi = Fi−1 + Fi−2, i ≥ 2

– Golden ratio Φ and conjugate Φ̂

∗ Φ = 1+
√

5
2 = 1.61803 . . .

∗ Φ̂ = 1−
√

5
2 = −.61803 . . .

– Fi = Φi−Φ̂i√
5

Asymptotic Notation (including Big-Oh)

• Function with domain as the set of natural numbers

• Allows the suppression of detail when analyzing algorithms

• Allows the description to be accurate while losing little detail

• Convenient to describe the worst case running time function T (n)

• Θ-notation

– Consider a given function g(n)

– Θ(g(n)) – Set of functions

– Θ(g(n)) = {f(n) : ∃ positive constants c1, c2, and n0 | 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) ∀n ≥ n0}.

Principles of Algorithm Analysis 11

– f(n) can be sandwiched between c1g(n) and c2g(n), for sufficiently large n

– Θ(g(n)) is a set

– We write f(n) = Θ(g(n)) to imply f(n) ∈ Θ(g(n))

– For all values of n ≥ n0, f(n) lies at or above c1g(n) and at or below c2g(n)

– ∀n ≥ n0, f(n) is equal to g(n) within a constant factor

– g(n) is an asymptotically tight bound for f(n)

– Every member of Θ(g(n)) must be asymptotically nonnegative

– f(n) must be nonnegative whenever n is sufficiently large

– Consequently, g(n) itself must be asymptotically nonnegative, or else, the set Θ(g(n)) is empty

– Therefore, it is reasonable to assume that every function used with Θ-notation is asymptotically nonnegative

– Prove 1
2n

2 − 3n = Θ(n2)

∗ Determine positive constants c1, c2, and n0 such that

c1n
2 ≤ 1

2
n2 − 3n ≤ c2n2∀n ≥ n0

∗ Dividing by n2 we have

c1 ≤
1
2
− 3
n
≤ c2

∗ c1 ≤ 1
14 for n ≥ 7

∗ c2 ≥ 1
14 for n ≥ 7, but preferably, c2 ≥ 1

2 for arbitrarily large n

– Prove 6n3 6= Θ(n2)
Assume that c2 and n0 exist such that 6n3 ≤ c2n2 ∀n ≥ n0

n ≤ c2
6 , not possible for arbitrarily large n because c2 is a constant

– Since any constant is a degree-0 polynomial, constant function can be expressed as Θ(n0) or Θ(1)

• O-notation

– Asymptotic upper bound

– Upper bound on a function within a constant factor

– Not as strong as Θ-notation

– O(g(n)) = {f(n) : ∃ positive constants c and n0 | 0 ≤ f(n) ≤ cg(n) ∀n ≥ n0}
– f(n) = Θ(g(n)) ⇒ f(n) = O(g(n))

– Θ(g(n)) ⊇ O(g(n))

– O-notation used to describe the running time of algorithm by inspection of algorithm structure

∗ Doubly nested loop structure ⇒ O(n2)
∗ Biggest concern is the terms with the larger exponent, or the leading terms in a polynomial

– Three purposes of O-notation:

1. Bound the error when small terms in mathematical formulas are ignored

2. Bound the error when we ignore parts of a program that contribute a small amount to the total being
analyzed

∗ Such items will include initialization code and/or heuristics which may have a small but significant
effect on the actual run-time

3. Classify algorithms according to upper bounds on their total running times

– Above reasoning allows us to focus on the leading term when comparing running times for algorithms (with
the assumption that precise analysis can be performed, if necessary)

– f(n) ∈ O(g(n)) ≡ f(n) = O(g(n))

Principles of Algorithm Analysis 12

∗ When f(n) is asymptotically large compared to another function g(n), i.e., limN→∞
g(n)
f(n) = 0, f(n) is

taken to mean f(n) +O(g(n))
∗ We sacrifice mathematical precision in favor of clarity, with a guarantee that for large N , the effect of

quantity given by O(g(n)) actually is negligible

· As an example, we take the summation of the series
∑N
i=1 i to be N2

2 rather than N(N+1)
2

∗ Such notation allows us to be both precise and concise when describing the performance of algorithms

• Ω-notation

– Asymptotic lower bound

– Best-case running time

– Ω(g(n)) = {f(n) : ∃ positive constants c and n0 | 0 ≤ cg(n) ≤ f(n) ∀n > n0}
– Best case running time of insertion sort Ω(n)

• Theorem 1 For any two functions f(n) and g(n), f(n) = Θ(g(n)) if and only if f(n) = O(g(n)) and f(n) =
Ω(g(n))

