Principles of Algorithm Analysis

e Key to good understanding of algorithms for practical applications

— We do not analyze every program we write

— Enough to understand basic [standard] algorithms and their performance so that we can select the best algorithm
for the job at hand

e Important for the study of algorithm properties so that we can save time and resources, with reasonable sacrifice in
terms of complexity of coding

e Consider the following three codes

sum «— O sum < O sum <« 7
for i <~ 1 ton for i < 1 ton
for j < 1 ton sum < sum + n

sum «— sum + 1

— What can you say about their performance? Do they achieve the same goal?

Implementation and Empirical Analysis

e Design, develop, and express algorithms in terms of layers of abstract operations

e Empirical analysis

Compare the performance of two algorithms by actually running them

Requires a correct and complete implementation

Look for resource usage and time required, with the same input data and running on the same machine, with
the same type of environment

x Selection of input data is extremely important
* You can select random data, actual data, or perverse data

— Code may execute at different speed depending on load on the system (overall resource usage)

— Useful to validate the mathematical analysis
e Pitfalls in algorithm selection

— lgnoring performance characteristics

* Addition of a few lines of code (increase in complexity) can endow the code with more intelligence to make
it run faster

— Paying too much attention to performance characteristics

x Is it worth spending 10 hours of your time to save 10 milliseconds of run time?

Analysis of algorithms

e It may not be always possible to perform empirical analysis

e Mathematical analysis is more informative and less expensive but can be difficult if we do not know all the mathe-
matical formulas

e The high-level program code may not correctly reflect the performance in terms of machine language

Principles of Algorithm Analysis 8

— The code may compile differently depending on the level of optimization turned on in the compiler

e Identify the abstract operations on which the algorithm is based, and separate analysis from implementation (think
of the abstract operations outlined in selection sort analysis)

e Identify the data for best case comparison, average case comparison, and worst case comparison

— It is possible that the best case data for an algorithm turns out to be the worst case data for a different
algorithm

Growth of Functions

Simple characterization of algorithm efficiency

Allows to compare relative performance of alternative algorithms

Depends on input data size IV

— If there are multiple input parameters, we will try to reduce them to a single parameter, expressing some
parameters in terms of the selected parameter

The performance of algorithm on an input of size IV is generally represented in terms of 1, IgN, N, Nlg N, N2,
N3, and 2V

— The performance depends heavily on loops, and can be increased by minimizing the inner loops (or work done
in inner loops)

Asymptotic efficiency of algorithms

— Effect of input size increase without bound on running time of algorithm

Standard Notation and Common Functions

e Monotonicity

— Monotonically increasing —m <n = f(m)

fn)
fn)

<
— Monotonically decreasing —m <n = f(m) >

— Strictly increasing — m <n = f(m) < f(n)

Strictly decreasing —m <n = f(m) > f(n)

e Floors and ceilings

floor(x) — greatest integer < x
— ceiling(x) — smallest integer > x

— Vreal
r—1<|z]<z<|z]<z+1

For any integer n

— For any integer n, and integers a # 0 and b # 0
[[n/a]/b] = [n/ab]
[[n/a]/b] = [n/ab]

Principles of Algorithm Analysis

— Floor and ceiling functions are monotonically increasing

e Polynomials

— Polynomial

in n of degree d

d
p(n) = Z a;n’
i=0

ag, a1, . ..,aq are coefficients of polynomial, and ag # 0

— Polynomial

is asymptotically positive iff ag > 0

— For an asymptotically positive polynomial p(n) of degree d, p(n) = ©(n?)

e Exponentials

— Vreal a # 0, m and n, we have following identities

x a¥ =1
xa'=a

—1_1
* a = a
* (aﬂL>7L — (a'n)'m
* a™g" = gmt"

— VYV nanda>1, a™ is monotonically increasing in n

— Assume (0°

=1
— V real constants a and b such that a > 1 .
lim — =0
n—oo q"
nb = o(a™)

Any positive exponential function grows faster than any polynomial

— Base of natural logarithm function e = 2.71828. ..

