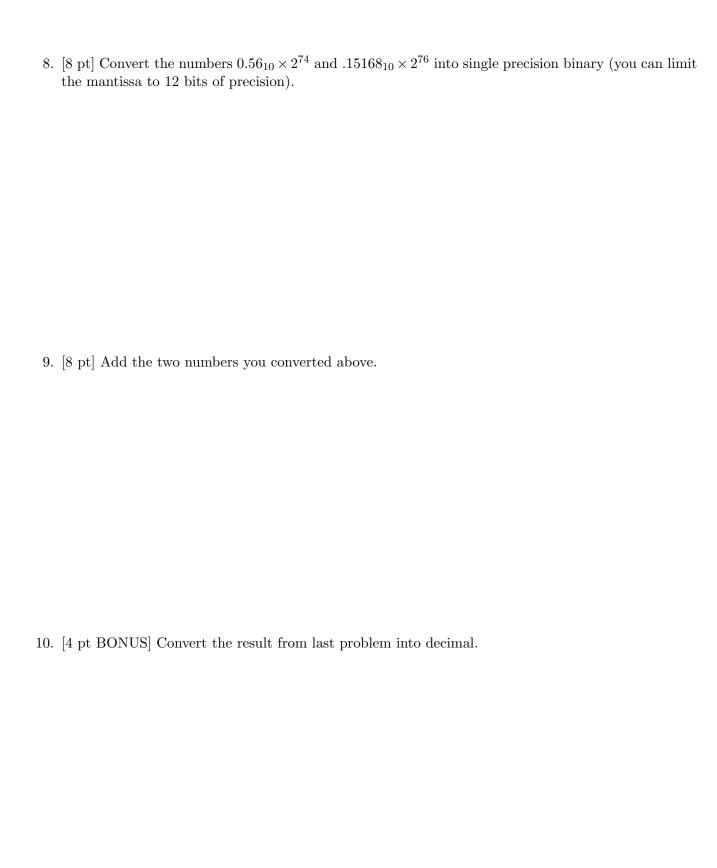
Important: This is an open book test. You can use any books, notes, or paper, but not exchange anything with other students. You are not allowed to use any electronic/communication devices. *Do not log into the computer during the test*. Any calculations and rough work can be done on the back side of the test pages. You will lose five points for not writing your name.

1. [10 pt] You are given three numbers in registers \$t0, \$t1, and \$t2. Write a function in MIPS assembly language that will return the maximum of the three numbers in register \$v0 and the minimum in register \$v1.


2. [3 pt] Convert -1023_{10} into a 32-bit 2's complement binary number.

3.	[8 pt] Given two numbers 79 ₁₆ and 49 ₁₆ . Convert them to signed 8-bit binary and subtract the second number from the first. Convert the result to hexadecimal. What do you get when you add the two numbers?
4.	[4 pt] In the design of our 32-bit ALU, we shared two input bits to ALU ₀ . What are those bits? Why cannot we transmit them as a single bit since they carry the same signal?
5.	[8 pt] Determine the g_i , p_i , P_i , and G_i values of the two 16-bit numbers $A2AA_{16}$ and $48A8_{16}$ as used in carry-lookahead adders. Also, what is the value of C_4 ?

- 6. [8 pt] Multiply the following pairs of 4-bit signed numbers using Booth's algorithm.
 - (a) -4_{10} and 5_{10}

(b) -6_{10} and -2_{10}

7. [6 pt] Show the division of 7_{10} by 5_{10} in binary.