– Useful to prove asymptotically tight bounds from upper and lower bounds

– Running time of insertion sort falls between O(n2) and Ω(n)

• o-notation

– Asymptotic upper bound provided by O-notation may or may not be asymptotically tight

– o-notation denotes an upper bound that is not asymptotically tight

– o(g(n)) = {f(n) : For any constant c > 0, ∃ a constant n0 > 0 | 0 ≤ f(n) < cg(n) ∀n ≥ n0}
– For example, 2n = o(n2), but 2n2 6= o(n2)

– f(n) becomes insignificant compared to g(n) as n approaches infinity, or

lim
n→∞

f(n)
g(n)

= 0

• ω-notation

– ω-notation denotes the asymptotic lower bound that is not tight

– ω(g(n)) = {f(n) : For any constant c > 0, ∃ a constant n0 > 0 | 0 ≤ cg(n) < f(n) ∀n ≥ n0}

– For example, n2

2 = ω(n), but n2

2 6= ω(n2)

– f(n) = ω(g(n)) implies

lim
n→∞

f(n)
g(n)

=∞

– f(n) becomes arbitrarily large relative to g(n) as n approaches infinity.

• Comparison of functions

– f(n) and g(n) are asymptotically positive

– Transitivity

f(n) = Θ(g(n)) ∧ g(n) = Θ(h(n)) ⇒ f(n) = Θ(h(n))
f(n) = O(g(n)) ∧ g(n) = O(h(n)) ⇒ f(n) = O(h(n))
f(n) = Ω(g(n)) ∧ g(n) = Ω(h(n)) ⇒ f(n) = Ω(h(n))
f(n) = o(g(n)) ∧ g(n) = o(h(n)) ⇒ f(n) = o(h(n))
f(n) = ω(g(n)) ∧ g(n) = ω(h(n)) ⇒ f(n) = ω(h(n))

– Reflexivity

Principles of Algorithm Analysis 13

f(n) = Θ(f(n))
f(n) = O(f(n))
f(n) = Ω(f(n))

– Symmetry

f(n) = Θ(g(n)) if and only if g(n) = Θ(f(n))

– Transpose symmetry

f(n) = O(g(n)) if and only if g(n) = Ω(f(n))
f(n) = o(g(n)) if and only if g(n) = ω(f(n))

– Analogy with two real numbers a and b

f(n) = O(g(n)) ≈ a ≤ b
f(n) = Ω(g(n)) ≈ a ≥ b
f(n) = Θ(g(n)) ≈ a = b
f(n) = o(g(n)) ≈ a < b
f(n) = ω(g(n)) ≈ a > b

Summations – Formulas and Properties

• Infinite series
∞∑
i=1

ai = a1 + a2 + · · · = lim
n→∞

n∑
i=1

ai

• Divergent series – no limit

• Convergent series – some limit

• Linearity

– For any real number c and any finite sequences a1, a2, . . . , an and b1, b2, . . . , bn

n∑
i=1

(cai + bi) = c
n∑
i=1

ai +
n∑
i=1

bi

– Usage in growth estimation
n∑
i=1

Θ(f(i)) = Θ

(
n∑
i=1

f(i)

)
• Arithmetic series

n∑
i=1

i = 1 + 2 + 3 + · · ·+ n

=
1
2
n(n+ 1)

= Θ(n2)

• Geometric series

– For real x 6= 1

n∑
i=0

xi = 1 + x+ x2 + x3 + · · ·+ xn

=
xn+1 − 1
x− 1

Principles of Algorithm Analysis 14

– For |x| < 1
n∑
i=0

xi =
1

1− x

• Harmonic series

– For n > 0, the nth harmonic number is

Hn = 1 +
1
2

+
1
3

+
1
4

+ · · ·+ 1
n

=
n∑
i=1

1
i

= lnn+O(1)

• Telescoping series

– For any sequence a0, a1, . . . , an
n∑
i=1

(ai − ai−1) = an − a0

n−1∑
i=0

(ai − ai+1) = a0 − an

– Example

n−1∑
i=1

1
i(i+ 1)

=
n−1∑
i=0

(
1
i
− 1
i+ 1

)
= 1− 1

n

• Products

– Finite product
n∏
i=1

ai

– Convert a formula with a product to one with summation

lg

(
n∏
i=1

ai

)
=

n∑
i=1

lg ai

Bounding Summations

• Mathematical induction

– Prove that
n∑
i=1

i =
1
2
n(n+ 1)

Base case: For n = 1, trivially proven
Inductive assumption: True for all values of n such that 1 ≤ n ≤ k.