— Vreal x

" 2?2 a3 v
e =1+$+§+§+"':ZOE

—Vrealz, e*>1+2x
— When |z| <1, we have 1 + 2 < e <1+ 2 + 22

— When z —

e Logarithms

— Notation

0, e” can be approximated by

e’ =1+x+0(2?)

lgn = logyn (binary logarithm)
Inn = log,n (naturl logarithm)
lg"n = (lgn)* (exponentiation)
(

lglgn = lg(lgn) (composition)

Principles of Algorithm Analysis

— Forall real a > 0,b>0,c>0, and n

a = blOgb a
log.(ab) = log.a+ log.b
log,a™ = mnlogya
1 _ log.a
ogpa = log, b
log, 2 = —log,a
logya = 10g1a 5
alogbn _ nlOgb a
— When |z| < 1
22 2 ozt 2b
In(1 T A T
altz)=e-S5+5-7+73
— Forz > —1 .
Ttz <ln(l+4+z) <z
— A function f(n) is polylogarithmically bounded if f(n) = 159 p,
. | bn . I bn
= lim;, oo Qalzm = lim, oo %a =0

Ig’n = o(n%)
Any positive polynomial function grows faster than any polylogarithmic function

e Factorials
| 1 ifn=0
—nl= .
n-(n—1" ifn>0
e Fibonacci numbers
— Definition
Fy=0
Fi=1

Fi=F_1+F_2 i>2

— Golden ratio ® and conjugate &
x & =155 —1,61803...

x & =125 — _61803...

Asymptotic Notation (including Big-Oh)

e Function with domain as the set of natural numbers

Allows the suppression of detail when analyzing algorithms

e Allows the description to be accurate while losing little detail

Convenient to describe the worst case running time function T'(n)
e O-notation

— Consider a given function g(n)
— O(g(n)) — Set of functions
— O(g(n)) = {f(n) : 3 positive constants ¢y, c2, and ng | 0 < ¢1g9(n) < f(n) < cag(n) Yn > ng}.

Principles of Algorithm Analysis 11

— f(n) can be sandwiched between c¢1g(n) and cag(n), for sufficiently large n

— O(g(n)) is a set

— We write f(n) = O(g(n)) to imply f(n) € O(g(n))

— For all values of n > ng, f(n) lies at or above ¢1g(n) and at or below cag(n)

— Vn > ng, f(n) is equal to g(n) within a constant factor

— g(n) is an asymptotically tight bound for f(n)

— Every member of ©(g(n)) must be asymptotically nonnegative

— f(n) must be nonnegative whenever n is sufficiently large

— Consequently, g(n) itself must be asymptotically nonnegative, or else, the set ©(g(n)) is empty
— Therefore, it is reasonable to assume that every function used with ©-notation is asymptotically nonnegative
— Prove 3n? — 3n = O(n?)

x Determine positive constants ¢y, ¢, and ng such that

cln2 <Zp?-3n< CQnQVn > ng

N | =

* Dividing by n? we have

S|w
IN
Q
V)

N | =

* 01 < 15 forn >7
* Cg > ﬁ for n > 7, but preferably, co > % for arbitrarily large n

— Prove 6n3 # ©(n?)
Assume that ¢s and ng exist such that 6n3 < cyn? Vn > ng
n < &, not possible for arbitrarily large n because c; is a constant

— Since any constant is a degree-0 polynomial, constant function can be expressed as ©(n°) or O(1)
e (O-notation

— Asymptotic upper bound

— Upper bound on a function within a constant factor

— Not as strong as ©-notation

— O(g(n)) = {f(n) : 3 positive constants ¢ and ng |0 < f(n) < cg(n) ¥n > ng}

= f(n) =0(g(n)) = f(n) =0(g(n))

— O(g(n)) 2 O(g(n))

— O-notation used to describe the running time of algorithm by inspection of algorithm structure

* Doubly nested loop structure = O(n?)
x Biggest concern is the terms with the larger exponent, or the leading terms in a polynomial

— Three purposes of O-notation:

1. Bound the error when small terms in mathematical formulas are ignored

2. Bound the error when we ignore parts of a program that contribute a small amount to the total being
analyzed

* Such items will include initialization code and/or heuristics which may have a small but significant
effect on the actual run-time
3. Classify algorithms according to upper bounds on their total running times

— Above reasoning allows us to focus on the leading term when comparing running times for algorithms (with
the assumption that precise analysis can be performed, if necessary)

= f(n) € O(g(n)) = f(n) = O(g(n))

Principles of Algorithm Analysis 12

* When f(n) is asymptotically large compared to another function g(n), i.e., limy_ % =0, f(n)is

taken to mean f(n)+ O(g(n))
x We sacrifice mathematical precision in favor of clarity, with a guarantee that for large IV, the effect of
quantity given by O(g(n)) actually is negligible

Z

- As an example, we take the summation of the series Zfilz to be NTZ rather than N(NTH)

* Such notation allows us to be both precise and concise when describing the performance of algorithms
e ()-notation

— Asymptotic lower bound
— Best-case running time
— Q(g(n)) ={f(n) : 3 positive constants ¢ and ng | 0 < cg(n) < f(n) Vn > ng}

— Best case running time of insertion sort Q(n)

e Theorem 1 For any two functions f(n) and g(n), f(n) =O(g(n)) if and only if f(n) = O(g(n)) and f(n) =
Q(g(n))

— Useful to prove asymptotically tight bounds from upper and lower bounds

— Running time of insertion sort falls between O(n?) and 2(n)

e o-notation

Asymptotic upper bound provided by O-notation may or may not be asymptotically tight

o-notation denotes an upper bound that is not asymptotically tight

o(g(n)) = {f(n) : For any constant ¢ > 0, Ja constantng > 0|0 < f(n) < cg(n) Vn > ng}
— For example, 2n = o(n?), but 2n? # o(n?)

— f(n) becomes insignificant compared to g(n) as n approaches infinity, or

f(n)

n—oc g(n)
e w-notation
— w-notation denotes the asymptotic lower bound that is not tight
— w(g(n)) = {f(n) : For any constant ¢ > 0, Ja constantng > 0|0 < cg(n) < f(n)¥n > ng}
— For example, ”72 =w(n), but % # w(n?)
~ f(n) = w(g(n)) implies
f(n)

lim —= =
n—oo g(n)

— f(n) becomes arbitrarily large relative to g(n) as n approaches infinity.
e Comparison of functions

— f(n) and g(n) are asymptotically positive

— Transitivity
f(n)=0(g(n)) A g(n)=0(n(n) = f(n)=0(h(n))
f(n)=0(g(n)) A g(n)=0((n) = f(n)=0(h(n))
f(n)=9Qg(n) A gn)=Qn0) = f(n)=92hn)
fn)=o(g(n)) A g(n)=o(h(n)) = [f(n)=o(h(n))
fln) =wlgn)) A gn)=wh(n) = f(n)=wh(n)

— Reflexivity

Principles of Algorithm Analysis

fn) = ©(f(n)
fn) = O(f(n))
fn) = Q(f(n))

— Symmetry

— Transpose symmetry

f(n) =O(g(n)) ifandonlyif g(n)=Q(f(n))
f(n) =o(g(n)) ifandonlyif g(n)=w(f(n))

— Analogy with two real numbers a and b

f(n)=0(g(n)) =~ a<b
fn) =Q(g(n)) ~ a=b
fn)=0(g(n)) = a=b
f(n) =o(g(n)) =~ a<b
fn) =wlg(n)) ~ a>b

Summations — Formulas and Properties

e Infinite series

oo n
g a;=a;+azx+---= lim E a;

n—00 4 7

i—

i=1
e Divergent series — no limit

e Convergent series — some limit

e Linearity
— For any real number ¢ and any finite sequences ay,as,...,a, and by,ba,... b,
n n n
Z(cai +b;) = cZai + Zbi
=1 =1 =1