Principles of Algorithm Analysis 15

Induction:

k+1∑
i=1

i =
k∑
i=1

i+ (k + 1)

=
1
2
k(k + 1) + (k + 1)

=
1
2

(k + 1)(k + 2)

– Use of induction to show a bound.
Prove that

∑n
i=0 3i is O(3n);

Or, for any constant c
n∑
i=0

3i ≤ c · 3n

Base case: n = 0
0∑
i=0

3i = 1 ≤ c, forc ≥ 1

Inductive assumption: True for all values of n such that 1 ≤ n ≤ k.
Induction:

k+1∑
i=0

3i =
k∑
i=0

3i + 3k+1

≤ c3k + 3k+1

=
(

1
3

+
1
c

)
c3k+1

≤ c3k+1 ∀c ≤ 3
2

– Use of asymptotic notation to prove a bound
Fallacious proof for

n∑
i=1

i = O(n)

Base case: n = 1. Trivial proof
Inductive assumption: True for all values of n such that 1 ≤ n ≤ k.
Induction:

k+1∑
i=1

i =
k∑
i=1

i+ (k + 1)

= O(k) + (k + 1) ⇐ error

= O(k + 1)

• Bounding the terms

– Upper bound on arithmetic series

n∑
i=1

i ≤
n∑
i=1

n

= n2

Principles of Algorithm Analysis 16

– For a series
∑n
i=1 ai, let amax = max1≤i≤n ai. Then,

n∑
i=1

ai ≤ namax

– Geometric series

∗ For a series,
∑n
i=0 ai, let ai+1

ai
≤ r for all i ≥ 0, where r < 1

Sum can be bounded by an infinite decreasing geometric series, since ai ≤ a0r
i

n∑
i=0

ai ≤
∞∑
i=0

a0r
i

= a0

∞∑
i=0

ri

= a0
1

1− r

∗ Bound the summation
∞∑
i=1

i

3i

First term = 1
3

Ratio of consecutive terms

(i+ 1)/3i+1

i/3i
=

1
3
· i+ 1

i

≤ 2
3
∀i ≥ 1

Each term is bounded above by
(

1
3

) (
2
3

)i
∞∑
i=1

i

3i
≤

∞∑
i=1

1
3

(
2
3

)i
=

1
3
· 1

1− 2
3

= 1

∗ A common pitfall

∞∑
i=1

1
i

= lim
n→∞

n∑
i=1

1
i

= lim
n→∞

Θ(lgn)
= ∞

• Splitting summations

– Express the series as the sum of two or more summations

– Lower bound of the series
∑n
i=1 i

– Assume that n is even

n∑
i=1

i =
n/2∑
i=1

i+
n∑

i=n/2+1

i

Principles of Algorithm Analysis 17

≥
n/2∑
i=1

0 +
n∑

i=n/2+1

n

2

≥
(n

2

)2

= Ω(n2)

– If each term ai in a summation
∑n
i=0 ai is independent of n, then, for any constant i0 > 0

n∑
i=0

ai =
i0−1∑
i=0

ai +
n∑

i=i0

ai

= Θ(1) +
n∑

i=i0

ai

– Find an asymptotic upper bound on
∞∑
i=0

i2

2i

Observe that the ratio of consecutive terms, for i ≥ 3, is

(i+ 1)2/2i+1

i2/2i
=

(i+ 1)2

2i2

≤ 8
9

The summation can be split into

∞∑
i=0

i2

2i
=

2∑
i=0

i2

2i
+
∞∑
i=3

i2

2i

≤ O(1) +
9
8

∞∑
i=0

(
8
9

)i
= O(1)

since the second summation is a decreasing geometric series.

– Find the asymptotic bound on the harmonic series

Hn =
n∑
i=1

1
i

Split the range 1 to n into blg nc pieces and upper bound the contribution of each piece by 1.

n∑
i=1

1
i
≤

blgnc∑
i=0

2i−1∑
j=0

1
2i + j

≤
blgnc∑
i=0

2i−1∑
j=0

1
2i

≤
blgnc∑
i=0

1

≤ lg n+ 1

Principles of Algorithm Analysis 18

Recurrences

• Recursively decompose a large problem into a set of smaller problems

– Decomposition is directly reflected in analysis

– Run-time determined by the size and number of subproblems to be solved in addition to the time required for
decomposition

• An equation or inequality that describes a function in terms of its value on smaller inputs

– Also known as recurrence relation

– Recurrence can be solved to derive the running time

• Example, mergesort recurrence

Tn =
{

Θ(1) if n = 1
2Tn

2
+ Θ(n) if n > 1

Solution for the mergesort recurrence: Θ(n lg n)

• You can ignore extreme details like floor, ceiling, and boundary in recurrence description.

Substitution Method

• Guess the form of solution and use induction to find constants

• Determine upper bound on the recurrence
Tn = 2Tbn2 c + n

Guess the solution as: Tn = O(n lg n)
Now, prove that Tn ≤ cn lg n for some c > 0
Assume that the bound holds for

⌊
n
2

⌋
Substituting into the recurrence

Tn ≤ 2(c
⌊n

2

⌋
lg(
⌊n

2

⌋
)) + n

≤ cn lg
(n

2

)
+ n

= cn lg n− cn lg 2 + n

= cn lg n− cn+ n

≤ cn lg n ∀c ≥ 1

Boundary condition: Let the only bound be T1 = 1

6 ∃c | T1 ≤ c1 lg 1 = 0

Problem overcome by the fact that asymptotic notation requires us to prove

Tn ≤ cn lg n for n ≥ n0

Include T2 and T3 as boundary conditions for the proof

T2 = 4 T3 = 5

Choose c such that T2 ≤ c2 lg 2 and T3 ≤ c3 lg 3
True for any c ≥ 2

• Making a good guess

Principles of Algorithm Analysis 19

– If a recurrence is similar to a known recurrence, it is reasonable to guess a similar solution

Tn = 2Tbn2 c + n

If n is large, difference between Tbn2 c and Tbn2 c+17 is relatively small

– Prove upper and lower bounds on a recurrence and reduce the range of uncertainty.
Start with a lower bound of Tn = Ω(n) and an initial upper bound of Tn = O(n2). Gradually lower the upper
bound and raise the lower bound to get asymptotically tight solution of Tn = Θ(n lg n)

• Pitfall

– Tn = 2Tbn2 c + n
Assume inductively that Tn ≤ cn implying that Tn = O(n)

Tn ≤ 2c
⌊n

2

⌋
+ n

≤ cn+ n

= O(n) ⇐ wrong

We haven’t proved the exact form of inductive hypothesis Tn ≤ cn

• Changing variables

– Consider the recurrence
Tn = 2Tb√nc + lg n

Let m = lg n.
T2m = 2T

2
m
2

+m

Rename Sm = T2m

Sm = 2Sm
2

+m

Solution for the recurrence: Sm = m lgm
Change back from Sm to Tn

Tn = T2m = Sm = O(m lgm) = O(lg n lg lg n)

The iteration method

• Also known as telescoping method

• No guessing but more algebra, by applying the recurrence to itself (on the right hand side of the equation)

• Expand the recurrence and express it as summation dependent on only n and initial conditions

• Recurrence
Tn = 3Tbn4 c + n

Tn = n+ 3Tbn4 c

= n+ 3(
⌊n

4

⌋
+ 3Tb n16 c)

= n+ 3(bn
4
c+ 3(b n

16
c+ 3Tb n64 c))

= n+ 3bn
4
c+ 9b n

16
c+ 27Tb n64 c

ith term is given by 3ib n4i c
Bound n = 1 when b n4i c = 1 or i > log4 n

Principles of Algorithm Analysis 20

Bound b n4i c ≤
n
4i

Decreasing geometric series

Tn ≤ n+
3
4
n+

9
16
n+

27
64
n+ · · ·+ 3log4 nΘ(1)

≤ n
∞∑
i=0

(
3
4

)i
+ Θ(nlog43) 3log4 n = nlog43

= 4n+ o(n) log4 3 < 1⇒ Θ(nlog43) = o(n)
= O(n)

Focus on

– Number of iterations to reach boundary condition

– Sum of terms arising from each level of iteration

• Recursion trees

– Recurrence
Tn = 2Tn

2
+ n2

Assume n to be an exact power of 2.

Tn = n2 + 2Tn
2

= n2 + 2
((n

2

)2

+ 2Tn
4

)
= n2 +

n2

2
+ 4

((n
4

)2

+ 2Tn
8

)
= n2 +

n2

2
+
n2

4
+ 8

((n
8

)2

+ 2T n
16

)
= n2 +

n2

2
+
n2

4
+
n2

8
+ · · ·

= n2(1 +
1
2

+
1
4

+
1
8

+ · · ·)

= Θ(n2)

The values above decrease geometrically by a constant factor.