— Usage in growth estimation
Y o) =0 (Z f(i)>
i=1 i=1

e Arithmetic series

i = 1+42+43+-+n
i=1
Sl +1)
= —n(n
2
= G)(nQ)
o Geometric series
— Forreal z # 1
gt = l4+a+2z®+2° 4+ +a"
1=0
2"t — 1

rz—1

Principles of Algorithm Analysis 14

— For |z] < 1
n . 1
= 1—z
=0
e Harmonic series
— For n > 0, the nth harmonic number is
1 1 1
H, = 1l+-4=-4+=-+4--+-=
+ 5 + 3 + 1 + +

I
-
S

I
=
:P—‘
I~
S
=

e Telescoping series

— For any sequence ag,a1,...,a,
n
Z(ai —ai_1) = an —agp
=1
n—1
> (ai —ait1) = ag — an
i=0
— Example
n—1 1 B n—1 (1 1)
—i(i+1) —\i i+l
1
= 1 _ —
n
e Products

— Finite product

— Convert a formula with a product to one with summation

n n
lg <H ai> = Zlgai
i=1 i=1

Bounding Summations

e Mathematical induction

— Prove that

Base case: For n =1, trivially proven
Inductive assumption: True for all values of n such that 1 <n < k.

Principles of Algorithm Analysis

Induction:

S
[
E

i+ (k+1)

N
Il
-
©
Il
-

k(k+1)+ (k+1)

(k+1)(k+2)

N H N

— Use of induction to show a bound.
Prove that)7 3% is O(3");
Or, for any constant ¢

Zn:3igc-3"
1=0

Base case: n =0

0
ZSizl < ¢ forc>1
i=0
Inductive assumption: True for all values of n such that 1 <n < k.
Induction:
k+1 k
S# = Y
i=0 i=0
< 3k 43kt
1 1
— - - 3k+1
(5+2)c
< 3l ve< g

— Use of asymptotic notation to prove a bound
Fallacious proof for

Zi:O(n)

Base case: n = 1. Trivial proof
Inductive assumption: True for all values of n such that 1 <n < k.
Induction:

k+1 k

Yoi= > it (k+1)

i=1 i=1
= O(k)+ (k+1) <« error
= O(k+1)

e Bounding the terms

— Upper bound on arithmetic series

N
N

Principles of Algorithm Analysis 16

— For a series)" | a;, let amax = maxi<;<, a;. Then,

n
g a; S NAamax
i=1

— Geometric series

* For a series, Z?:o a;, let % <rforalli>0, wherer <1
Sum can be bounded by an infinite decreasing geometric series, since a; < agr’

n oo
E a; < g aor’
i=0 i=0

oo
O
i=0
1
= a
0 1—r
* Bound the summation -
)
>3
i=1
First term = %
Ratio of consecutive terms
(i4+1)/3*t 1 i41
i/3 3
2
< - Vi>1
S 3 >

Wl
N—
—~
win
SN—

S

Each term is bounded above by (

(]
@ =
INA
Nk
wl =
R
Wl o
~—

i=1 i=1
1 1
= Z. 5
3 1—-3%
=1
* A common pitfall
o0 n
1 1
- = lim -
.7 = [JmD -
i=1 i=1
= lim O(Ign)
n—oo
= o
e Splitting summations
— Express the series as the sum of two or more summations
— Lower bound of the series > i
— Assume that n is even
n n/2 n

Zi:;i—&—Zi

i=1 i=n/2+1

Principles of Algorithm Analysis 17

n/2 n
- Sos S
1=1 i1=n/2+1
nA 2
> (3)
2

= Q(n?

— If each term a; in a summation E?:o a; is independent of n, then, for any constant ig > 0

n 10—1
Yoo = Sarda
1=0 =10
:@m+2%
i=ig
— Find an asymptotic upper bound on
s
22
1=0
Observe that the ratio of consecutive terms, for i > 3, is
(i+1)2/2F0 (i41)?
i2 /21 22
8
< _
-9

The summation can be split into

3.

o) Z 2 i 00
Dy = Dyt
i=0 i=0 i=3

o0
2

= 0(1)

since the second summation is a decreasing geometric series.

— Find the asymptotic bound on the harmonic series
1
H -
R

Split the range 1 to n into |lgn] pieces and upper bound the contribution of each piece by 1.

n 1 llgn] 2¢—1
- <
27 < Z
i=1 =0 j=
llgn]2'—1 1
< —
> 9
=0 7=0
llg]

7

IN

@
S
—+
[t

Principles of Algorithm Analysis 18

Recurrences

e Recursively decompose a large problem into a set of smaller problems

— Decomposition is directly reflected in analysis

— Run-time determined by the size and number of subproblems to be solved in addition to the time required for
decomposition

e An equation or inequality that describes a function in terms of its value on smaller inputs

— Also known as recurrence relation
— Recurrence can be solved to derive the running time
e Example, mergesort recurrence
T O(1) ifn=1
e QT% +06(n) ifn>1

Solution for the mergesort recurrence: ©(nlgn)

e You can ignore extreme details like floor, ceiling, and boundary in recurrence description.

Substitution Method

e Guess the form of solution and use induction to find constants

e Determine upper bound on the recurrence
T, = 2T[%J +n

Guess the solution as: T,, = O(nlgn)

Now, prove that T,, < cnlgn for some ¢ > 0
Assume that the bound holds for L%J
Substituting into the recurrence

n n
T, < 2c|5|(5]
< |]| 2] +n
n
< cnlg(§)—|—n
= cnlgn—cnlg2+n
cnlgn —cn+n
< cnlgn Ve>1

Boundary condition: Let the only bound be 77 =1
Ac | Ty <cllgl=0
Problem overcome by the fact that asymptotic notation requires us to prove
T, < cnlgn forn > ng
Include T5 and T35 as boundary conditions for the proof
To,=4 T5=5

Choose ¢ such that T < ¢21g2 and T3 < ¢31g 3
True for any ¢ > 2

e Making a good guess

Principles of Algorithm Analysis 19

— If a recurrence is similar to a known recurrence, it is reasonable to guess a similar solution
T, = QTL%J +n

If n is large, difference between Tz | and T » |7 is relatively small

— Prove upper and lower bounds on a recurrence and reduce the range of uncertainty.
Start with a lower bound of T}, = Q(n) and an initial upper bound of T,, = O(n?). Gradually lower the upper
bound and raise the lower bound to get asymptotically tight solution of T;, = O(nlgn)

o Pitfall

Assume inductively that T,, < cn implying that T,, = O(n)

T, < 20{%J+7’L
< en+n

= O(n) <« wrong
We haven't proved the exact form of inductive hypothesis T}, < cn
e Changing variables

— Consider the recurrence

Let m = Ign.
TQm = QTQ% +m

Rename S, = Tom
Sy = QS% +m

Solution for the recurrence: S, = mlgm
Change back from S,,, to T,

T =Tom = S, = O(mlgm) = O(lgnlglgn)

The iteration method

e Also known as telescoping method
e No guessing but more algebra, by applying the recurrence to itself (on the right hand side of the equation)
e Expand the recurrence and express it as summation dependent on only n and initial conditions
e Recurrence
T, = 3TL%J +n
T = n+3Tz
| +3114)

n

1
T 3(L%J + S(L%J +3T 1))

= n+3({

n

4

n

= n+3[J+9|_16J+27TL&J

ith term is given by 3| 7 |

Bound n =1 when [] =1 ori >log,n

Principles of Algorithm Analysis

Bound || < &
Decreasing geometric series
3 9
T, < n+ Zn—i— 4 —n4 -+ 38mQ(1)

310g4 n __ nlog43

IA

3

NgE
7N\
=~ w
N——
|

o

3&4

8

I

N

= 4n+o(n) log, 3 < 1 = O(nl°93) = o(n)

Focus on

— Number of iterations to reach boundary condition

— Sum of terms arising from each level of iteration
e Recursion trees

— Recurrence

Assume n to be an exact power of 2.

T, = n’+2Ty

The values above decrease geometrically by a constant factor.

— Recurrence
T, = T% + T;Tn +n

2 2\ 2 .