– Recurrence
Tn = Tn

3
+ T 2n

3
+ n

Longest path from root to a leaf

n→
(

2
3

)
n→

(
2
3

)2

n→ · · · 1

(
2
3

)k
n = 1 when k = log 3

2
n, k being the height of the tree

Upper bound to the solution to the recurrence – n log 3
2
n, or O(n log n)

The Master Method

• Suitable for recurrences of the form
Tn = aTn

b
+ f(n)

where a ≥ 1 and b > 1 are constants, and
f(n) is an asymptotically positive function

Principles of Algorithm Analysis 21

• For mergesort, a = 2, b = 2, and f(n) = Θ(n)

• Master Theorem

Theorem 2 Let a ≥ 1 and b > 1 be constants, let f(n) be a function, and let Tn be defined on the nonnegative
integers by the recurrence

Tn = aTn
b

+ f(n)

where we interpret n
b to mean either

⌊
n
b

⌋
or
⌈
n
b

⌉
. Then Tn can be bounded asymptotically as follows

1. If f(n) = O(nlogb a−ε) for some constant ε > 0, then Tn = Θ(nlogb a)

2. If f(n) = Θ(nlogb a), then Tn = Θ(nlogb a lg n)

3. If f(n) = Ω(nlogb a+ε) for some constant ε > 0, and if af
(
n
b

)
≤ cf(n) for some constant c < 1 and all

sufficiently large n, then Tn = Θ(f(n))

– In all three cases, compare f(n) with nlogb a

– Solution determined by the larger of the two

∗ Case 1: nlogb a > f(n)
Solution Tn = Θ(nlogb a)
∗ Case 2: nlogb a ≈ f(n)

Multiply by a logarithmic factor
Solution Tn = Θ(nlogb a lg n) = Θ(f(n) lgn)
∗ Case 3: f(n) > nlogb a

Solution Tn = Θ(f(n))

– In case 1, f(n) must be asymptotically smaller than nlogb a by a factor of nε for some constant ε > 0

– In case 3, fn must be polynomially larger than nlogb a and satisfy the “regularity” condition that af(nb) ≤ cf(n)

• Using the master method

– Recurrence
Tn = 9Tn

3
+ n

a = 9, b = 3, f(n) = n
nlogb a = nlog3 9 = Θ(n2)
f(n) = O(nlog3 9−ε), where ε = 1
Apply case 1 of master theorem and conclude Tn = Θ(n2)

– Recurrence
Tn = T 2n

3
+ 1

a = 1, b = 3
2 , f(n) = 1

nlogb a = n
log 3

2
1

= n0 = 1
f(n) = Θ(nlogb a) = Θ(1)
Apply case 2 of master theorem and conclude Tn = Θ(lgn)

– Recurrence
Tn = 3Tn

4
+ n lg n

a = 3, b = 4, f(n) = n lg n
nlogb a = nlog4 3 = O(n0.793)
f(n) = Ω(nlog4 3+ε), where ε ≈ 0.2
Apply case 3, if regularity condition holds for f(n)
For large n, af(nb) = 3n4 lg(n4) ≤ 3

4n lg n = cf(n) for c = 3
4

Therefore, Tn = Θ(n lg n)

Principles of Algorithm Analysis 22

– Recurrence
Tn = 2Tn

2
+ n lg n

Recurrence has proper form – a = 2, b = 2, f(n) = n lg n and nlogb a = n
f(n) = n lg n is asymptotically larger than nlogb = n but not polynomially larger

Ratio f(n)

nlogba
= n lgn

n = lgn is asymptotically less than nε for any positive constant ε
Recurrence falls between case 2 and case 3

Examples of algorithm analysis

• Sequential search, or linear search

Property 1 Sequential search examines N numbers for each unsuccessful search and about N/2 numbers for each
successful search on the average.

Property 2 Sequential search in an ordered table examines N numbers for each search in the worst case and about
N/2 numbers for each search on the average.

• Consider the effect of M transactions and N entries in the table; with a requirement of c µsec per comparison

• Binary search

Property 3 Binary search never examines more than blgNc+ 1 numbers.

Easily showed by the recurrence for binary search:

TN ≤ TbN/2c + 1, for N ≥ 2 with T1 = 1

Guarantees, Predictions, and Limitations

• Run time depends on two things in data

– Amount of data

– Type of data (worst case/average case/best case)

• Worst case performance of algorithms

– Allows to make guarantees about the run time of programs

– Function provides the maximum number of times an abstract operation will be performed, independent of data

∗ Property 3 for binary serach algorithms

– Algorithms with lower worst case performance are preferable and are the goal of algorithm analysis