(%)k n =1 when k =logz n, k being the height of the tree

Longest path from root to a leaf

Upper bound to the solution to the recurrence — nlog% n, or O(nlogn)

The Master Method
e Suitable for recurrences of the form
Tn = aT% + f(n)

where @ > 1 and b > 1 are constants, and
f(n) is an asymptotically positive function

20

Principles of Algorithm Analysis 21

e For mergesort, a =2, b =2, and f(n) = ©(n)

o Master Theorem

Theorem 2 Leta > 1 and b > 1 be constants, let f(n) be a function, and let T,, be defined on the nonnegative
integers by the recurrence
T, = aT% + f(n)

where we interpret 3 to mean either L%J or (%] Then T, can be bounded asymptotically as follows

1. If f(n) = O(n'°8»2=<) for some constant € > 0, then T,, = ©(n'°&)
2.]f f(n) = @(nlogb a>7 then Tn — @(nlogb a lg n)

3. If f(n) = Q(n'°& 7€) for some constant € > 0, and if af (%) < c¢f(n) for some constant ¢ < 1 and all
sufficiently large n, then T,, = O(f(n))

— In all three cases, compare f(n) with n!°8 @
— Solution determined by the larger of the two
x Case 1: n'8v@ > f(n)
Solution T}, = ©(n'°8» %)
* Case 2: nl°8v® ~ f(n)
Multiply by a logarithmic factor
Solution T}, = ©(n'°&¢1gn) = O(f(n)lgn)
* Case 3: f(n) > nlogv@
Solution T;, = ©(f(n))
— In case 1, f(n) must be asymptotically smaller than n'°8 @ by a factor of n¢ for some constant ¢ > 0

— In case 3, f,, must be polynomially larger than n'°% @ and satisfy the “regularity” condition that af(%) < cf(n)

e Using the master method

— Recurrence
T, = QT% +n
a=9,b=3, f(n)=n
nlogb a _ nlog3 9 _ @(TLQ)
f(n) = O(n'°8:9=¢), where € = 1
Apply case 1 of master theorem and conclude T}, = ©(n?)

— Recurrence

a:l,b:%, fln)=1
nlogy @ — nlog% fop0=1
F(n) = ©(ns %) = (1)
Apply case 2 of master theorem and conclude T;, = O(Ign)
— Recurrence
T, =312 +nlgn
a=3,b=4, f(n)=nlgn
nlogba — nlog43 — O(TLO'793)
f(n) = Q(n'°8s3+<), where € ~ 0.2
Apply case 3, if regularity condition holds for f(n)
For large n, af(%) = 3%1g(2) < 3nlgn =cf(n) forc=2
Therefore, T,, = O(nlgn)

Principles of Algorithm Analysis 22

— Recurrence
T, =2T2 +nlgn

Recurrence has proper form —a =2, b= 2, f(n) =nlgn and n'°& % =n

f(n) = nlgn is asymptotically larger than n'°8» = n but not polynomially larger

Ratio J:O(?)a = nlgn _ lgn is asymptotically less than n¢ for any positive constant e
n'°9b n

Recurrence falls between case 2 and case 3

Examples of algorithm analysis
e Sequential search, or linear search

Property 1 Sequential search examines N numbers for each unsuccessful search and about N/2 numbers for each
successful search on the average.

Property 2 Sequential search in an ordered table examines N numbers for each search in the worst case and about
N/2 numbers for each search on the average.

e Consider the effect of M transactions and NN entries in the table; with a requirement of ¢ usec per comparison

e Binary search
Property 3 Binary search never examines more than |lg N | + 1 numbers.

Easily showed by the recurrence for binary search:

Ty < TLN/QJ +1, for N>2withT) =1

Guarantees, Predictions, and Limitations

e Run time depends on two things in data

— Amount of data

— Type of data (worst case/average case/best case)
e Worst case performance of algorithms

— Allows to make guarantees about the run time of programs
— Function provides the maximum number of times an abstract operation will be performed, independent of data
x Property 3 for binary serach algorithms

— Algorithms with lower worst case performance are preferable and are the goal of algorithm analysis

